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HOLOMORPHIC VECTOR FIELDS WITH A BARYCENTRIC CONDITION

DOMINIQUE CERVEAU, JULIE DÉSERTI, AND ALCIDES LINS NETO

ABSTRACT. We study the p-tuples of holomorphic vector fields (X1,X2, . . . ,Xp) satisfying the barycentric
property ∑

k
exp tXk = p · id, where exp tX denotes the flow of X .

1. INTRODUCTION

Let U be a connected open subset of Rn (resp. Cn). Let X1, X2, . . ., Xp be p analytic (resp. holomorphic)
distinct vector fields on U. Denote by ϕk

t = exp(tXk) the local one-parameter subgroup of Xk; it is the
solution of the following ordinary differential equation

dϕk
t (x)
dt

= Xk(ϕ
k
t (x))

with initial data ϕk
0(x) = x.

For any point x ∈ U, ϕk
t (x) is well-defined for t sufficiently small and we assume that

p

∑
k=1

Xk(ϕ
k
t (x)) = 0 ∀x ∈ U and t small. (1.1)

In particular
p

∑
k=1

exp(tXk) = pid and by doing t = 0 in (1.1) we get

p

∑
k=1

Xk = 0.

Let us give an interpretation of (1.1): at any point x there are p identical particles transported by the
vector fields Xk while preserving their barycenter at the initial position x. The condition (1.1) is called
barycentric property. A set of p vector fields X1, X2, . . ., Xp satisfying the barycentric property is called a
p-chambar and is denoted Ch(X1,X2, . . . ,Xp). In §2 we give a long list of detailed examples.

Remark 1.1. The barycentric property is invariant by affine transformations. Let Ch(X1,X2, . . . ,Xp) be a
p-chambar in some open subset U ⊂ Cn and let T be an affine transformation of Cn. Then the vector fields
T∗X1, T∗X2, . . ., T∗Xp satisfy the barycentric condition.

In fact, if a biholomorphism f : U → f (U)⊂Cn sends any set of vector fields on U with the barycentric
property into another set with the barycentric property, then f is an affine transformation. However, in some
particular cases of p-chambars there are other types of biholomorphisms with this property (see for instance
Theorem 2.13).
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If X is a vector field on U, then FX denotes the foliation (maybe singular) whose leaves are the integral
curves of X . Hence FX is a foliation by (real or complex) curves. From now on all the vector fields Xk are
not identically zero.

In the case of a 2-chambar Ch(X1,X2) condition (1.1) implies that FX1 =FX2 . We have also (Theorem 3.2):

Theorem A. Let U be an open subset of Rn (resp. Cn). Let X1, X2 be two analytic (resp. holomorphic)
vector fields on U. Assume that X1 and X2 satisfy the barycentric property.

Then FX1 = FX2 , and it is a foliation by straight lines:

⋄ the closure of the generic leaves are intersection of lines with the open subset U;
⋄ on each line the flow ϕk

t = exp(tXk), k = 1, 2, coincides with the flow of a constant vector field.

In §2 we will construct explicit examples satisfying Theorem A. It is sufficient to consider any foliation
by straight lines F (maybe singular) and to take a vector field X whose restriction to each leaf is "constant".

In the algebraic case the foliations by straight lines are classified on P2
C and P3

C. We will see that in this
case the flows associated to a global algebraic 2-chambar are some special birational flows (§3).

We will consider the case of colinear vector fields (a condition satisfied by the 2-chambars), i.e. the case
where Xi = aiX with ai constant for any 1 ≤ i ≤ p; such chambars are called rigid chambars. The barycentric
property implies that FX is a foliation by straight lines in the real case (Theorem 4.6) but not in the complex
case. We will see the two following results (§4, Theorem 4.8 and Corollary 4.11):

Theorem B. If Ch(a1X ,a2X , . . . ,apX), ak ∈ C∗, is a rigid p-chambar on the connected open set U ⊂ Cn,
then the flow exp tX of X is polynomial of degree at most p−1 as a function of the time t. In particular, the
orbits of X are contained in some rational curves.

Theorem C. Let Ch(a1X ,a2X , . . . ,apX) be a rigid p-chambar on an open set U ⊂ Cn. If X has a singular
point, then the set Sing(X) of X has dimension ≥ 1.

We will see also examples where the Xi’s are polynomial vector fields, and more generally rational vector
fields. In particular, in the linear case we get (§6, Theorem 6.1):

Theorem D. Let X1, X2, . . ., Xp be some linear vector fields on U ⊂ Rn (resp. Cn).
If they satisfy the barycentric property ,then they are nilpotent. In particular, the flows exp(tXk) are

polynomials in t.

In the case of 3-chambars one gets (Theorem 6.10):

Theorem E. Let X1, X2, X3 be some linear vector fields on Cn.
If they satisfy the barycentric property, then, up to conjugacy, they are contained in the Heisenberg Lie

algebra hn (we identify Xi with its matrix).

We then give the classification of the 3-chambars in dimension 1, all chambars appearing in this classifi-
cation are rigid (§5, Theorem 5.1):
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Theorem F. Let Ch(X1,X2,X3) be a 3-chambar in one variable.
In the real case Ch(X1,X2,X3) is constant (i.e. the Xi’s are distinct constant vector fields).
In the complex case

⋄ either Ch(X1,X2,X3) is constant,
⋄ or Ch(X1,X2,X3) = Ch

(
a(x) ∂

∂x , ja(x)
∂

∂x , j
2a(x) ∂

∂x

)
, where j3 = 1, and a(x) =

√
λx+µ with λ ∈C∗,

µ ∈ C.

Note that the classification implies that the global 3-chambars in one variable have no singularities where
they are defined; this is not the case in higher dimensions (consider the nilpotent linear cases). Whereas
2-chambars and 3-chambars on an open subset of C are rigid the 4-chambars are not. The classification of p-
chambars on C for p ≥ 4 is a difficult problem in particular because of irreducibility problems. Nevertheless
we obtain interesting properties of such chambars.

In §7 we deal with chambars generated by homogeneous vector fields (homogeneous chambars). Among
other results we will see the classification of homogeneous chambars of degree 2 (Theorem 7.6):

Theorem G. Let Ch(X1,X2,X3) be an homogeneous 3-chambar of C2 of degree 2. Then, after a change of
variables, Xi can be written as aiy2 ∂

∂x , and the ai’s satisfy: a1 +a2 +a3 = 0. In particular, any homogeneous
3-chambar of C2 of degree 2 is rigid.
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2. REMARKS AND EXAMPLES

Let U be a connected open subset of Rn (resp. Cn). Denote by O(U) the ring of analytic (resp. holo-
morphic) functions and by χ(U) the O(U)-module of vector fields on U. We denote also by O(Cn,a) and
by χ(Cn,a) the germs of the previous spaces at a ∈ U. Let X1, X2, . . ., Xp, Y1, Y2, . . ., Yq be some analytic or
holomorphic vector fields on U. If the p-tuple (X1, X2, . . . , Xp) and the q-tuple (Y1, Y2, . . . , Yq) satisfy the
barycentric property, then the (p+q)-tuple (X1, X2, . . . , Xp, Y1, Y2, . . . , Yq) satisfy the barycentric property.
This type of example is called a reducible chambar. A chambar is irreducible if it is not reducible.
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2.1. Elementary examples and their variants. The most elementary example is the example of constant
vector fields. Let v1, v2, . . ., vp be p distinct constant vector fields on Rn (resp. Cn) such that

v1 + v2 + . . .+ vp = 0.

The translation flows T vk
t (x) = x+ tvk satisfy the barycentric property

p

∑
k=1

T vk
t (x) =

p

∑
k=1

(x+ tvk) =
p

∑
k=1

x+
p

∑
k=1

tvk = px+ t ×0 = px

and the vector fields v1, v2, . . ., vp define a p-chambar. Such a chambar is called a constant p-chambar. The
trajectories of the vk are straight lines. The constant chambar (v1,v2, . . . ,vp) is reducible if and only if there

is a subfamily (v j1 ,v j2 , . . . ,v jℓ) such that
ℓ

∑
k=1

v jk = 0.

Let us give a simple variant of this example. Fix some coordinates

(x,y) = (x1,x2, . . . ,xq,y1,y2, . . . ,yn−q);

take p vector fields

Xk = f k
1 (x)

∂

∂y1
+ f k

2 (x)
∂

∂y2
+ . . .+ f k

n−q(x)
∂

∂yn−q

where the f k
i ’s denote some analytic functions. Assume that

X1 +X2 + . . .+Xp = 0.

The Xk’s satisfy the barycentric property since for any value of the parameter x the Xk are constant vector
fields in the linear subspaces x = constant.

We can enrich this family of examples as follows. On the open subset U consider a regular foliation F
of codimension q whose leaves are of the form A∩U where the A’s are affine subspaces of codimension q.
Take now analytic vector fields Xk constant on any leaf of F and such that X1 +X2 + . . .+Xp = 0. Then
(X1, X2, . . . , Xp) is a p-chambar.

These examples play an important role in the article.
Another kind of construction that will be used is the formula expressing the flow of a vector field. Let

X =
n

∑
k=1

Ak(x)
∂

∂xk
be an analytic vector field on an open subset U of Rn or Cn, considered as a derivation

on O(U): if f ∈ O(U), then

X( f ) =
n

∑
k=1

Ak
∂ f
∂xk

.

Let (t,x) 7→ ϕt(x) be the flow of X . For x ∈ U fixed set h(t) = f (ϕt(x)). The Taylor series of h at t = 0 is

of the form h(t) = h(0)+
∞

∑
k=1

h(k)(0)
k!

tk.

On the other hand, h(0) = x and h(k)(0) = Xk( f ). In particular we get

f (ϕt(x)) = x+ ∑
k≥1

1
k!

Xk( f )(x)tk.
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If we specialize the above formula doing f (x) = x j, the j-th coordinate of x = (x1,x2, . . . ,xn), then ϕt(x) =(
ϕ1

t (x),ϕ
2
t (x), . . . ,ϕ

n
t (x)

)
where

ϕ
j
t (x) = x j + ∑

k≥1

1
k!

Xk(x j)tk (2.1)

Formula (2.1) will appear in some examples. Let us now give a consequence of (2.1):

Proposition 2.1. Let U ⊂ Cn be an open subset. Let X1, X2, . . ., Xp be some distinct elements of χ(U).
Then X1, X2, . . ., Xp define a p-chambar if and only if for any 1 ≤ j ≤ n

p

∑
k=1

X ℓ
k (x j) = 0 ∀ℓ≥ 1

where x j denotes the j-th coordinate of x = (x1,x2, . . . ,xn).

2.2. Barycentric property and integrability. Let Ch(X1,X2, . . . ,Xp) be a p-chambar. Examples seen in
§2.1 and 2-chambars may suggest that the Pfaff system generated by X1, X2, . . ., Xp is an integrable system,
i.e. tangent to a foliation. The following example of 3-chambar in dimension 3 shows that this is not the
case. Let us consider

X1 =−2
∂

∂x1
+

∂

∂x3
, X2 =

∂

∂x1
+ x1

∂

∂x2
+

∂

∂x3
, X3 =

∂

∂x1
− x1

∂

∂x2
−2

∂

∂x3
.

The flows of the Xi are

exp tX1 = (x1 −2t,x2,x3 + t),

exp tX2 =
(

x1 + t,x2 + tx1 +
t2

2
,x3 + t

)
,

exp tX3 = (x1 + t,x2 − x1t − t2

2
,x3 −2t).

The barycentric property is satisfied; the leaves of X1 are lines and the generic leaves of X2 and X3 are
parabolas. Let ω =−x1dx1 +dx2 −2x1dx3. Then ω(Xi) = 0, so ω defines the Pfaffian system associated to
the Xi. A direct computation yields to

ω∧dω = 2dx1 ∧dx2 ∧dx3,

i.e. the 2-plane field associated to ω is a contact structure hence is not integrable.

2.3. Fundamental example in dimension 1 and generalization. Let us consider the translation flow
ψt(x) = x+ t on C. Let ν be an integer ≥ 2. Denote by x

1
ν the principal branch of the ν-th root. Then

ϕν,t(x) =
(
ψt(x

1
ν )
)ν

=
(
x

1
ν + t

)ν

defines a flow, at least in a neighborhood of 1 since it is a conjugate of the translation flow. This flow is
polynomial in the time t and corresponds to the vector field

Zν = νx
ν−1

ν

∂

∂x
= ν

x

x
1
ν

∂

∂x

well defined at least in a neighborhood of 1.
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Let σ be a primitive (ν+1)-th root of unity. Then

ϕν,σt(x) =
(
x

1
ν +σt

)ν

is the flow of the vector field

σZν = νσ
x

x
1
ν

∂

∂x
.

Of course
ν

∑
p=0

σ
p ·Zν = 0 and

ν

∑
p=0

(
x

1
ν +σ

pt
)ν

=
ν

∑
p=0

ν

∑
k=0

(
ν

k

)
x

ν−k
ν σ

pktk =
ν

∑
k=0

( ν

∑
p=0

σ
pk
)

tk
(

ν

k

)
x

ν−k
ν = (ν+1)x.

We can thus state

Proposition 2.2. Let Zν be the vector field defined in a neighborhood of 1 by

Zν = νx
ν−1

ν

∂

∂x
= ν

x

x
1
ν

∂

∂x
.

The (ν+1)-tuple (Zν,σZν, . . . ,σ
νZν) is an irreducible (ν+1)-chambar in a neighborhood of 1.

One can conjugate a chambar by an affine map; hence(
(λx+µ)

ν−1
ν

∂

∂x
,σ(λx+µ)

ν−1
ν

∂

∂x
,σ2(λx+µ)

ν−1
ν

∂

∂x
, . . . ,σν(λx+µ)

ν−1
ν

∂

∂x

)
produces a (ν+1)-chambar where it makes sense.

For ν = 2 the previous construction gives the flow ϕ2,t(x) = x+ 2t
√

x+ t2 associated to the vector field
Z2 = 2

√
x ∂

∂x and the 3-chambar Ch(Z2, jZ2, j2Z2), j3 = 1, but also its affine conjugates.
An immediate generalization in any dimension is the following. Consider P(x) = (P1(x),P2(x), . . . ,Pn(x))

such that

⋄ Pj ∈ C[x1,x2, . . . ,xn], degP1 = ν ≥ 2 and degPj ≤ ν,
⋄ P(0) = 0,
⋄ and DP(0) = ρ · id where id is the identity of Cn and |ρ|> 1.

There exists a neighborhood U of 0 ∈ Cn such that V = P(U)⊃U and P|U has an inverse φ : V →U . To
any a = (a1,a2, . . . ,an) ∈ Cn we can associate a flow defined in a neighborhood of (0,0) ∈ C×Cn by

ϕt(x) = P
(
φ(x)+ ta

)
.

The vector field associated to this flow is

X(x) = DP(φ(x)) ·a (2.2)

Proposition 2.3. Let X be as in (2.2) and let σ be a primitive (ν+1)-th root of unity. Then the (ν+1)-tuple
(X ,σX , . . . ,σνX) is an irreducible (ν+1)-chambar in a neighborhood of 0 ∈ Cn.
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Proof. Since P has degree ν

ϕt(x) = P
(
φ(x)+ ta

)
= P(φ(x))+ tDP(φ(x)) ·a+

ν

∑
j=2

t j

j!
D( j)P(φ(x)) ·a

= x+ tH1(x,a)+
ν

∑
j=2

t jH j(x,a)

where H j(x,a) is homogeneous of degree j with respect to a ∈ Cn. Hence the flow of σkX is

ϕσk·t(x) = x+σ
ktH1(x,a)+

ν

∑
j=2

σ
jkt jH j(x,a)

and so
ν

∑
k=0

ϕσk·t(x) =
ν

∑
k=0

(
x+σ

ktH1(x,a)+
ν

∑
j=2

σ
jkt jH j(x,a)

)
= (ν+1)x

because
ν

∑
k=0

σ
jk = 0 if 1 ≤ j ≤ ν. □

Remark 2.4. The construction produces vector fields X whose flow exp tX is polynomial in the variable
time t.

Example 2.5. A global example of this kind (Proposition 2.3) can be given by a polynomial diffeomorphism
P : Cn → Cn. For instance

P(x1,x2, . . . ,xn) = (x1,x2 +q2(x1),x3 +q3(x1,x2), . . . ,xn +qn(x1,x2, . . . ,xn−1))

where q j ∈ C[x1,x2, . . . ,x j−1], 2 ≤ j ≤ n.

As a particular example, consider the polynomial diffeomorphism of C2

φ(x,y) = (x+ y2,y).

Conjugating the flow
(x+akt,y+bkt) ak, bk ∈ C

with ϕ we get the flow
φ

t
k =

(
x+akt +2bkty+b2

kt2,y+bkt
)
;

one can check that it is the flow of the affine vector field

Xk =
(

ak +2bky
)

∂

∂x
+bk

∂

∂y
.

Remark that this flow is polynomial in the time t.
As soon as bk ̸= 0 the trajectories are the parabola

fk = aky+bky2 −bkx = constant.

For p ≥ 3 if we choose a1, a2, . . ., ap, b1, b2, . . ., bp such that

a1 +a2 + . . .+ap = b1 +b2 + . . .+bp = b2
1 +b2

2 + . . .+b2
p = 0 (2.3)
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then the Xk satisfy the barycentric property and produce a p-chambar. For a generic choice of the parameters
ak and bk the Xk are not C-colinear. Note that for p = 3 if (2.3) holds, then the web W(X1,X2,X3) is an
hexagonal web (see for instance [5]) since f1 + f2 + f3 = 0.

2.4. Polynomial vector fields that satisfy the barycentric property.

Proposition 2.6. In dimension 1 the polynomial vector fields that satisfy the barycentric property are the
constant vector fields

ak
∂

∂x

with ak ∈ C∗ and
p

∑
k=1

ak = 0.

Proof. The proof is based on Proposition 2.1. Let X = P(x) ∂

∂x where P ∈ O(C) is viewed as a derivation on
O(C). According to (2.1) the flow ϕt of X is

ϕt(x) = x+ ∑
k≥1

1
k!

Xk(x)tk.

If P ∈ C[x] is a polynomial of degree d ≥ 1, then Xk(x) is also a polynomial for any k ≥ 1. Let us write

Xk(x) as Xk(x) =
d(k)

∑
j=0

ak
jx

j. If we set d(ℓ) := deg(X ℓ(x)), then

(1) since deg(X) = d, then a1
d ̸= 0;

(2) d(ℓ) = (d −1)ℓ+1 because d(ℓ+1) = deg(X(x))+d(ℓ)−1 = d +d(ℓ)−1;
(3) the equality aℓ+1

d(ℓ+1) = d(ℓ)a1
daℓd(ℓ) holds.

By recurrence we get from (3) that aℓd(ℓ) = A(ℓ)(a1
d)

ℓ where

(4) A(1) = 1 and A(ℓ+1) = d(ℓ)A(ℓ) for ℓ≥ 1.

On the one hand if d = 0, then X(x) ̸= 0 and X ℓ(x) = 0 for all ℓ ≥ 2. On the other hand it follows from
(2), (3) and (4) that if d ≥ 1, then d(ℓ)≥ 1 and A(ℓ)≥ 1 for all ℓ≥ 1.

Now assume that (X1,X2, . . . ,Xp) is a polynomial p-chambar on C. Let d = max
1≤ j≤p

deg(X j). Suppose by

contradiction that d ≥ 1. Without lost of generality we can assume that

{ j | deg(X j) = d}= {1, 2, . . . , q} ⊂ {1, 2, . . . , p}.

Set Xk = Pk(x) ∂

∂x where Pk(x) =
d

∑
j=0

ak jx j, 1 ≤ k ≤ p, where

a jd ̸= 0 if 1 ≤ j ≤ d and a jd = 0 if q < j ≤ p.

Claim 1. For any ℓ≥ 1 we have

(a1d)
ℓ+(a2d)

ℓ+ . . .+(aqd)
ℓ = 0.

The statement follows from the Claim (indeed if (a1d)
ℓ+(a2d)

ℓ+ . . .+(aqd)
ℓ = 0 for any ℓ ≥ 1, then

a1d = a2d = . . .= aqd = 0). Let us now justify it:
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Proof of the Claim. Set d(k, ℓ) = deg(X ℓ
k (x)), 1 ≤ k ≤ p. Note that:

⋄ if d = 1, then d(k, ℓ) = 1 for all 1 ≤ k ≤ q and all ℓ ≥ 1; furthermore if q < k ≤ p, then X ℓ
k (x) = 0

for all ℓ≥ 2.
⋄ id d > 1 and 1 ≤ k ≤ q, then d ≤ d(k, ℓ) = (d − 1)k+ 1 and so d(k, ℓ) < d(k, ℓ+ 1) for all ℓ ≥ 1.

Moreover if q < k ≤ p, then either d(k, ℓ)< (d −1)k+1 or X ℓ
k (x) = 0 for all ≥ 2.

Given 1 ≤ k ≤ p let a(k, ℓ) be the coefficient of xd(k,ℓ) in the polynomial X ℓ
k (x). If follows from the above

computations that

⋄ if 1 ≤ k ≤ q, then a(k, ℓ) = A(ℓ)(akd)
ℓ where A(ℓ) ̸= 0,

⋄ if q < k ≤ p, then a(k, ℓ) = 0.

According to Proposition 2.1 we get that

X ℓ
1(x)+X ℓ

2(x)+ . . .+X ℓ
p(x) = 0

implies
A(ℓ)

(
(a1d)

ℓ+(a2d)
ℓ+ . . .+(aqd)

ℓ = 0
)
= 0;

as A(ℓ) ̸= 0 we finally obtain that (a1d)
ℓ+(a2d)

ℓ+ . . .+(aqd)
ℓ = 0. □

□

Remark 2.7. If p = 3, then Proposition 2.6 is a consequence of Theorem 5.1.

Remark 2.8. If X is a holomorphic vector field on the Riemann sphere C = C∪{∞}, then in the affine
chart C there exists a polynomial function a of degree ≤ 2 such that X = a(x) ∂

∂x . The only p-tuple of global
vector fields that satisfy the barycentric property in this chart are the constant vector fields.

2.5. Examples produced by those of dimension 1. We need a definition:

Definition 2.9. A p-chambar of the form Ch(a1X ,a2X , . . . ,apX), with ai constant, is called rigid.

Propositions 2.2 and 2.3 give examples of rigid p-chambars.

Let us give a construction presented in dimension 2 for simplicity but that can be generalized in any
dimension n and for any p.

Consider the vector field X(x) = 2
√

x ∂

∂x that induces the flow ϕt(x) = x+ 2t
√

x+ t2, a special case of
§2.3. A first 3-chambar in dimension 2 is

Ch
(
X(x)+X(y), j(X(x)+X(y)), j2(X(x)+X(y))

)
which is rigid. Similarly one can consider

Ch
(
X(x)+X(y), jX(x)+ j2X(y), j2X(x)+ jX(y)

)
which is non-rigid. These examples are well defined on any simply connected open subset that do not
intersect the axis x = 0 and y = 0.

Let us now give an example of a non-rigid irreducible 4-chambar still in dimension 2

Ch
(

X(x), jX(x)+X(y), j2X(x)+ jX(y), j2X(y)
)



HOLOMORPHIC VECTOR FIELDS WITH A BARYCENTRIC CONDITION 10

that can be generalized to a 5-chambar as follows

Ch
(

X(x), jX(x), j2X(x)+X(y), jX(y), j2X(y)
)
.

Example 2.10. Another way to obtain examples is by taking the real part of a complex p-chambar on Cn.
For instance, if we set z = x+ iy, then d

dz =
1
2

(
d
dx − i d

dy

)
,

√
z =

√√
x2 + y2 + x︸ ︷︷ ︸
A(x,y)

+i
√√

x2 + y2 − x︸ ︷︷ ︸
B(x,y)

and

Re
(

2
√

z
d
dz

)
= 2A(x,y)

d
dx

+2B(x,y)
d
dy

.

The three vector fields Re
(
2
√

z d
dz

)
, Re

(
j2
√

z d
dz

)
, Re

(
j2 2

√
z d

dz

)
give a real 3-chambar but if we consider

x, y as complex variables we get a 3-chambar on a suitable open set of C2.
Let us remark that we can iterate this process: take a chambar on Cn, its real part gives a chambar on R2n

whose complexification is a chambar on C2n and so on...

2.6. Examples associated to some polynomial flows in t.

2.6.1. Polynomial examples. Let P = p0 + p1x+ . . .+ pNxν be a polynomial of degree ν. Consider the
vector field

X = a
∂

∂x
+P(x)

∂

∂y
where a ∈ C∗. Its flow is polynomial in t:

ϕt(x,y) =

(
x+at,y+

ν

∑
k=0

pk

(
(x+at)k+1

a(k+1)
− xk+1

a(k+1)

))
that can we rewritten

ϕt(x,y) =
(

x+at,y+ P̃a(x+at)− P̃a(x)
)

where P̃a(y) =
ν

∑
k=0

pk
yk+1

a(k+1)
.

Let us consider p vector fields X1, X2, . . ., Xp of the following form

Xk = ak
∂

∂x
+Pk(x)

∂

∂y
.

The barycentric property is equivalent to
p

∑
k=1

ak = 0 (2.4)

and
p

∑
k=1

P̃k,ak(x+akt)− P̃k,ak(x) = 0 (2.5)
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Note that (2.5) holds if and only if
∂

∂t

(
p

∑
k=1

P̃k,ak(x+akt)

)
= 0

if and only if
ν

∑
k=1

Pk(x+akt) = 0 (2.6)

As soon as we have fixed the constants a1, a2, . . ., ap the equality (2.6) is a linear system in the coefficients
of the polynomials Pk, system that sometimes has non-trivial solutions.

Consider for instance the case p = 3 and ν = 2. Set

P1 = α0 +α1x+α2x2, P2 = β0 +β1x+β2x2, P3 = γ0 + γ1x+ γ2x2.

Conditions (2.4) and (2.6) are equivalent to

(I)


a1 +a2 +a3 = 0
α0 +β0 + γ0 = 0
α1 +β1 + γ1 = 0
α1a1 +β1a2 + γ1a3 = 0

(II)

 α2 +β2 + γ2 = 0
α2a1 +β2a2 + γ2a3 = 0
α2a2

1 +β2a2
2 + γ2a2

3 = 0

In other words (2.4) and (2.6) give seven equations in the parameters space α, β, γ, a of dimension 12.
The set of solutions is not irreducible. Assume that the parameters a = a satisfies a1 ̸= a2 ̸= a3. Then in a
neighborhood of a = a the system (II) is a Vandermonde one so has for solution α2 = β2 = γ2 = 0. Then
(I) and (II) are equivalent to 

a1 +a2 +a3 = 0
α0 +β0 + γ0 = 0
α1 +β1 + γ1 = 0
α1a1 +β1a2 + γ1a3 = 0
α2 = β2 = γ2 = 0

that defines a quadric of dimension 12−7 = 5. But there are solutions such that two of the ai are equal. For
instance if a1 = a2 = a3 = 0, then (I) and (II) are equivalent to

a1 = a2 = a3 = α0 +β0 + γ0 = α1 +β1 + γ1 = α2 +β2 + γ2 = 0

which is a linear space of dimension 12−6 = 6.
Hence the set Σ of vector fields of this type satisfying the barycentric property is not irreducible. In

fact Σ consists of three vector spaces of dimension 6, one vector space of dimension 6 and one quadric of
dimension 5.

2.6.2. Birational examples. Take (a1,a2, . . . ,ap) a p-tuple of Cn and set for 1 ≤ k ≤ p

ak = (ak,1,ak,2, . . . ,ak,n).

Consider the translation flow

T ak
t (x1,x2, . . . ,xn) = (x1 +ak,1t,x2 +ak,2t, . . . ,xn +ak,nt).

Denote by ψ the blow-up
ψ : (x1,x2, . . . ,xn) 99K (x1,x1x2, . . . ,x1xn).
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The lift Fk
t of T ak

t by ψ can be written

Fk
t (x) = ψ◦T ak

t ◦ψ
−1(x)

=

(
x1 +ak,1t,

(
x1 +ak,1t

)(x2

x1
+ak,2t

)
, . . . ,

(
x1 +ak,1t

)(xn

x1
+ak,nt

))
.

The condition
p

∑
k=1

Fk
t (x) = px is satisfied if

⋄ for any 1 ≤ ℓ≤ n
p

∑
k=1

ak,ℓ = 0

⋄ and for any 2 ≤ ℓ≤ n
p

∑
k=1

ak,1ak,ℓ = 0.

Remark 2.11. In the previous examples we assume that the ak’s are not all zero. Up to a linear conjugation
(such a conjugation preserves a barycentric property) we can assume that a1 = (1,0,0, . . . ,0). The previous
conditions can be rewritten 

p

∑
k=1

ak,ℓ = 0 1 ≤ ℓ≤ n

a1,ℓ = 0 2 ≤ ℓ≤ n
that thus form a linear subspace of the space of coefficients a j,i. These examples of p-chambars are given
by birational flows quadratic in the time t (see [3] for other examples).

2.7. Examples of chambars whose flows are non-algebraic/non-polynomial in t. Let k be an integer;
consider qk vector fields of the following form

X j
k = ak

∂

∂x
+bk, jeλkx ∂

∂y
1 ≤ j ≤ qk

where ak, bk, j and λk belong to C∗. The flows of X j
k is

(exp tX j
k )(x,y) =

(
x+akt,y+

bk, j

λkak
eλkx(eλkakt −1)

)
Set ℓ =

p

∑
k=1

qk. The ℓ vector fields X j
k form a ℓ-chambar if and only if for any 1 ≤ k ≤ p the following

equalities hold
p

∑
k=1

qkak = 0,
qk

∑
j=1

bk, j = 0.

Contrary to the previous example the flows exp tX j
k are non-polynomial: their orbits are the levels of the

functions
λkaky−bk, jeλkx.

This construction starts with ℓ = 4 and produces global chambars on C2. It can be generalized to higher
dimensions.
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2.8. Compatible diffeomorphisms. The concept of p-chambar is an affine one, that is the barycentric
property is invariant under the action of the group of affine transformations; if C is a local p-chambar and φ

a diffeomorphism, then, in general, φ∗C is not a chambar.

Problem 2.12. Let Chc be a constant chambar; what are the diffeomorphisms φ such that φ∗Chc is a p-
chambar ? What is the structure of such a set of diffeomorphisms ?

Let us give an answer to this problem in the special case p = 3, n = 2. Let Ch(X1,X2,X3) a constant
3-chambar in C2. We say that Ch(X1,X2,X3) is generic if the Xi’s are linearly independent. We immediately
notice that a generic constant 3-chambar is linearly conjugate to the "standard" 3-chambar

Ch0 = Ch
(

∂

∂x
,

∂

∂y
,−
(

∂

∂x
+

∂

∂y

))
.

Let φ be a local diffeomorphism; we say that φ is compatible with Ch0 if φ∗Ch0 is a 3-chambar. We have
the following statement (recall that j, j2 are the roots of t2 + t +1):

Theorem 2.13. A local diffeomorphism of C2 is compatible with Ch0 if and only if it can be written L+F
where L denotes an affine inversible transformation and F = ( f ,g) with

f , g ∈ ⟨(y+ jx)2,(y+ j2x)2,xy(y− x)⟩C.

Remark 2.14. A local compatible diffeomorphism is in fact a global application, but not in general a global
diffeomorphism.

Let us first state and prove the following result we use in the proof of Theorem 2.13:

Lemma 2.15. If h is a holomorphic function satisfying the P.D.E’s

∂2h
∂x2 +

∂2h
∂x∂y

+
∂2h
∂y2 = 0

∂3h
∂x2∂y

+
∂3h

∂x∂y2 = 0

then h is a polynomial of degree 3 of the form

h(x,y) = α0 +α1x+α2y+α3(x+ jy)2 +α4(x+ j2y)2 +α5xy(y− x)

with α0, α1, . . ., α5 ∈ C.

Proof. To simplify the notations let us consider the differential operators

S =
∂2

∂x2 +
∂2

∂x∂y
+

∂2

∂y2 T =
∂3

∂x2∂y
+

∂3

∂x∂y2

The inclusion ⟨1, x, y, (y+ jx)2, (y+ j2x)2, xy(y− x)⟩C ⊂ ker(S)∩ker(T ) is straightforward.

Note that
∂

∂x
·S =

∂3

∂x3 +
∂2

∂x2
∂

∂y
+

∂

∂x
∂2

∂y2 =
∂3

∂x3 +T

so ker(S)∩ker(T )⊂ ker
(

∂3

∂x3

)
.

Similarly ∂

∂y ·S = ∂3

∂y3 +T and thus ker(S)∩ker(T )⊂ ker
(

∂3

∂y3

)
.
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As a result ker(S)∩ ker(T ) ⊂ ker
(

∂3

∂x3

)
∩ ker

(
∂3

∂y3

)
. In particular if h belongs to ker(S)∩ ker(T ), then

∂3h
∂x3 = ∂3h

∂y3 = 0.

Let h =∑
k,ℓ

hk,ℓxkyℓ be the Taylor series of h at (0,0). If ∂3h
∂x3 =

∂3h
∂y3 = 0, then hk,ℓ ̸= 0 if and only if k, ℓ≤ 2.

However if k = ℓ= 2, then we have S(x2y2) = 2y2 +2x2 +4xy ̸= 0 and so

ker(S)∩ker(T ) = ⟨1, x, y, (y+ jx)2, (y+ j2x)2, xy(y− x)⟩C.

□

Proof of Theorem 2.13. If φ is a local diffeomorphism of C2 compatible with Ch0, then the barycentric
condition asserts that

φ(x+ t,y)+φ(x,y+ t)+φ(x− t,y− t) = 3φ(x,y). (2.7)

We can assume that φ is defined in a neighborhood of (0,0). Let us write φ as L+( f ,g) where L is affine
and f , g ∈ O(C2,0) satisfy ( f ,g)(0,0) = D( f ,g)(0,0) = (0,0). By derivating (2.7) twice with respect to t,
we get that both components f and g satisfy the P.D.E.

∂2h
∂x2 +

∂2h
∂x∂y

+
∂2h
∂y2 = 0.

The solutions of such P.D.E. are of the following type

h = ϕ+(y+ jx)+ϕ−(y+ j2x) (2.8)

with j, j2 the roots of t2 + t +1 and ϕ+, ϕ− holomorphic in one variable defined on suitable domains.
A third derivation with respect to t shows that f and g also satisfy the P.D.E.

0 =
∂3h

∂x2∂y
+

∂3h
∂x∂y2 =

∂2

∂x∂y

(
∂h
∂x

+
∂h
∂y

)
. (2.9)

Lemma 2.15 allows to conclude (note that, with the notations of Lemma 2.15 an element of kerS∩kerT
satisfies relation (2.7)). □

More generally, one can state:

Theorem 2.16. Let f : U → f (U) ⊂ Cn be a biholomorphism from the open set U ⊂ Cn to f (U), n ≥ 2.
Assume that the vector fields

f∗
∂

∂x1
, f∗

∂

∂x2
, . . . , f∗

∂

∂xn
, f∗

(
− ∂

∂x1
− ∂

∂x2
− . . .− ∂

∂xn

)
satisfy the barycentric property. Then all the components f j of f are polynomial.

Lemma 2.17. Let h ∈ O(U) be a holomorphic function with the property that
n

∑
j=1

h(x1,x2, . . . ,x j−1x j + t,x j+1,x j+2, . . . ,xn)+h(x1 − t,x2 − t, . . . ,xn − t) = (n+1)h(x1,x2, . . . ,xn) (2.10)

for all x ∈ U and t ∈ C with |t| small enough. Then h satisfies the system of P.D.Es T2(h) = 0
T3(h) = 0
. . .
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where Tk is the differential operator

Tk =
∂k

∂xk
1
+

∂k

∂xk
2
+ . . .+

∂k

∂xk
n
+(−1)k

(
∂

∂x1
+

∂

∂x2
+ . . .+

∂

∂xn

)k
.

Proof. Let e1 = (1,0,0, . . . ,0), e2 = (0,1,0,0, . . . ,0), . . ., en = (0,0, . . . ,0,1) and v = −
n

∑
j=1

e j. The idea is

to prove by induction on k ≥ 1 that for any t ∈ (C,0)
n

∑
j=1

∂k

∂x j
h(x+ te j)+(−1)k

(
∂

∂x1
+

∂

∂x2
+ . . .+

∂

∂xn

)k

h(x+ tv) = 0; (2.11)

indeed if t = 0 in (2.11), then we get (2.10).

Let ϕ(t,x) =
n

∑
j=1

h(x+ te j)+ h(x+ tv). According to (2.10) the function ϕ(t,x) depends only of x. In

particular differentiating k times with respect to t we get

∂kϕ(t,x)
∂tk =

n

∑
j=1

∂k

∂x j
h(x+ te j)+(−1)k

(
∂

∂x1
+

∂

∂x2
+ . . .+

∂

∂xn

)k

h(x+ tv) = 0

Furthermore doing t = 0 we get Tk(h) = 0. □

Proof of Theorem 2.16. Now suppose that f : U → f (U) ⊂ Cn is a biholomorphism such that the vec-
tor fields f∗ ∂

∂x1
, f∗ ∂

∂x2
, . . ., f∗ ∂

∂xn
, f∗
(
− ∂

∂x1
− ∂

∂x2
− . . .− ∂

∂xn

)
satisfy the barycentric property. Setting f =

( f1, f2, . . . , fn) we see that is equivalent to
n

∑
j=1

fℓ(x+ te j)+ fℓ(x+ tv) = (n+1) fℓ(x) ∀1 ≤ ℓ≤ n.

Therefore each component fℓ of f satisfies (2.10) so that fℓ belongs to
⋂
k≥2

ker(Tk) for any 1 ≤ ℓ≤ n (Lemme

2.17). The idea is to prove that
⋂
k≥2

ker(Tk)⊂ C[x1,x2, . . . ,xn]: if h ∈
⋂
k≥2

ker(Tk), then h is a polynomial.

Let P be the Noetherian ring of linear differential operators on O(U) with constant coefficients

P =
{

P
(

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

)
|P ∈ C[z1,z2, . . . ,zn]

}
and let I = ⟨Tk |k ≥ 2⟩ be the ideal of P generated by all the operators Tk, k ≥ 2. Note that if S belongs to I ,
then

⋂
k≥2

ker(Tk) is contained in ker(S).

Claim 2. There exists p ∈ N such that ∂p

∂xp
j

belongs to I for all 1 ≤ j ≤ n.

Claim 2 implies that if h belongs to
⋂
k≥2

ker(Tk), then h is a polynomial of degree at most n(p−1).

Proof of Claim 2. Let Φ : P → On be the unique ring homomorphism satisfying

Φ

(
∂

∂x j

)
= z j ∀1 ≤ j ≤ n.
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Note that Φ(Tk) = zk
1 + zk

2 + . . .+ zk
n +(−1)k(z1 + z2 + . . .+ zn)

k. Let us set

Pk(z) = zk
1 + zk

2 + . . .+ zk
n +(−1)k(z1 + z2 + . . .+ zn)

k, Ĩ = ⟨Pk |k ≥ 2⟩, Φ(I ) = Ĩ .

Claim 3. One has

Z(Ĩ ) =
{

z ∈ Cn |Pk(z) = 0 ∀k ≥ 2
}
=
{

0
}
.

From Z(Ĩ ) = {0}= Z(mn) one gets (using the definition of
√

Ĩ ) that
√

Ĩ = mn. According to Hilbert’s
theorem (Nullstellensatz) one obtains that Ĩ ⊃m

p
n for some p. As a result zp

j belongs to Ĩ for all 1 ≤ j ≤ n
and so ∂p

∂zp
j

belongs to I for all 1 ≤ j ≤ n. □

Proof of Claim 3. Define S :=−(z1+z2+ . . .+zn) so that Pk = zk
1+zk

2+ . . .+zp
n +Sk. Therefore if z belongs

Z(Ĩ ), then

(∗∗)


z1 + z2 + . . .+ zn +S = 0
z2

1 + z2
2 + . . .+ z2

n +S2 = 0
. . .
zn

1 + zn
2 + . . .+ zn

n +Sn = 0
zn+1

1 + zn+1
2 + . . .+ zn+1

n +Sn+1 = 0

Doing S = zn+1 system (∗∗) is equivalent to Qn+1v t = 0 where Qn+1 is the matrix

Qn+1(z) =


z1 z2 . . . zn+1
z2

1 z2
2 . . . z2

n+1
...

...
zn+1

1 zn+1
2 . . . zn+1

n+1


and v = (1,1, . . . ,1). Finally it can be checked by induction on n ≥ 0 that if Qn+1(z)v t = 0 for some
u = (u1,u2, . . . ,un+1), where u j > 0 for all 1 ≤ j ≤ n+1, then z = 0. □

□

3. DESCRIPTION OF THE 2-CHAMBARS

3.1. Examples coming from foliations by straight lines. In order to precise the previous statements we
recall the classification of foliations by straight lines on P3

C that can be found in [2] (according to Jorge
Pereira this classification was already known to Kummer). We do not know if such a classification exists on
P3
R.
Let F be a holomorphic foliation on Pn

C. Chow theorem asserts that F is algebraic; such a foliation F has
singularities. We say that F is a foliation by straight lines if the generic leaf is contained in a line (in fact a
line without a few points). Let us mention the difference between the real case: foliations by straight lines of
P3
R without singularities exist. The typical example is produced by Hopf fibration: the real projectivization

of complex vector lines of C2 ≃ R4 gives such a foliation H . Setting z = x1 + ix2 and w = x3 + ix4 these
foliations have the first integral

z
w
=

zw
|w|2

=
x1x3 − x2x4 + i(x1x4 + x2x3)

x2
3 + x2

4
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In particular x1x3−x2x4
x2

3+x2
4

and x1x4+x2x3
x2

3+x2
4

are real first integrals of H .

Let us recall the classification of foliations by straight lines of P3
C:

Theorem 3.1 ([2]). Every holomorphic foliation by straight lines in P3
C is, up to linear equivalence, of one

of the following types

1. a radial foliation at a point,
2. a radial foliation "in the pages of an open book", i.e. a family of radial foliations of dimension 2

each contained in a plane of the family of planes containing a fixed line;
3. a foliation associated with the twisted cubic t 7→ (t, t2, t3); here the (closure of the) leaves of the

foliation are the chords and the lines tangent to the twisted cubic.

Foliations of the first type correspond to foliations by parallel lines in a well-chosen affine chart (singular
point at infinity).

To construct a foliation of the second type we consider an open book, i.e. a pencil of hyperplanes, for
instance x1

x2
= constant; in any page x1

x2
= c we fix a point (x1,cx2,x3) and ask that any leaf of F is a line

contained in a page x1
x2
= c and passes through the prescribed point (x1,cx2,x3) (see [2] for further details).

type 1. type 2. type 2. type 3.

Remark that Theorem 3.1 gives the description of algebraic foliations by straight lines in the affine
space C3.

Let us now explain how we can construct a 2-chambar from a foliation F by lines defined on an open
subset U of Cn. For a good choice of the affine coordinates xi the foliation F is defined by a vector field

X =
∂

∂x1
+α2

∂

∂x2
+α3

∂

∂x3
+ . . .+αn

∂

∂xn

on U. Of course, in general, the αi’s are meromorphic and we consider U∗ = U ∖
n⋃

i=2

(poles of αi). Then if

m belongs to U∗ the trajectory of X passing through m is a line Dm and exp(tX)|Dm is a translation flow on
Dm. The pair (X ,−X) thus defines a 2-chambar.

One can next consider f ·X , where f is any meromorphic first integral of X , instead of X . Since f is
constant on the trajectories of X , f ·X still defines a translation flow on any trajectory of X , and ( f ·X ,− f ·X)

is also a 2-chambar.

3.2. Some properties. The barycentric property for a 2-chambar Ch(X1,X2) implies that X1 +X2 = 0 and
can be rewritten as

ϕt(x)+ϕ−t(x) = 2x ∀x ∈ U
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where ϕt denotes the flow of X = X1.
Differentiating the previous equality with respect to time t, we get

•
ϕt(x)−

•
ϕ−t(x) = X

(
ϕt(x)

)
−X

(
ϕ−t(x)

)
= 0;

differentiating a second time with respect to t, we obtain

DX
(
ϕt(x)

) •
ϕt(x)+DX

(
ϕ−t(x)

) •
ϕ−t(x) = 0

where DX : U → Rn (or DX : U → Cn) denotes the differential of X .

If X =
n

∑
i=1

αi(x)
∂

∂xi
, the above relation is equivalent to

DX(X) =
n

∑
i=1

X(αi)
∂

∂xi
= 0

In particular the coefficients αk are first integrals of X , 2 ≤ k ≤ n. As a result the αk are constant along the
trajectories of X ; these trajectories are thus (contained in) lines.

Note that in dimension 1 we can write X = α
∂

∂x and the above relation is equivalent to α
∂α

∂x = 0; hence α

is constant. On any of its trajectories the flow of X thus coincides with the flow of a constant vector field.
As a result one can state:

Theorem 3.2. Let U be an open subset of Rn (resp. Cn). Let X1, X2 be two analytic (resp. holomorphic)
vector fields on U. Assume that X1 and X2 satisfy the barycentric property.

Then the leaves of FX1 = FX2 are contained in lines; on each of these lines the flows exp(tXk)|D are
translation flows.

In particular in dimension 1 any 2-chambar (X ,−X) is produced by a constant vector field. Remark also
that any local 2-chambar in one variable can be globalized.

Corollary 3.3. Let X be a rational vector field on Cn. Assume that (X ,−X) defines a 2-chambar. Then
exp(tX) = id+ tX0 defines a flow of birational maps of Cn.

Note that in exp(tX) = id+ tX0 the letter X0 denotes the map whose components are the components of
the vector field X , a system of coordinates having been chosen.

Remark 3.4. In the real case there is an other proof of Theorem 3.2 which is geometric.
Let Γ be a generic leaf of FX1 = FX2 . Assume that Γ is not (contained in) a line. If x ∈ Γ is a generic

point, then there exists an hyperplane Σ tangent to Γ at x such that

⋄ the germ Γ,x is contained in one of the half spaces delimited by Σ,
⋄ Γ,x ∩Σ = {x}
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If we set ϕt = exp tX1, then ϕt(x)− x+ϕ−t(x)− x ̸≡ 0: contradiction.

Let X =
n

∑
i=1

αi
∂

∂xi
be a germ of vector fields at the origin of Cn. Denote by Sing(X) = {α1 = α2 = . . .=

αn = 0} the singular set of X .
The following statement is a special case of Theorem 4.10; its proof is algebraic in contrast with the

geometric proof of Theorem 4.10.

Theorem 3.5. Let Ch(X ,−X) be a 2-chambar at 0 ∈ Cn. Assume that X is singular at 0, that is {0} ⊂
Sing(X).

Then dimSing(X)≥ 1.

Proof. The condition X(αk) = 0, 1 ≤ k ≤ n, is equivalent to
n

∑
i=1

αi
∂αk

∂xi
= 0 1 ≤ k ≤ n.

Hence the partial derivatives
(

∂αk
∂x1

, ∂αk
∂x2

, . . . , ∂αk
∂xn

)
are relations of the ideal (α1,α2, . . . ,αn).

Assume by contradiction that dimSing(X) = 0. Then according to [6] the relations are generated by the
trivial relations

(0,0, . . . ,0, α j︸︷︷︸
ith coordinate

,0, . . . ,0, −αi︸︷︷︸
jth coordinate

,0,0, . . . ,0);

this gives a contradiction with the following fact: the algebraic multiplicity at 0 of one of the ∂αk
∂xi

is less than
the algebraic multiplicity at 0 of αk. □

Remark 3.6. Let u ∈ O∗(Cn,0) be a unit. Then the vector field u ·
n

∑
i=1

xi
∂

∂xi
which has linear trajectories can

not belong to a 2-chambar; but the rational field 1
x1

n

∑
i=1

xi
∂

∂xi
can.

4. RIGID CHAMBARS

4.1. Flows which are polynomial in the time t.

Definition 4.1. Let X be an holomorphic vector field on the open set U ⊂ Cn. We say that X is a t-
polynomial vector field if t 7→ exp tX is polynomial. The t-degree of X is the usual degree in the variable t
and is denoted by t.d(X) ∈ N∪{∞}.
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We have seen a lot of examples of t-polynomial vector fields: constant vector fields, nilpotent vector
fields, the vector field 2

√
x ∂

∂x , ...

If U = Cn, then the trajectories of a t-polynomial vector field are points or rational curves.

Proposition 4.2. Let X be a t-polynomial vector field of t-degree ν on the open set U ⊂ Cn. Write exp tX as
Id+ tF1+ t2F2+ . . .+ tνFν, with Fk ∈ O(U). Then the components Fν,1, Fν,2, . . ., Fν,n of Fν are first integrals
of X .

In particular in the 1-dimensional case, Fν is a non-zero constant.

Proof. It is a direct consequence of the identity exp tX ◦ expsX = exp(s+ t)X : the coefficient of tν in that
identity is exactly

Fν(expsX) = Fν.

This implies the statement. □

Remark the Fν,k may be constant; this is the case for the flow of X = 2
√

x ∂

∂x . A contrario if a t-polynomial
vector field X of degree ν is singular at a point, say 0 (i.e. X(0)0), then obviously some of the Fν,k =

Xν(xk)
ν!

are non identically 0. In particular in dimension 2, a t-polynomial vector field X singular at the origin 0∈C2,
X(0) = 0, has a non-constant holomorphic first integral f . The generic leaves of X are the levels of f ; note
that since the flow is polynomial one has the following important property: X| f−1(0) ≡ 0.

The t-polynomial vector fields produce examples of p-chambars as we have seen previously. Typically if
σ is a primitive ν-th root of unity and t ·d(X) = ν, then X , σX , . . ., σν−1X defines a (rigid) ν-chambar.

If t · d(X) = 1, then exp tX = Id+ tF1 and the foliation associated to X is a foliation by straight lines.
Conversely to a foliation by straight lines we can associate a (meromorphic) t-polynomial vector field X
such that t ·d(X) = 1.

In dimension 2, consider a foliation given by the vector field X = f ∂

∂x +
∂

∂y . Then X is a t-polynomial
vector field of degree 1 if and only if the foliation FX is a foliation by straight lines; this means that f
satisfies the non-linear PDE

0 = X( f ) = f
∂ f
∂x

+
∂ f
∂y

;

note that this PDE is the famous inviscid Burgers’ equation, a well-known PDE in fluid mechanic. Similarly
t-polynomial vector fields of degree 2 on open set of C2 correspond to foliations in parabolas etc. In that
case appear generalizations of Burgers’ equation as the reader can see.

The following result gives the classification of the t-polynomial vector field on the complex line.

Theorem 4.3. Let X(x) = a(x) ∂

∂x be a germ at 0 ∈ C of a holomorphic vector field. Assume that the flow
of X is polynomial in t of t-degree ℓ. Then a = f ′ ◦φ where

⋄ f is a polynomial of degree ℓ with f (0) = 0 and f ′(0) = a(0) ̸= 0,;
⋄ φ : (C,0)→ (C,0) is a local inverse of f : f ◦φ(x) = x.

In other words X is conjugate to the constant vector field ∂

∂x via a polynomial (local) diffeomorphism.
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Proof. Suppose that a(0) ̸= 0. In this case the vector field X is conjugated to a constant vector field, say
Y = ∂

∂x . Let f be an element of Diff(C,0) such that f∗Y = X . The flow ϕt of X can be written as

ϕt(x) = f
(

f−1(x)+ t
)
,

where f−1 ∈ Diff(C,0) is the local inverse of f . We thus have a(x) = f ′ ◦ f−1(x). As we have seen in §2
(2.1)

ϕt(x) = x+ ∑
k≥1

1
k!

Xk(x)tk;

since t ·d(X) = d we must have Xk(x) = 0 for all k ≥ d +1. Note that the functions fk(x) = Xk(x), k ≥ 1,
satisfy the recurrence rule:

(i) f1 = a,
(ii) fk+1 = a f ′k, ∀k ≥ 1.

Let us define another sequence of germs at 0 ∈ C as gk = fk ◦ f , k ≥ 1. This new sequence satisfies the
recurrence rule:

(i’) g1 = f1 ◦ f = a◦ f = f ′,
(ii’) gk+1 = fk+1 ◦ f = a◦ f · f ′k ◦ f = f ′k ◦ f · f ′ = ( fk ◦ f )′ = g′k, ∀k ≥ 1.

Therefore from (i’) and (ii’) we get for all k ≥ 1

gk =
∂k f
∂xk .

Now, as fℓ+1 ≡ 0 we have gℓ+1 ≡ 0 and so f is a polynomial of degree at most ℓ. But since the flow ϕt has
degree ℓ, f must be of degree exactly ℓ.

Suppose by contradiction that a(0) = 0. In this case we can write a(x) = xℓh(x) where ℓ≥ 1 and h(0) ̸= 0.
But using the recurence rule (ii) it is possible to prove that fk(x)= xℓk−k+1hk(0) where hk(0) ̸= 0 for all k ≥ 1.
As a consequence the flow can not be polynomial in t. □

Remark 4.4. Fixing x= 0 in the third line of the proof we immediately get that f is polynomial; we followed
a longer process because it is essential in the study of the case a(0) = 0.

Theorem 4.3 implies that a germ of holomorphic t-polynomial vector field in one variable has no singu-
larities. This is not the case in n ≥ 2 variables (consider for instance x2

∂

∂x1
). Nevertheless Theorem 4.3 has

a natural generalization in n ≥ 2 variables, but with an additional assumption of "non-singularities":

Theorem 4.5. Let X =
n

∑
i=1

ai(x)
∂

∂xi
a germ at 0 of a non-singular t-polynomial vector field, a1(0) ̸= 0 for

fixing ideas.
There exists f ∈ Diff(Cn,0) a germ of diffeomorphism which is polynomial in the variable x1 such that

X = f∗ ∂

∂x1
, i.e. ϕt(x) = f ( f−1 + te1) where ϕt is the flow of X and f−1 the local inverse of f at 0.

Proof. Let f be a local conjugacy between X and ∂

∂x1
satisfying f (0,x2,x3, . . . ,xn) = (0,x2,x3, . . . ,xn) (it is

well-known that such a conjugacy exists). In particular ϕt(x) = f ( f−1(x)+ te1) and

ϕt(0,x2,x3, . . . ,xn) = f (t,x2,x3, . . . ,xn);
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in particular f is thus polynomial in the variable x1. □

4.2. Rigid chambars on Rn and foliations by straight lines. The following statement generalizes to the
real case the property satisfied by the 2-chambars:

Theorem 4.6. If Ch(a1X ,a2X , . . . ,apX) is a rigid p-chambar on an open subset of Rn, then the foliation FX

associated to X is a foliation by straight lines.

Proof. As in the proof of Theorem 3.2 we get by successive derivations the equalities
p

∑
k=1

ak = 0(
p

∑
k=1

a2
k

)
DX ·X = 0

Since ak ̸= 0 for any 1 ≤ k ≤ p one has DX ·X = 0. As a result all the non-singular trajectories of X are
straight lines. □

Theorem 4.6 can not be generalized to the complex case. Let us give a counter example of Theorem 4.6
in the complex case in dimension 2. Consider on C2 the linear vector field

X = x
∂

∂x
+2y

∂

∂y
.

The closure of its trajectories are the parabola y = cx2 with c ∈ P1
C (if c ∈ {0, ∞}, then the trajectory is a

line). Let us consider the vector field

Y =
1
x

X =
∂

∂x
+

2y
x

∂

∂y
which is holomorphic outside x = 0. Its 1-parameter group is the group of birational maps

(exp tY )(x,y) =

(
x+ t,

(
x+ t

x

)2

y

)
.

Hence if ak belongs to C∗, then one has

(exp takY )(x,y) =

(
x+akt,

(
x+akt

x

)2

y

)
.

Take some non zero constants a1, a2, . . ., ap, p ≥ 3, such that
p

∑
k=1

ak =
p

∑
k=1

a2
k = 0.

Then the vector fields Yk = akY , 1 ≤ k ≤ p, form a p-chambar on the open set U = C2 ∖{x = 0}. But the
trajectories of Y , that are almost the trajectories of X , are not straight lines.

Remark 4.7. Let X be a germ at 0∈Cn of holomorphic vector field. Suppose that there exist some constants
a1, a2, . . ., ap such that the Xk = akX generate a p-chambar. If X is not singular at 0, X(0) ̸= 0, then

Ch(a1X ,a2X , . . . ,apX) is locally conjugate to the constant p-chambar Ch
(

a1
∂

∂x ,a2
∂

∂x , . . . ,ap
∂

∂x

)
. Indeed if

φ is a local diffeomorphism that conjugates X to ∂

∂x and if a belongs to C, then φ conjugates aX to a ∂

∂x . Be



HOLOMORPHIC VECTOR FIELDS WITH A BARYCENTRIC CONDITION 23

careful it does not mean that the image of a constant p-chambar via a diffeomorphism is a p-chambar (see
Theorem 2.13).

4.3. Rigid and semi-rigid chambars on Cn.

4.3.1. Rigid chambars on Cn and t-polynomial vector fields.

Theorem 4.8. Let Ch(X ,a1X ,a2X , . . . ,ap−1X) be a germ at 0 ∈ Cn of rigid p-chambar.
Then the flow ϕt of X is polynomial of degree at most p−1, as a function of the time t.
If t.d(X) = d, then a1, a2, . . ., ap satisfy

aℓ1 +aℓ2 + . . .+aℓp = 0 ∀1 ≤ ℓ≤ d.

In particular if d = p−1, then ap
1 = ap

2 = . . .= ap
p.

Moreover if the p-chambar (a1X ,a2X , . . . ,apX) is irreducible, then ak
a1

is a primitive p-th root of unity for
some 1 ≤ k ≤ p.

Proof. Write X as
n

∑
k=1

Xk
∂

∂xk
; the barycentric condition is the following

px j = px j + t
(
a1 +a2 + . . .+ap

)
X j +

t2

2
(
a2

1 +a2
2 + . . .+a2

p
)
X(X j)

+ . . .+
tk

k!
(
ak

1 +ak
2 + . . .+ak

p
)
Xk−1(X j)+ . . .

for j = 1, 2, . . ., n.
The fact that the coefficients ak are different from zero implies that a Newton formula

aℓ1 +aℓ2 + . . .+aℓp

is non zero for an ℓ ≤ p. As a consequence Xm(X j) ≡ 0 for all m ≥ ℓ−1 and 1 ≤ j ≤ n. This implies that
the flow of X , and the flows of the akXk, are polynomial in t.

The other facts can be checked by the reader. □

4.3.2. A property of the singular set. Let X be a holomorphic vector field defined on an open subset U of
Cn. Denote by FX the singular one dimensional foliation defined by X on U. A separatrix γ of X through
x0 ∈ Sing(X) is a germ of analytic curve at x0 such that x0 belongs to γ and γ∖{x0} is a leaf of the germ of
FX at x0. This means that x0 belongs to γ and if x belongs to γ∖{x0}, then X(x) ̸= 0 and Txγ = C ·X(x).

Let X be an holomorphic vector field defined on a closed ball B = B(0,r) with X(0) = 0. We suppose
that X is a t-polynomial vector field, that is t 7→ ϕt(x) is polynomial in t, x ∈ B, ϕt = exp tX . Note that for
any x ∈ B, t 7→ ϕt(x) can be extended on all the line C. As a consequence if x ∈ B, the leaf Lx of FX in B is

• either the point x (case x ∈ Sing(X)),
• or the connected component of L ′

x∩B containing x where L ′
x is the rational curve image of t 7→ϕt(x).

Lemma 4.9. Suppose that x does not belong to Sing(X); then 0 does not belong to the closure Lx of Lx in B.
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Proof. Assume by contradiction that 0 belongs to Lx. Then there is a sequence (tn)n of complex numbers
such that lim

n→+∞
ϕtn(x) = 0. Since 0 ∈ Sing(X) one has lim

n→+∞
|tn|=+∞, and as t 7→ ϕt(x) is polynomial (non

constant) lim
n→+∞

|ϕtn(x)|=+∞: contradiction. □

Theorem 4.10. Let X ∈ χ(Cn,0) be a germ of a t-polynomial vector field at the origin of Cn.
Assume that Sing(X) ̸= /0. Then dimSing(X)≥ 1.
Moreover X has no separatrices through a singularity.

Proof. Assume that X is defined on the ball B = B(0,r) and that 0 is an isolated singularity of X . Let
(xn)n be a sequence of points of B such that lim

n→+∞
xn = 0. The leaf Lxn is closed in B and cuts the sphere

S(0,r)=B∖B(0,r). Let yn be a point in Lxn ∩S(0,r) and y0 a limit point of yn, up to extraction y0 = lim
n→+∞

yn.

According to Lemma 4.9 the point 0 does not belong to Ly0 and Ly0 can be seen as the leaf of the restriction
of FX |B∖B(0,r′) for r′ sufficiently small. The fact that y0 = lim

n→+∞
yn implies that Lyn is contained in B∖B(0,r′)

for n sufficiently large: contradiction with lim
n→+∞

xn = 0. □

Corollary 4.11. Let Ch(a1X ,a2X , . . . ,apX) be a rigid p-chambar on an open set U of Cn. Then

⋄ either Sing(X) = /0, that is X is regular;
⋄ or dim Sing(X)≥ 1.

Example 4.12. Let X be a linear nilpotent vector field on Cn. Then the flow exp tX is polynomial of degree
d = rkX . Moreover dimSing(X) = n−d. For instance if Xn−1 ̸= 0, then dimSing(X) = 1.

Problem 4.13. Does there exist a vector field with an isolated singularity belonging to a p-chambar?

Remark 4.14. Recall that the Camacho-Sad theorem ([1]) says that a holomorphic foliation G by curves
at the origin 0 of C2 has an invariant curve passing through 0. As a consequence if X is a t-polynomial
vector field at the origin 0 of C2, with X(0) = 0, then the invariant curves of the foliation associated to X
are contained in the singular set Sing(X).

The previous considerations suggest in dimension ≥ 3 the following question:

Question 4.1. Let X be a germ at 0∈Cn of holomorphic vector field. Assume that the closure of the integral
curves are analytic. Does X preserve an invariant curve passing through 0 ?

4.3.3. Semi-rigid chambars on Cn.

Definition 4.15. A p-chambar Ch(X1,X2, . . . ,Xp) on an open subset of Cn is semi-rigid if the Xk are coli-
nears, that is if X1 ∧Xk = 0 for any 2 ≤ k ≤ p.

In dimension 1 all chambars are semi-rigid.

Example 4.16. The 3-chambar Ch
(

∂

∂x ,y
∂

∂x ,−(y+1) ∂

∂x

)
on C2 is semi-rigid but not rigid.

Example 4.17. The 4-chambar Ch
(

∂

∂x ,−
∂

∂x ,y
∂

∂x ,−y ∂

∂x

)
on C2 is semi-rigid but not rigid. Note that it is a

non-irreducible chambar.



HOLOMORPHIC VECTOR FIELDS WITH A BARYCENTRIC CONDITION 25

Proposition 4.18. Let Ch(X1,X2,X3) be a semi-rigid 3-chambar on an open subset of Cn. Then one of the
following holds1:

⋄ FX1 = FX2 = FX3 and FXi is a foliation by straight lines;
⋄ Ch(X1,X2,X3) is a rigid chambar.

Proof. Let U be an open subset of Cn where the Xi’s are defined. Set X1 = X ; then X2 = f X where f denotes
a meromorphic function defined on U. The barycentric condition implies that X3 =−(1+ f )X . The equality

3

∑
k=1

DXk ·Xk = 0

obtained by derivation from the barycentric property can be rewritten as follows

2(1+ f + f 2)DX ·X +(1+2 f )X( f ) ·X = 0. (4.1)

that implies that

(1+ f + f 2)X ∧DX ·X = 0.

If 1+ f + f 2 = 0, then f is constant and Ch(X1,X2,X3) is rigid. Otherwise, we have X ∧DX ·X = 0 and so
FX is a foliation by lines. □

Question 4.2. Does there exist a generalization of Proposition 4.18 for p-chambars, p ≥ 3 ?
The answer is positive in the real case:

Proposition 4.19. Let Ch(X1,X2, . . . ,Xp) be a semi-rigid p-chambar on an open subset U ⊂Rn, n≥ 2. Then
FX1 = FX2 = . . .= FXp is a foliation by straight lines.

Proof. Since the chambar is semi-rigid we can write X j = f j ·X where X is a vector field on U and f j : U →
R, 1 ≤ j ≤ p. Note that

DX j ·X j = D( f j ·X) · ( f jX) = f j ·X( f j) ·X + f 2
j ·DX ·X .

In particular we get

0 =
p

∑
k=1

DXk ·Xk =

(
p

∑
k=1

fk ·X( fk)

)
·X +

(
p

∑
k=1

f 2
k

)
·DX ·X .

Taking the wedge product with X in the above relation, we get(
p

∑
k=1

f 2
k

)
X ∧DX ·X = 0.

Since the fk’s are non identically zero, we get X ∧DX ·X ≡ 0. Therefore, FX is a foliation by straight
lines. □

1Note that the two properties are not mutually exclusive.
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5. DESCRIPTION OF 3-CHAMBARS AND 4-CHAMBARS IN ONE VARIABLE

5.1. Description of 3-chambars in one variable.

Theorem 5.1. Let B be a holomorphic 3-chambar on some connected open subset of C. Then

⋄ either B is a constant 3-chambar;
⋄ or B = Ch

(
a(x) ∂

∂x , ja(x)
∂

∂x , j
2a(x) ∂

∂x

)
, where a(x) =

√
λx+µ with λ ∈ C∗, µ ∈ C.

In particular, B is a rigid chambar.

Remark 5.2. In a certain sense Theorem 5.1 shows that the set of 3-chambars on a connected set of C has
two "irreducible components".

Proof of Theorem 5.1. Set B = Ch(X1,X2,X3). We can write Xk = ak(x) ∂

∂x , where ak ∈ O1, 1 ≤ k ≤ 3.

Lemma 5.3. The 3-chambar B is rigid. Moreover:

⋄ either it is a constant chambar, i.e. the ak’s are constant and a1 +a2 +a3 = 0;
⋄ or a2(x) = αa1(x) and a3(x) = α2a1(x) where 1+α+α2 = 0.

Proof of Lemma 5.3. If X = a(x) ∂

∂x , then by formula (2.1):

(exp tX)(x) = x+ ta(x)+
t2

2
a(x)a′(x)+

t3

3!

(
a(x)a′(x)2 +a2(x)a′′(x)

)
+

t4

4!
a(x)

(
a(x)a′(x)2 +a2(x)a′′(x)

)′
+ . . . (5.1)

The barycentric property implies the following equalities:

a1 +a2 +a3 = 0 (5.2)

a′1 +a′2 +a′3 = 0 (5.3)

a1a′1 +a2a′2 +a3a′3 = 0 (5.4)

a′′1a1 +a
′2
1 +a′′2a2 +a

′2
2 +a′′3a3 +a

′2
3 = 0 (5.5)

a1
(
a′′1a1 +a

′2
1
)
+a2

(
a′′2a2 +a

′2
2
)
+a3

(
a′′3a3 +a

′2
3
)
= 0 (5.6)

Note that (5.3) (resp. (5.5)) is obtained by derivating (5.2) (resp. (5.4)).
According to (5.2) the 3-tuple (a1,a2,a3) is not a holomorphic multiple of (1,1,1). As a consequence all

non trivial solutions of the linear system (seen on the field M ) of meromorphic functions{
y1 + y2 + y3 = 0
a1y1 +a2y2 +a3y3 = 0 (5.7)

are thus M -colinear. Note that one can assume that all the a′k are non zero; indeed if all the ak are constant,
then the statement holds. There thus exists a meromorphic function f such that(

a′′1a1 +a
′2
1 ,a

′′
3a3 +a

′2
3 ,a

′′
3a3 +a

′2
3
)
= f (a′1,a

′
2,a

′
3) (5.8)
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Remark that the 3-tuple
(
(a′′1a1 + a

′2
1 )

′,(a′′2a2 + a
′2
2 )

′,(a′′3a3 + a
′2
3 )

′
)

is also solution of (5.7) (one can see it

by looking at both the derivation of (5.5) and the coefficient of t4 in
3

∑
k=1

exp tXk(x)). There thus exists a

meromorphic function g such that(
(a′′1a1 +a

′2
1 )

′,(a′′2a2 +a
′2
2 )

′,(a′′3a3 +a
′2
3 )

′
)
= g(a′1,a

′
2,a

′
3).

By derivating (5.8) we get

f (a′′1,a
′′
2,a

′′
3)+ f ′(a′1,a

′
2,a

′
3) = g(a′1,a

′
2,a

′
3) (5.9)

⋄ Note that if f = 0, then the aka′k are constant

aka′k =
ck

2
, ck ∈ C∗

and the a2
k = ckx+dk are affine and ak = (ckx+dk)

1
2 . The equality (5.2) that can be rewritten

3

∑
k=1

(ckx+dk)
1
2 = 0

implies that c1
d1

= c2
d2

= c3
d3

, i.e. the Xk’s are colinear. Let us remark that the previous case coincides
with the example described in §2.5.

⋄ Assume now that f ̸≡ 0. The equality (5.9) implies that the a′k satisfy a linear differential equation

a′′k = ha′k, h =
g− f ′

f
.

We integrate and get

ak = αkH +βk

where the αk, βk are some constants and H is holomorphic. As the 3-tuple (a1,a2,a3) is supposed
to be non-constant, H is non-constant. The equality (5.2) becomes

3

∑
k=1

αk =
3

∑
k=1

βk = 0

and (5.4) becomes ( 3

∑
k=1

α
2
k

)
HH ′+

3

∑
k=1

βkαkH ′ = 0.

Since H is non constant, H ′ is non zero, and
3

∑
k=1

α
2
k =

3

∑
k=1

αkβk = 0.

We obtain the following alternative:
• either (α1,α2,α3) = γ(1, j, j2) and (β1,β2,β3) = ε(1, j, j2) with γ ∈ C∗ and ε ∈ C;
• or (α1,α2,α3) = γ(1, j2, j) and (β1,β2,β3) = ε(1, j2, j) with γ ∈ C∗ and ε ∈ C.

In the two cases the ak = αkH +βk are C-colinear.

□
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According to Lemma 5.3 one can write Xk as follows:

Xk = cka(x)

where a is a holomorphic function and ci are non-zero complex numbers such that c1 + c2 + c3 = 0.
The barycentric property (see equation (5.4) of Proof of Lemma 5.3) implies

(c2
1 + c2

2 + c2
3)aa′ = 0.

⋄ If c2
1 + c2

2 + c2
3 ̸= 0, then a is constant (and Corollary 5.4 is proved).

⋄ If c2
1+c2

2+c2
3 = 0, then up to multiplication by a constant either (c1,c2,c3)= (1, j, j2), or (c1,c2,c3)=

(1, j2, j).

By (5.1) we have
( 3

∑
k=1

c3
k

)
·
(
a′′a2 +a′2a = 0

)
and

a′′a2 +a′2a = 0

since c3
1 +c3

2 +c3
3 = 3. Therefore 0 = a′′a2 +a′2a = a(a′′a+a′2) = a(aa′)′ and aa′ = λ

2 for some λ in C. As
a result a2 = λx+µ for some µ ∈ C. □

Corollary 5.4. Let B = Ch(X1,X2,X3) be a local 3-chambar on R. Then B is a constant 3-chambar
Ch
(

c1
∂

∂x ,c2
∂

∂x ,c3
∂

∂x

)
with ci non-zero real numbers such that c1 + c2 + c3 = 0.

5.2. p-chambar with weights.

Definition 5.5. Let us consider p analytic vector fields X1, X2, . . ., Xp, defined on some open subset U of Rn

(resp. Cn), with flows t 7→ ϕℓ
t , 1 ≤ ℓ≤ p. Consider also non-zero real (resp. complex) numbers α1, α2, . . .,

αp and α = ∑
ℓ

αℓ.

We say that X1, X2, . . ., Xp define a holomorphic p-chambar with weights α1, α2, . . ., αp if

α1 ϕ
1
t (x)+α2 ϕ

2
t (x)+ . . .+αp ϕ

p
t (x) = αx, (5.10)

for all (t,x) where the above formula makes sense.

Remark 5.6. This definition is equivalent to

α1 Xk
1 (xℓ)+α2 Xk

2 (xℓ)+ . . .+αp Xk
p(xℓ) = 0 ∀k ≥ 1, ∀1 ≤ ℓ≤ n.

We remark that the condition is not equivalent to consider the flows of the vector fields αℓXℓ, 1 ≤ ℓ≤ n.

The classification of 3-chambars (Theorem 5.1) can be extended to this type of chambars with an adapta-
tion in the second case:

Theorem 5.7. Assume that X1, X2 and X3 define a holomorphic 3-chambar B with weights α1, α2, α3 on
some connected open subset of C. Then

⋄ either B is a constant 3-chambar,
⋄ or B = Ch

(
β1a(x) ∂

∂x ,β2a(x) ∂

∂x ,β3a(x) ∂

∂x

)
where a(x) =

√
λx+µ with λ ∈ C∗, µ ∈ C and

α1β1 +α2β2 +α3β3 = α1β
2
1 +α2β

2
2 +α3β

2
3 = 0.

In particular, B is a rigid chambar.
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5.3. Almost p-chambar.

Definition 5.8. Let X be a vector field. We say that X is almost a p-chambar if there exist non-zero vector
fields X2, X3, . . ., Xp such that (X ,X2,X3, . . . ,Xp) is a p-chambar.

We say that X is almost a chambar if there exists an integer p such that X is almost a p-chambar.

Remark 5.9. If X is almost a p-chambar, then X is almost a (p+q)-chambar for any q ≥ 2.

Example 5.10. The constant vector fields are almost p-chambars for any p ≥ 2.

Example 5.11. Let X be a nilpotent linear vector field, and let p be its index of nilpotence. Then X is almost
a p-chambar.

We suspect that most vector fields are not almost chambars. Let us give an explicit example in (real or
complex) dimension 1:

Proposition 5.12. If λ is a non-zero constant, then the vector field λx ∂

∂x is

⋄ not almost a 2-chambar in a neighborhood of 0;
⋄ not almost a 3-chambar in a neighborhood of 0.

Remark 5.13. The first assertion of the statement is clear.
The second one is a direct consequence of the classification of the 3-chambars (Theorem 5.1). Note that

the argument does not use the property of nilpotency of linear chambar; indeed if (X1,X2, . . . ,Xp) is a p-
chambar containing X = λx ∂

∂x then it is possible that one of the Xk(0) is non zero. We conjecture that any

semi-simple linear vector field
n

∑
i=1

λixi
∂

∂xi
, λi ̸= 0, is not almost a p-chambar.

5.4. Some remarks on 4-chambars in one variable. The 2-chambars and 3-chambars on an open subset
of C are rigid. This property is not satisfied by all the 4-chambars. Consider the vector fields X = 2

√
x ∂

∂x
and Y = 2

√
x+ ε

∂

∂x , ε ̸= 0, on a suitable domain of C. As we know the flows of X and Y are

exp tX = x+2t
√

x+ t2 exp tY = x+2t
√

x+ ε+ t2

and it is easy to see that the 4-chambar Ch(X ,−X , iY,−iY ) is irreducible and non rigid. Such a 4-chambar
is said to be special.

Conjecture 5.14. Up to affine conjugacy a 4-chambar on an open subset of C is of one of the following
type:

⋄ constant Ch
(

a1
∂

∂x ,a2
∂

∂x ,a3
∂

∂x ,a4
∂

∂x

)
, ak ∈ C∗;

⋄ rigid of t-degree 2: Ch(a1X ,a2X ,a3X ,a4X) with X = 2
√

x ∂

∂x and ak constants satisfying a1 +a2 +

a3 +a4 = a2
1 +a2

2 +a2
3 +a2

4 = 0;
⋄ rigid of t-degree 3: Ch(X ,σX ,σ2X ,σ3X) with X of t-degree 3 and σ a root of unity of order 4;
⋄ special Ch(X ,−X ,Y,−Y ) with X and Y of t-degree 2.



HOLOMORPHIC VECTOR FIELDS WITH A BARYCENTRIC CONDITION 30

Remark 5.15. The classification of p-chambars on C for p ≥ 4 is a difficult problem in particular because
of irreducibility problems. Indeed if p = 6 for instance one can consider the vector field Z5 = 5x

4
5 ∂

∂x to
which one can associate the 6-chambar

Ch
(
Z5,σZ5,σ

2Z5,σ
3Z5,σ

4Z5,σ
5Z5
)

which is irreducible. But one can also consider the non-irreducible 6-chambar obtained as follows

Ch
(

X1, jX1, j2X1,X2, jX2, j2X2

)
where Xk =

√
λkx+µk

∂

∂x and λk, µk are complex numbers such that λ1µ2 −λ2µ1 ̸= 0.

Problem 5.16. Classify irreducible p-chambars in dimension 1, for p ≥ 4.

Theorem 5.17. Let Ch(X1,X2,X3,X4) be a holomorphic 4-chambar on some open set U ⊂ C. Set Xk =

yk(x) ∂

∂x with yk ∈ O(U) for 1 ≤ k ≤ 4.
Then there exists a polynomial P : C3 →C4 independent of the yk’s such that the vector y = (y1,y2,y3,y4)

satisfies a differential equation of the form

∆(y) · y′′′ = P(y,y′,y′′) (5.11)

where ∆(y) = ∏
i< j

(y j − yi).

Furthermore the polynomial P is homogeneous of degree 7.

Proof. Let us recall some basic facts. The operator Xk on O(U) acts as Xk( f ) = yk · f ′. In particular

Xk(x) = yk, X2
k (x) = yky′k, X3

k (x) = p(yk,y′k)+ y2
ky′′k , X4

k (x) = q(yk,y′k,y
′′
k )+ y3

ky′′′k

where p(y,z) = yz2 and q(y,z,w) = yz3 +4y2zw. More generally we have

X ℓ
k (x) = Pℓ

(
yk,y′k, . . . ,y

(ℓ−2)
k

)
+ yℓ−1

k · y(ℓ−1)
k (5.12)

where Pℓ denotes a homogeneous polynomial of degree ℓ.
Using (5.12) we get by an induction argument

∂nX ℓ
k (x)

∂xn = Pℓ,n
(
yk,y′k, . . . ,y

(ℓ+n−2)
k

)
+ yℓ−1

k · y(ℓ+n−1)
k (5.13)

where Pℓ,n is homogeneous of degree ℓ and Pℓ,0 = Pℓ. Note that Pℓ,n is independent of the open set U and of
the function y : U → C4.

Since the Xk’s satisfy the barycentric condition, we have
4

∑
k=1

X ℓ
k = 0, 1 ≤ k ≤ 3 and so

4

∑
k=1

∂nX ℓ
k

∂xn = 0 ∀1 ≤ ℓ≤ 4, ∀n ≥ 0.

From the above relations and (5.12) we get the following system of equations
y′′′1 + y′′′2 + y′′′3 + y′′′4 = 0
y1y′′′1 + y2y′′′2 + y3y′′′3 + y4y′′′4 = Q2(y,y′,y′′)
y2

1y′′′1 + y2
2y′′′2 + y2

3y′′′3 + y2
4y′′′4 = Q3(y,y′,y′′)

y3
1y′′′1 + y3

2y′′′2 + y3
3y′′′3 + y3

4y′′′4 = Q4(y,y′,y′′)
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with 

Q2(y,y′,y′′) =−3
4

∑
i=1

y′iy
′′
i

Q3(y,y′,y′′) =−
4

∑
i=1

(
(y′i)

3 +4yiy′iy
′′
i

)
Q4(y,y′,y′′) =−

4

∑
i=1

(
yi(y′i)

3 +4y2
i y′iy

′′
i

)
Writing the above system in the matrix form we get W (y) · t(y

′′
) = tQ(y,y

′
,y

′′
) where tv denotes the trans-

pose of v and W the Wronskian

W =


1 1 1 1
y1 y2 y3 y4
y2

1 y2
2 y2

3 y2
4

y3
1 y3

2 y3
3 y3

4


Solving (5.13) we get that the vector function y satisfies the ODE

∆
t(y′′′) = adj(W )(y) · tQ(y,y′,y′′) (5.14)

where adj(W ) is the adjoint of the matrix W , ∆ = det(W ) = ∏
i< j

(y j − yi) and Q = (0,Q2,Q3,Q4). Set

P(y,y′,y′′) = adj(W )(y) · tQ(y,y′,y′′). By looking carefully at the right hand side of the above relation, we
see that P is homogeneous of degree 7. □

Remark 5.18. According to Theorem 5.17 if y1
∂

∂x1
, y2

∂

∂x2
, . . ., y4

∂

∂x4
are holomorphic vector fields that

define a 4-chambar on an open set U ⊂C, then the vector function x ∈ U 7→ y(x) =
(
y1(x),y2(x), . . . ,y4(x)

)
satisfies an ODE of the form

∆y′′′ = P(y,y′,y′′), (5.15)

where ∆ =∏
i< j

(y j −yi). In particular if we fix an initial condition y(x0), y′(x0), y′′(x0) where yi(x0) ̸= y j(x0)

for any i < j, then (5.15) has an unique solution x ∈ U 7→ y(x) such that yi(x) ̸= y j(x) for any i < j and any
x ∈ U.

However, if y1(x0) = y2(x0) for instance, then y1(x) = y2(x) for any x ∈ U. The condition on the flows is
now

2ϕ
1
t (x)+ϕ

3
t (x)+ϕ

4
t (x) = 4x,

which is a particular case of (5.10).

Remarks 5.19. Let us fix three (constant) vectors α0, α1 and α2 in C4 and assume that the components
of α0 are two by two different. Then there exists an unique germ y = (y1,y2,y3,y4) ∈ O(C4,0) satisfying
(5.11) with initial conditions y(0) = α0, y′(0) = α1 and y′′(0) = α2.

Since the differential equation (5.11) is meromorphic on C4 the solution x 7→ y(x) can be extended until
it reaches the codimension one submanifold

⋃
i< j

(yi = y j) of C4.

For instance, the constant vectors y = (a1,a2,a3,a4) are solutions of the ODE (5.14). In fact, if y is a
constant vector then y′ = y′′ = 0 and Q(y,y′,y′′) = 0.
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Next we will study the solutions with initial condition of the form yi(0) = y j(0), i ̸= j. The idea is to lift
the ODE to a first order ODE on C12.

Consider the ODE (5.11) of order 3 on U ⊂ C4. Introducing new variables z = y′, and w = z′ = y′′, this
ODE can be lifted to a system of meromorphic ODE’s of order 1 on V = U ×C4 ×C4 as y′ = z

z′ = w
w′ = ∆−1 ·P(y,z,w)

(5.16)

Multiplying (5.16) by ∆ we obtain a tangent holomorphic vector field on V

χ(y,z,w) = ∆

4

∑
j=1

z j
∂

∂y j
+∆

4

∑
j=1

w j
∂

∂z j
+

4

∑
j=1

Pj(y,z,w)
∂

∂w j
. (5.17)

Theorem 5.20. The following submanifolds of C12 are χ-invariant:

⋄ Σi j := Z
(
⟨y j − yi |1 ≤ i < j ≤ 4⟩

)
;

⋄ Σ1 := Z
(
⟨∑

j
y j,∑

j
z j,∑

j
w j⟩
)
;

⋄ Σ2 := Z
(
⟨∑

j
y jz j,∑

j
(z2

j + y jw j)⟩
)
;

⋄ Σ3 := Z
(
⟨∑

j
(y jz2

j + y2
jw j)⟩

)
.

The notation Z(J ) stands for the zeroes of the ideal J .

All these submanifolds are complete intersections and the codimensions coincide with the number of
generators of the ideal. Furthermore, the submanifolds Σi, 1 ≤ i ≤ 3, coincide with the initial conditions
corresponding to the barycentric conditions

4

∑
k=1

∂nX ℓ
k

∂xn = 0 ∀1 ≤ n+ ℓ≤ 4, ∀n ≥ 0.

Let us now give a Lemma that will be useful for the proof of Theorem 5.20.

Lemma 5.21. The components P1, P2, P3, P4 of χ satisfy the following relations:

⋄ ∑
i

Pi = 0,

⋄ ∑
i

yiPi = ∆Q2(y,z,w) =−3∆∑
i

ziwi,

⋄ ∑
i

y2
i Pi = ∆Q3(y,z,w) =−∆∑

i
(z3

i +4yiziwi),

⋄ ∑
i

y3
i Pi = ∆Q4(y,z,w) =−∆∑

i
(yiz3

i +4y2
i ziwi).

Proof. Recall that on the one hand
tP(y,y′,y′′) = ajd(W )(y)tQ(y,y′,y′′)

so
tP(y,z,w) = ajd(W )(y)tQ(y,z,w).



HOLOMORPHIC VECTOR FIELDS WITH A BARYCENTRIC CONDITION 33

On the other hand the four relations of the statement are equivalent to W (y)tP(y,z,w) = ∆tQ(y,z,w). Finally,
we know from linear algebra that W (y)adj(W )(y) = ∆ · id, where id is the identity matrix. As a consequence

W (y)tP(y,z,w) =W (y)adj(W )(y)tQ(y,z,w) = ∆
tQ(y,z,w).

□

Proof of Theorem 5.20. Let J be an ideal of C[y,z,w]. Recall that the submanifold Z(J ), defined by J , is
χ-invariant if, and only if, Z(J )⊂ J . So, for instance

χ(yk − yℓ) = (zk − zℓ)∏
i< j

(y j − yi)

and χ(yk − yℓ) belongs to ⟨yk − yℓ⟩; in particular Σkℓ is χ-invariant.

Consider the ideal J1 = ⟨∑
j

y j,∑
j

z j,∑
j

w j⟩. We have

Z
(
∑

i
yi

)
= ∑

i
Z(yi) = ∆∑

i
zi ∈ J1

Z
(
∑

i
zi

)
= ∑

i
Z(zi) = ∆∑

i
wi ∈ J1

Z
(
∑

i
wi

)
= ∑

i
Z(wi) = ∑

i
Pi = 0 ∈ J1 by the first assertion of Lemma 5.21

With a similar computation, using the other assertions of Lemma 5.21 it is possible to prove that Σ2, Σ3

and Σ4 are χ-invariant. □

Corollary 5.22. Let Ch(X1,X2,X3,X4) be a 4-chambar on an open set U ⊂ C, with X j = y j
∂

∂x , y j ∈ O(U),
1 ≤ j ≤ 4.

Suppose that yk(x0) = yℓ(x0) for some x0 ∈ U and k ̸= ℓ. Then yk(x) = yℓ(x) for all x ∈ U. Moreover, if
k = 1 and ℓ= 2, for instance, then either the chambar is constant and 2a1+a3+a4 = 0 or y j(x) = a j

√
λx+µ

with λ ̸= 0, a1 = a2 =−1
3 and a3 and a4 the roots of 3z2 +2z+3 = 0.

Proof. The first assertion is consequence of Theorem 5.20 and the other of Theorem 5.7. □

Let us denote by Ch(4,1) the set of 4-tuples (X1,X2,X3,X4) of germs at 0 ∈ C of holomorphic vector
fields whose flows satisfy the barycentric conditions.

Corollary 5.23. The set Ch(4,1) is isomorphic to an algebraic submanifold of C12 whose irreducible com-
ponents have dimension at most six.

Proof. According to Theorems 5.17 and 5.20 any 4-chambar on C gives origin to a trajectory (y,z,w) : (C,0)→
C12 tangent to the χ-invariant submanifold Σ = Σ1 ∩Σ2 ∩Σ3 of C12. This defines an embedding of Ch(4,1)
on Σ. □
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6. LINEAR CHAMBARS

Theorem 6.1. Let X1, X2, . . ., Xp be some linear vector fields on Rn (resp. Cn).
If they satisfy the barycentric property, then they are nilpotent.

Proof. The flow ϕk
t of Xk can be written

ϕ
k
t (x) = (exp tAk)(x)

where the Ak belong to End(Rn) or End(Cn). We identify the Ak to some matrices. The barycentric property
is equivalent to

p

∑
k=1

∞

∑
ℓ=0

tℓ

ℓ!
Aℓ

k = pId

that implies
p

∑
k=1

Aℓ
k = 0 for any ℓ≥ 1. Let λk, j be the eigenvalues of Ak, 1 ≤ j ≤ n. We get for all ℓ≥ 1

0 = Tr
( p

∑
k=1

Aℓ
k

)
=

p

∑
k=1

n

∑
j=1

λ
n
k, j.

As a result all the λk, j are equal to zero. □

Remark 6.2. The ϕk
t are polynomial in x and t.

Remark 6.3. If p = 2, then the indices of nilpotence are 2 (i.e. A2 = 0) and we recover the fact that the
trajectories are straight lines. Note also that if X is a nilpotent vector field of index 2, then the pair (X ,−X)

is a 2-chambar.

Example 6.4. Let X be a nilpotent linear vector field of order p. Let σ = exp
(

2iπ
p

)
be a primitive p-th root

of unity. Then the vector fields X , σX , σ2X , . . ., σp−1X satisfy the barycentric property.

Remark 6.5. Let Ch(X1,X2, . . . ,Xp) be a linear p-chambar. Denote by k the maximal order of nilpotence
of the Xi’s. Take ℓ < k an integer. Then Ch(X ℓ

1 ,X
ℓ
2 , . . . ,X

ℓ
p) is a q-chambar for some q ≤ p. The inequality

comes from the fact that two X ℓ
k can be equal or X ℓ

k can be zero. The fact that q < p measures some
degeneration and if q = p for any ℓ < k it gives some condition of transversality.

Remark 6.6. Let Ch(X1,X2, . . . ,Xp) be a singular p-chambar such that Xk(0) = 0. Denote by Ai the linear
part of Xi for 1 ≤ i ≤ p.

Assume that the Ai’s generate a linear p-chambar Ch(A1,A2, . . . ,Ap).
Consider the homothety hs : x 7→ sx, s ∈ C∗ and

X s
k = hs∗Xk = Ak + s(. . .)

We construct in this way a family Chs = Ch(X s
1 ,X

s
2 , . . . ,X

s
p) of p-chambars, all conjugate for s ̸= 0, and that

joins the initial chambar Ch1 = Ch(X1,X2, . . . ,Xp) to the linear chambar Ch0 = Ch(A1,A2, . . . ,Ap).



HOLOMORPHIC VECTOR FIELDS WITH A BARYCENTRIC CONDITION 35

6.1. Linear p-chambars in dimension 2.

Lemma 6.7. Let B be (2× 2)-matrix with complex coefficients. If Tr(B) = 0, then B is the sum of two
nilpotent matrices.

First proof. If B = 0, then the result holds.

Let us now assume that B ̸= 0. Let us write B as
(

a b
c −a

)
. We are looking forward two nilpotent

matrices

A =

(
x y
z −x

)
A′ =

(
x′ y′

z′ −x′

)
such that B = A+A′. We thus have to solve the following system

x+ x′ = a
y+ y′ = b
z+ z′ = c
x2 + yz = 0
x
′2 + y′z′ = 0

(the last two conditions guaranteeing nilpotence). After elimination of x′, y′ and z′ we get{
x2 + yz = 0
(a− x)2 +(b− y)(c− z) = 0

that is {
x2 + yz = 0
2ax+bz+ cy−a2 −bc = 0

which is the non-trivial intersection of a quadric and of a plane. These two sets intersect along a plane
conic. □

Second proof. Since Tr(B) = 0, then B is conjugate to
(

0 x
y 0

)
for some x, y in C. We conclude using

the fact that (
0 x
y 0

)
=

(
0 x
0 0

)
︸ ︷︷ ︸

nilpotent

+

(
0 0
y 0

)
︸ ︷︷ ︸

nilpotent

□

Corollary 6.8. Let A3, A4, . . ., Ap be (p−2) nilpotent (2×2)-matrices.
There exist two nilpotent (2×2)-matrices A1, A2 such that the flows ϕk

t = exp tAk, 1 ≤ k ≤ p, satisfy the
barycentric property.

Proof. Let A1 and A2 be two nilpotent matrices such that

A1 +A2 +A3 + . . .+Ap = 0.

As exp tAk = Id+ tAk in dimension 2, the p-tuple (A1,A2, . . . ,Ap) suits. □

Remark 6.9. If A1, A2, A3 are nilpotent (2× 2)-matrices that satisfy the barycentric property, then the Ai

are C-colinear, i.e. Ch(A1,A2,A3) is rigid. Indeed the nilpotent (2×2)-matrices form a quadratic cone.
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6.2. Linear 3-chambars. The following example illustrates that we can find solutions to the barycentric
property in some Lie algebras of vector fields. In the particular case n = 3 one can find p-chambars in the
Heisenberg Lie algebra h3 formed by matrices

M(α,β,γ) =

 0 α γ

0 0 β

0 0 0

 .

One has M2(α,β,γ) = M(0,0,αβ). The barycentric property for the vector fields Xk corresponding to the
matrices M(αk,βk,γk), k = 1, . . ., p, is equivalent to the equalities

p

∑
k=1

αk =
p

∑
k=1

βk =
p

∑
k=1

γk =
p

∑
k=1

αkβk = 0.

In the coefficients space (C3)p the barycentric property is the intersection of three hyperplanes and one
quadric which has thus dimension 3p−4.

Theorem 6.10. Let Ch(X1,X2,X3) be a linear 3-chambar on C3. Then up to conjugacy, the Xi’s (identified
to their matrices) are contained in the Heisenberg Lie algebra h3 ⊂ gl(3,C).

Proof. Let us identified Xi to its matrix.
We will distinguish two cases according to the rank of the Xi’s.

⋄ If one of the Xi’s has rank 2, for instance X1, then up to conjugacy one can assume that X1 = 0 1 0
0 0 1
0 0 0

. We are now looking for X2 and X3 such that X2 and X3 are nilpotent (in particular

their traces are zero) and X1 +X2 +X3 = X2
1 +X2

2 +X2
3 = 0. A straightforward computation implies

that X2 and X3 belong to h3.
⋄ It suffices now to deal with the case where the three nilpotent matrices X1, X2 and X3 have rank 1. Up

to conjugacy one can suppose that X1 =

 0 0 1
0 0 0
0 0 0

. As X2 has rank 1 the three columns of X2 are

colinear, i.e. X2 =(λE,µE,νE) where E =

 a
b
c

 ̸= 0. Then X3 =−X1−X2 =

−λE,−µE,−νE −

 1
0
0

.

Let us distinguish three cases:
• First assume that λ = µ = 0. Changing the notations if needed let us take ν = 1. Then

X1 =

 0 0 1
0 0 0
0 0 0

 , X2 =

 0 0 a
0 0 b
0 0 c

 , X3 =−

 0 0 a+1
0 0 b
0 0 c

 .

Since X1 and X2 are nilpotent, c has to be 0; but c = 0 leads to X2
2 = X2

3 = 0, and the Xi belong
to h3.
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• Now suppose λ ̸= 0, i.e. λ = 1. Then

X2 =

 a µa νa
b µb νb
c µc νc

 , X3 =−

 a µa νa+1
b µb νb
c µc νc

 .

As X3 has rank 1, the coefficients b and c are zero. Therefore X2 =

 a µa νa
0 0 0
0 0 0

; since

X2 is nilpotent, a has to be 0. As a consequence X2 = 0 which is impossible (the matrices are
implicitly assumed to be non-zero).

• Finally assume that λ = 0 and µ ̸= 0, that is λ = 0 and µ = 1 and

X2 =

 0 a νa
0 b νb
0 c νc

 , X3 =−

 0 a νa+1
0 b νb
0 c νc

 .

The fact that rkX3 = 1 leads to b = c = 0 and

X2 =

 0 a νa
0 0 0
0 0 0

 , X3 =−

 0 a νa+1
0 0 0
0 0 0


belong to h3.

□

In fact the statement holds in any dimension but we keep the previous result and its proof because this
last one is much more easier. Let us start by some definitions, notations and intermediate results of non-
commutative algebra.

A monomial of k-variables on End(Cn) is a map f : End(Cn)k → End(Cn) of the form

f (X1,X2, . . . ,Xk) = Xk1
i1 Xk2

i2 . . .Xkr
ir

where r ≥ 1, i j ∈ {1, 2, . . . , k} and k j ≥ 0 for any 1 ≤ j ≤ r. By convention X0
i = 1.

We say that the monomial is reduced if

⋄ k j ≥ 1 for any 1 ≤ j ≤ r;
⋄ i j ̸= i j+1 for any 1 ≤ j ≤ r−1.

The degree of f is deg f =
r

∑
i=1

ki. A polynomial of k variables on End(Cn) is a linear combination of

monomials of k variables on End(Cn):

P(X1,X2, . . . ,Xk) =
s

∑
j=1

a jFj(X1,X2, . . . ,Xk)

with a1, a2, . . ., as in C. The degree of P is degP = max{deg(Fj) |a j ̸= 0}. If degFj ≥ 1 for any 1 ≤ j ≤ s,
then we say that P is without constant term.

If Ch(X1,X2,X3) is a 3-linear chambar on Cn, we denote by G = ⟨X1, X2, X3⟩ ⊂ End(Cn) ≃ gl(n,C) the
sub-algebra generated by X1, X2 and X3. As previously we identify the linear vector field X j with elements
of End(Cn).
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We can now state the result:

Theorem 6.11. Let Ch(X1,X2,X3) be a linear 3-chambar on Cn. Let G = ⟨X1, X2, X3⟩ be the algebra of
linear transformations generated by X1, X2 and X3.

If Y1, Y2, . . ., Yn belong to G , then Y1Y2 . . .Yn = 0.
In particular, up to conjugacy, the Xi’s (identified to their matrices) are contained in the Heisenberg Lie

algebra hn ⊂ gl(n,C).

Proof. Let us start the proof with the following statement:

Lemma 6.12. Let Ch(X1,X2,X3) be a linear 3-chambar on Cn.
Let f be a monomial of two variables on End(Cn).
There exists n( f ) ∈ Z such that

f (X1,X2)+ f (X2,X1) = n( f ) ·Xdeg f
3 .

Proof. For instance from

Xk
1 +Xk

2 =−Xk
3 ∀k ≥ 1

we get

Xk+ j
3 = (Xk

1 +Xk
2 )(X

j
1 +X j

2 ) = Xk+ j
1 +Xk+ j

2 +Xk
1 X j

2 +Xk
2 X j

1 =−Xk+ j
3 +Xk

1 X j
2 +Xk

2 X j
1

and so Xk
1 X j

2 +Xk
2 X j

1 = 2Xk+ j
3 .

A reduced monomial g of two variables on End(Cn) can be written as

g(X ,Y ) = Xk1Y j1Xk2 . . .Y jr

where k1 ≥ 0, jr ≥ 0, k2, k3, . . ., kr ≥ 1 and j1, j2, . . ., jr−1 ≥ 1. Note that degg =
r

∑
i=1

(ki + ji). Let us

introduce the following definitions:

⋄ the X-length of g is ℓX(g) = #{i |ki > 0};
⋄ the Y -length of g is ℓY (g) = #{i | ji > 0};
⋄ the length of g is ℓ(g) = ℓX(g)+ ℓY (g).

The proof is by induction on ℓ( f ). Let us state the induction assumption: given m ∈ N the assertion of
the Lemma is true for any reduced monomial g with ℓ(g)≤ m.

The induction assumption is true if m ≤ 2:

⋄ for ℓ( f ) = 1 it is a consequence of the equality Xk
1 +Xk

2 =−Xk
3 ;

⋄ for ℓ( f ) = 2 it is a consequence of the equality Xk
1 X j

2 +Xk
2 X j

1 = 2Xk+ j
3 .

Assume that the assertion of the Lemma is true for m≥ 2 and let us prove that it is true for m+1. Let f be a
monomial with length m+1 ≥ 3. Without loss of generality we can assume that f (X ,Y ) = XkY jXmg(X ,Y );
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note that ℓ(g) = ℓ( f )−3 = m−2. Using that Xk
1 X j

2 +Xk
2 X j

1 = 2Xk+ j
3 we have

f (X1,X2)+ f (X2,X1)

= Xk
1 X j

2 Xm
1 g(X1,X2)+Xk

2 X j
1 Xm

2 g(X2,X1)

= (2Xk+ j
3 −Xk

2 X j
1 )X

m
1 g(X1,X2)+(2Xk+ j

3 −Xk
1 X j

2 )X
m
2 g(X2,X1)

= 2Xk+ j
3 (Xm

1 g(X1,X2)+Xm
2 g(X2,X1))−Xk

2 X j+m
1 g(X1,X2)−Xk

1 X j+m
2 g(X2,X1)

= 2Xk+ j
3

(
g1(X1,X2)+g1(X2,X1)

)
−
(

g2(X1,X2)+g2(X2,X1)
)

where g1(X ,Y ) = Xmg(X ,Y ) and g2(X ,Y ) = Y kY j+mg(X ,Y ). Note that

ℓ(g1) = 1+ ℓ(g) = m−1 and ℓ(g2) = ℓ(g)+2 = m.

Therefore the induction assumption implies that for i ∈ {1, 2}

gi(X1,X2)+gi(X2,X1) = n(gi)X
deg f
3 .

Hence
f (X1,X2)+ f (X2,X1) = n( f )Cdeg f

where n( f ) = 2n(g1)−n(g2). □

Lemma 6.13. Let Ch(X1,X2,X3) be a linear 3-chambar on Cn.
Let P(X ,Y ) be a polynomial of two variables on End(Cn). Assume that P is without constant term.
Then P(X1,X2) is nilpotent, that is P(X1,X2)

n = 0.

Proof. Assume first that P is a reduced monomial. Set d = degP. Denote by λ1, λ2, . . ., λn (resp. by µ1, µ2,
. . ., µn) the eigenvalues of P(X1,X2) (resp. P(X2,X1)). It follows from Lemma 6.12 that

∑
j

λ j +∑
j

µ j = tr
(
P(X1,X2)+P(X2,X1)

)
= tr

(
n(P)Xd

3
)
= 0.

Given any m ∈ N, since P(X ,Y )m is a monomial we have

∑
j

λ
m
j +∑

j
µm

j = tr
(
P(X1,X2)

m +P(X2,X1)
m) ∀m ∈ N.

This implies that λ1 = λ2 = . . .= λn = 0 and so P(X1,X2) is nilpotent. In particular we get tr(P(X1,X2)) = 0.

Suppose now that P is a polynomial of two variables on End(Cn) without constant term. Since P is
a linear combination of non constant monomials we get tr(P(X1,X2)) = 0. Similarly, given m ∈ N then
P(X ,Y )m is also a polynomial without constant term and so tr(P(X1,X2)

m) = 0. Therefore P(X1,X2) is
nilpotent and as P(X1,X2) belongs to End(Cn) we get P(X1,X2)

n = 0. □

Let g be any Lie algebra. Recall some classical well known facts. If x belongs to g, y 7→ [x,y] is an
endomorphism of g, which we denote adx. We say that x is ad-nilpotent if adx is a nilpotent endomorphism.
If g is nilpotent, then all elements of g are ad-nilpotent. The converse is also true, it is the Engel Theorem
([4]). In particular a Lie algebra g whose all elements are ad-nilpotent is triangularizable. If now g is a
matrices algebra whose all elements are nilpotent (for the multiplication), then the algebra is up to conjugacy
contained in the Heisenberg Lie algebra hn. This ends the proof of the theorem.
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□

6.3. Some remarks on linear 4-chambars. As previously we will identify the vector field Xi to its matrix.

Definition 6.14. A p-chambar Ch(X1,X2, . . . ,Xp) has rank r if at least one Xi (identified with its matrix) has
rank r.

Let us start with the following property:

Proposition 6.15. Let Ch(X1,X2,X3,X4) be a linear 4-chambar. If Ch(X1,X2,X3,X4) has rank 2, then
Ch(X1,X2,X3,X4) is irreducible.

Proof. Suppose, by contradiction, that Ch(X1,X2,X3,X4) is reducible. Then Ch(X1,X2,X3,X4) consists of
two pairs of 2-chambars: the trajectories are thus lines and the Xi’s (identified with their matrices) have
rank 1. □

6.3.1. A first family of examples. Consider the four following matrices

X1 =

 0 0 α

0 0 β

0 0 0

 , X2 =

 0 γ 0
0 0 0
0 δ 0

 ,

X3 =

 0 a −ab
c

0 b −b2

c
0 c −b

 , X4 =

 0 d db
e

0 −b −b2

e
0 e b


where α, β, γ, δ, a, b, c, d, e are complex numbers satisfying the following conditions

γ+a+d = 0, α− ab
c
+

db
e

= 0, β− b2

c
− b2

e2 = 0, δ+ c+ e = 0.

These matrices define a 4-chambar generically irreducible whose elements are not contained in a nilpotent
algebra. Indeed

⋄ on the one hand the nilpotent algebras of matrices are triangularizable; in particular the eigenvalues
of a commutator are zero;

⋄ on the other hand the eigenvalues of the commutator [X1,X2] =

 0 αδ −βγ

0 βδ 0
0 0 −βδ

 are non-zero as

soon as βδ ̸= 0.

Remark that the Xi’s have a common kernel for generic values of the parameters.

6.3.2. A second family of examples. Let us consider

X1 =

 0 0 0
1 0 0
0 1 0

 , X2 =

 0 a 0
0 0 0
b −c−2 0

 ,

X3 =

 0 −a 0
0 0 0
b c 0

 , X4 =

 0 0 0
−1 0 0
−2b 1 0
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Then (X1,X2,X3,X4) is a linear 4-chambar of rank 2 in C3 and the Xi’s (identified to their matrices) are
not contained in a nilpotent algebra of matrices.

More generally for 1 ≤ j ≤ 4 set

X j =

(
A j 0
B j 0

)
where A j is a (2×2)-matrix and B j is a (1×2)-matrix such that{

A2
j = 0

∑
4
j=1 B jA j = 0

Then (X1,X2,X3,X4) is a linear 4-chambar of rank 2 in C3 and the Xi’s (identified to their matrices) are
not contained in a nilpotent algebra of matrices.

6.3.3. A third family of examples. Consider

X1 =

 0 0 0
a 0 b
c 0 0

 , X2 =

 0 α 0
0 0 0
−c γ 0

 ,

X3 =

 0 0 0
−a 0 −b
c 0 0

 , X4 =

 0 −α 0
0 0 0
−c −β 0


where a, b, c, α, β denote some complex numbers. Note that

X1 +X2 =

 0 α 0
a 0 b
0 β 0

 X1 + tX2 =

 0 tα 0
a 0 b

(1− t)c tβ 0


so that

⋄ X1 +X2 has rank 2 generically on a, b, α and β,
⋄ X1 + tX2 has rank 3 generically on t.

The eigenvalues of the commutator [X1,X2] =

 −aα 0 −bα

−bc aα+bβ 0
−aβ αc −bβ

 are non-zero as soon as αbc ̸=

0. As a consequence Ch(X1,X2,X3,X4) is a 4-chambar generically irreducible and the matrices associated
to the Xi’s are not contained in a nilportent algebra of matrices.

Note that for generic values of parameters the Xi’s do not all have the same kernel. As a consequence
examples of §6.3.1 and §6.3.3 are not conjugated.

Finally one can state:

Proposition 6.16. There exist linear, irreducible 4-chambars with the two following properties

⋄ their flows are generically quadratic in t;
⋄ the associated matrices are not contained in a nilpotent algebra of matrices.
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7. HOMOGENEOUS CHAMBARS

7.1. First properties. Let B =Ch(X1,X2, . . . ,Xp) be a p-chambar at 0∈Cn. We say that B is homogeneous
of degree ν if any Xi is homogeneous of degree ν.

Remark 7.1. Let Ch(X ,−X) be a homogeneous 2-chambar on C2. Then up to linear conjugacy X = xν ∂

∂y
(the proof is an exercise).

Given two holomorphic vector fields X and Y on Cn, we define the set of colinearity between X and Y as

Col(X ,Y ) :=
{

m ∈ Cn |X(m)∧Y (m) = 0
}
.

Remarks 7.2. We would like to remark the following facts:

⋄ Col(X ,Y ) is an analytic set;
⋄ if Col(X ,Y ) ̸= /0, then dimC(Col(X ,Y ))≥ 1;
⋄ if X and Y are homogeneous vector fields, then dimC(Col(X ,Y ))≥ 1;
⋄ il X is homogeneous and Y = R is the radial vector field of Cn, then Col(X ,R) is an union of

straight lines through the origin 0 ∈ Cn. Il X ∧R ̸= 0, then the vector fields X and R generate a
singular foliation F of dimension 2 of Cn. There is a holomorphic foliation F̃ on Pn−1

C such that
F = π∗(F̃ ). It is possible to prove that

Col(X ,R) = π
−1(Sing(F̃ )

)
= Sing(F ).

The various previous examples suggest the following conjecture:

Conjecture 7.3. Let Ch(X1,X2, . . . ,Xp) be a homogeneous p-chambar of degree ν ≥ 1 on Cn, where p ≥ 2.
Then Col(Xk,R)⊂ Sing(Xk)

2 for any k ≥ 1. In particular dimSing(Xk)≥ 1.

In the same spirit we have the following problem:

Problem 7.4. Let Ch(X1,X2, . . . ,Xp) be a (non-homogeneous) p-chambar such that Xk(0) = 0. Do the
inequalities dimSing(Xk)≥ 1 hold ?

Remark 7.5. The problem is solved in the following cases:

⋄ ν = 1 (Theorem 6.1);
⋄ p = 2 (Theorem 3.5);
⋄ rigid-chambars (Corollary 4.11).

We proved the conjecture in the special case of homogeneous 3-chambar on C2 of degree 2. In fact we
will prove the following:

2 Recall that Sing(Xk) is the singular set of Xk:

Sing(Xk) =
{

m ∈ Cn |Xk(m) = 0
}
.
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Theorem 7.6. Let Ch(X1,X2,X3) be a homogeneous 3-chambar on C2 of degree 2. Then, after a change of
variables, X j can be written as a jy2 ∂

∂x , where a1 +a2 +a3 = 0. In particular, any homogeneous 3-chambar
on C2 of degree 2 is rigid.

Let X be a homogeneous vector field of degree d on C2. Then X has d+1 invariant straight lines through
0 ∈ C2, counted with multiplicity. These lines are the solutions of f (x,y) = 0, where f is the homogeneous
polynomial of degree d +1 defined by

R∧X = f (x,y)
∂

∂x
∧ ∂

∂y
(7.1)

that is f (x,y) = det
(

x y
X(x) X(y)

)
. We will assume that f ̸≡ 0 (if not X is colinear to the radial vector

field R).
Since f = 0 is X-invariant, then X( f ) = h · f , where h is a homogeneous polynomial of degree d − 1.

Moreover, h = 0 if and only if f is a first integral of X . In this case, the foliations defined by X and by f
must coincide: the relation X( f )= 0 gives X(x) ∂ f

∂x +X(y) ∂ f
∂y , and thus X(x) ∂ f

∂x =−X(y) ∂ f
∂y . Since the degrees

of X(x), X(y), ∂ f
∂x , and ∂ f

∂y are equal, we obtain that

X = α

(
∂ f
∂x

∂

∂y
− ∂ f

∂y
∂

∂x

)
.

Using that R( f ) = (d +1) f and (7.1) we get α = 1
d+1 in the above relation.

In general, we have

(d +1)X −hR = H( f ), (7.2)

where H( f ) = ∂ f
∂x

∂

∂y −
∂ f
∂y

∂

∂x .
Another relation that we will use is

X( f ) = X
(

det
(

x y
X(x) X(y)

))
= det

(
x y

X2(x) X2(y)

)
. (7.3)

Lemma 7.7. Let Ch(X1,X2,X3) be a homogeneous 3-chambar of degree d on C2. For 1 ≤ j ≤ 3 define f j

by R∧X j = f j(x,y) ∂

∂x ∧
∂

∂y . Suppose that the f j are not identically 0. Then

⋄ either f1, f2 and f3 have two common linear factors,
⋄ or f j is a first integral of X j, 1 ≤ j ≤ 3.

Proof. First of all, using relations (7.1), (7.3) and both

∑
j

X j(x) = ∑
j

X j(y) = 0, ∑
j

X2
j (x) = ∑

j
X2

j (y) = 0

we obtain ∑
j

f j = 0 and ∑
j

X j( f j) = 0. If we set X j(h j) = h j · f j, 1 ≤ j ≤ 3, then ∑
j

h j · f j = 0. On the other

hand, since ∑
j

X j = 0 and ∑
j

f j = 0, we get from (7.2) that

0 = ∑
j

(
(d +1)X j −h jR−H( f j)

)
=−∑

j
h jR
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and so ∑
j

h j = 0.

Let us assume that h j ̸≡ 0 for some 1 ≤ j ≤ 3. In this case, from ∑
j

h j = 0 there are i ̸= j such that hi ̸= h j.

Suppose for instance that h1 ̸= h2. Then the equalities{
f1 + f2 + f3 = 0
h1 f1 +h2 f2 +h3 f3 = 0

imply
(h1 −h3) f1 = (h3 −h2) f2. (7.4)

In particular both members of relation (7.4) are not identically zero. Since h1 −h3 and h3 −h2 have degree
d−1, and f1 and f2 degree d+1, f1 and f2 must have two common factors. As f3 =− f1 − f2 these factors
are also factors of f3. □

Remark 7.8. Lemma 7.7 implies that for a homogeneous 3-chambar on C2 Problem 7.4 has a positive
answer, maybe except when the fi are first integral.

Lemma 7.9. Let Ch(X1,X2,X3) be a homogeneous 3-chambar of degree 2 on C2, and let fℓ be as in
Lemma 7.7.

Then the fℓ’s are not identically zero.

Proof. Suppose that f1 ≡ 0; up to a linear change of coordinates we can assume that X1 = xR = x2 ∂

∂x +xy ∂

∂y .
Let ℓ= 0 be a X2-invariant line; then ℓ= 0 is X1-invariant, and also X3-invariant since X1+X2+X3 = 0. These
facts imply that the restriction of X1, X2, X3 to ℓ= 0 define a 3-chambar on the line ℓ= 0. The classificaiton
of 3-chambars on C (Theorem 5.1) implies that the Xi are 0 on ℓ = 0. In particular ℓ = 0 = (x = 0) and
X1 = xR, X2 = xL2, X3 = xL3, with Li linear vector field, and R+L2 +L3 = 0. The same argument as before
implies that the invariant lines of L2, L3 are necessarily x = 0, i.e.:

L2 = a2x
∂

∂x
+(b2x+ c2y)

∂

∂y
, L3 = a3x

∂

∂x
+(b3x+ c3y)

∂

∂y
.

The first components of the flows of X1, X2, X3 are respectively x
1−tx , x

1−ta2x , x
1−ta3x ; the sum of these three

homographies can not be 3x: contradiction. □

Problem 7.10. Is Lemma 7.9 true in any degree ?

Assume that Ch(X1,X2,X3) is homogeneous of degree 2, and that the f ′js have two common factors. Let
ℓ1 and ℓ2 be the two linear common factors of the f ′js. We have the following two possibilities:

i) ℓ1 ̸= ℓ2: we can thus assume that xy is a factor of the f ′js;
ii) ℓ1 = ℓ2: we can thus suppose that y2 is a factor of the f ′js.

Another fact is that a polynomial p-chambar in dimension 1 is constant (Proposition 2.6). Therefore, if a
straight line ℓ = 0 is invariant for all vector fields of the chambar, then X j|ℓ

= 0, and ℓ is a factor of X j. In
dimension 2 this implies that X j = ℓ ·L j, where L j is a linear vector field, 1 ≤ j ≤ 3.

In particular, i) and ii) imply the following possibilities:

i’) if ℓ1 = x and ℓ2 = y, then we must have X j = xyVj where Vj is a constant vector field;
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ii’) if ℓ1 = ℓ2 = y, then X j = yL j where R∧L j = ym j
∂

∂x ∧
∂

∂y , m j = a jx+b jy. In particular, we must have

L j = (α jx+β jy)
∂

∂x
+ γ jy

∂

∂y
(7.5)

where a j = γ j −α j and b j =−β j.

Let us check that i’) can not happen. In fact, let X = xyV , where V = a ∂

∂x +b ∂

∂y . By a direct computation
we find {

X(x)
xy = a, X2(x)

xy = a2y+abx, X3(x)
xy = a3y2 +αxy+βx2

X(y)
xy = b, X2(x)

xy = aby+b2x, X3(y)
xy = b3x2 + γxy+δy2

This implies with obvious notations: for any 1 ≤ k ≤ 3

ak
1 +ak

2 +ak
3 = 0 and bk

1 +bk
2 +bk

3 = 0

so V1 =V2 =V3 = 0.
In situation ii’) the vector fields X j = yL j are of the form X = y

(
(ax+by) ∂

∂x + cy ∂

∂y

)
, and a direct compu-

tation shows that X(y) = . . .+cy2, X2(y) = 2c2y3, and X3(y) = 6c3y4. This implies ∑
j

ck
j = 0 for 1 ≤ k ≤ 3,

so that c1 = c2 = c3 = 0, and X j = yℓ j
∂

∂x , where ℓ j = a jx+b jy is linear. In particular, we get

X j(x) = yℓ j, X2
j (x) = y2 ∂ℓ j

∂x
ℓ j = a jy2ℓ j X3

j (x) = a2
jy

3ℓ j;

as a consequence, ak
1 +ak

2 +ak
3 = 0 for any 1 ≤ k ≤ 3. This yields to a1 = a2 = a3 = 0, and to X j = b jy2 ∂

∂x
for any 1 ≤ j ≤ 3. Note that the f j are first integral of X j.

It remains to consider the case where h1 = h2 = h3 = 0 and f j is a first integral of X j, 1 ≤ j ≤ 3. Let us
come back to the definition of f j := xX j(y)− yX j(x), so that X j( f j) = 0. Remark first that X is a constant
multiple of the hamiltonian of f

H( f j) =
∂ f j

∂y
∂

∂x
−

∂ f j

∂x
∂

∂y
;

it can be checked that this follows from X j( f j) = 0. From the definition of f j and Euler’s identity we get
X j = −1

3 H( f j). Let ℓ be a straight line invariant for X1 and passing through 0. Suppose by contradiction
that it is not invariant by X2. We assert that, either X1|ℓ = 0, or the trajectories of X2 and of X3 are parallel
straight lines. Assume that X1|ℓ ̸= 0; we will see that f2 is a perfect cube, i.e. f2 = h3, where h is linear, so
that the trajectories of X2 are the levels of h. Without lost of generality we can suppose that ℓ = (y = 0).
We can write f2(x,y) = ax3 + yq(x,y), where q is homogeneous of degree 2 and a ̸= 0 because y = 0 is not
X2-invariant. If c ̸= 0, then the level f2 = c cuts ℓ in three points z j := (x j,0), 1 ≤ j ≤ 3, where the x j’s are
the roots of x3 = c

a . If f2 is not a perfect cube, then the level f2 = c is irreducible, and so it is connected.
Denote by ϕ

j
t the flow of X j, 1 ≤ j ≤ 3. Let us remark the following facts:

a) ϕ1
t (x,0)+ϕ2

t (x,0)+ϕ3
t (x,0) = 3(x,0) for all x ∈C, for all t where the flows are defined (barycentric

property);
b) X1|y=0 = αx2 ∂

∂x so ϕ1
t (x,0) =

x
1−αtx and since we are assuming X1|y=0 ̸= 0, α is non-zero;

c) as ( f2 = c)∩ (y = 0) =
{
(x j,0) |1 ≤ j ≤ 3

}
and f2 = c is connected, there exists τ ̸= 0 such that

ϕ2
τ(x1,0) = (x2,0).
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It is possible to prove that ϕ2
3τ
(x1,0) = (x1,0), and more generally ϕ2

3kτ
(xi,0) = (xi,0) for all k ∈ Z, i = 1, 2,

3. Since f3 is a first integral of X3, the leaf of the foliation generated by X3 through (x1,0) must cut ℓ in at
most three points. However, a) and b) imply that

ϕ
3
3kτ(x1,0) =

(
2x1 −

x1

1−3kτx1
,0
)
,

contradicting that the number is finite. As a result,

I) either f2 and f3 are perfect cubes,
II) or X1|y=0 = 0.

Let us deal with these two possibilities.

I) Assume that f2 = ℓ3
2 and f3 = ℓ3

3, where ℓ2 and ℓ3 are linear. In this case, the trajectories of X2, and
also of X3, are parallel lines. We have the alternative:
A) either dℓ2 ∧dℓ3 = 0,
B) or dℓ2 ∧dℓ3 ̸= 0.

In case A), we have ℓ3 = αℓ2, α ̸= 0, and ℓ2 is a line invariant for the chambar. After a linear
change of variables we can suppose that X j = a jy2 ∂

∂x , and the statement is proved. Note that in this
case X j|ℓ

= 0 for 1 ≤ j ≤ 3.
In case B), after a linear change of variables, we can suppose that f2 =−x3 and f3 =−y3, which

implies X2 =−x2 ∂

∂y , and X3 =−y2 ∂

∂x . However, in this case we would have X1 = y2 ∂

∂x + x2 ∂

∂y . This
is not a 3-chambar because

X2
2 (x) = X2

3 (x) = 0 and X2
1 (x) ̸= 0.

II) Suppose that X1|y=0 = 0. From the above we have the following consequences: the hamiltonian
H( f j) = X j is identically zero on the lines f j = 0. In particular all the irreducible components
of f j have multiplicity. Since the f j’s have degree 3, the f j’s are perfect cubes and we conclude as
previously.

This ends the proof of Theorem 7.6.
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