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Introduction

Guaranteed numerical integration is a fundamental tool to solve ini-
tial value problems of ordinary differential equations (IVP-ODEs) with
uncertain initial conditions and parameters in a reliable and validated
way. Providing guaranteed solution enclosures to these IVP-ODEs
is essential for designing and verifying linear and nonlinear feedback
controllers, mainly for predictive control approaches. In the litera-
ture, many solvers have been developed, such as the DynIbex library,
allowing for the computation of enclosures which are guaranteed to
contain all possible system states. The DynIbex library is based on
Runge-Kutta schemes to obtain tight state enclosures [1]. Neverthe-
less, it has been shown that — due to the computational complexity
of Runge-Kutta methods [2] — fast convergence and high accuracy of
the computed enclosures are not always guaranteed for finitely long
integration time spans, possibly leading to an excessive duration to
get the IVP-ODEs’ solutions. To overcome these issues, exponential
enclosure techniques for IVP-ODE problems seem to be attractive to
remarkably reduce the computing time of validated methods and to
approach real-time capability [3,4].



The time aspect is especially crucial, because at each sampling in-
stant, a validated nonlinear model predictive controller (NMPC) needs
to compute optimal and guaranteed system inputs along a receding
horizon that minimize some interval cost function and ensure compati-
bility constraints (such as actuator saturations or safety constraints on
the state trajectories) [2]. Our motivation is to interface exponential
enclosure techniques with the validated NMPC to remarkably speed
up the solution.

Guaranteed Nonlinear Model Predictive Control

Consider a dynamic system defined by the following IVP-ODEs :
ẋt = f(t,xt,u,p)
x0 ∈ [x0] ⊆ IRn

u ∈ [u] ⊆ IRm

p ∈ [p] ⊆ IRp,

(1)

where the state vector is denoted by xt, the vector of parameters by

p, and the control vector by u. The sets [x0] =
[
[x10] . . . [xn0]

]T
,

[u] =
[
[u1] . . . [um]

]T
, and [p] =

[
[p1] . . . [pp]

]T
, expressed as inter-

val boxes, are respectively the initial condition of the state vector, the
interval-bounded input, and the set of feasible dynamic parameters.
The proposed guaranteed NMPC encompasses two stages [2]:

1. Filtering and branching: The first step provides a sequence of
guaranteed input interval boxes at each time-step k over the pre-
diction horizon Np, denoted as [U]k = [u]k×[u]k+1×. . .×[u]k+Np−1.
Branching and filtering procedures allow the computation of safe
input intervals along the receding time horizon that satisfy the
state constraints (i.e., ∀j, [xj] ⊆ [xmin,j, xmax,j], where xmin,j and
xmax,j are the bounds for the admissible domain for each state
variable) and ensure convergence to the reference interval (i.e.,
[xk] → [xr,k]).

2. Interval optimization: Since safe inputs are computed over a
finite time horizon, the optimization algorithm is launched to com-



pute the optimal inputs [U]⋆k by minimizing as much as as possible
a newly formulated interval objective function to reduce the error
between predicted and reference outputs as well as the norm of the
input intervals.

Exponential Enclosure Technique

Guaranteed numerical integration methods aim at computing the state
enclosure sequences (tj, [xj])j∈N, assuming that the input and param-
eter boxes [u] and [p], respectively, are piecewise constant and known
for each validated simulation. Here, the exponential enclosure tech-
nique will be applied to approximate the IVP-ODEs’ solutions, given
in (1). It has been shown that this method improves the accuracy of
the computed state enclosures and reduces the required computation
time for asymptotically stable systems [3]. The dynamic model (1) can
be reformulated by considering that the dynamic parameters are rep-
resented by constant intervals, and the input variables are assumed to

be included in an augmented state vector, i.e.,
[
xT
t uT (xt)

]T
, denoted

for brevity again as xt with

ẋt = f(xt). (2)

To ensure the (local) asymptotic stability of the system model in the
neighborhood of a desired terminal state, we assume — as a prereq-
uisite for the exponential enclosure approach — that a feedback con-
troller is included in a cascaded manner in the control law u(xt) so that
the NMPC effectively computes a kind of feedforward control sequence.

To prevent the growth of the diameters of the intervals (tj, [xj])j∈N
for asymptotically stable systems with a minimum computational ca-
pacity, the exact solution x⋆

t can be bracketed into the following expo-
nential state enclosures

x⋆
t ∈ [xe](t) = exp

(
[Λ] · t

)
· [xe](0) , [xe](0) = [x0], (3)

where Λ represents a yet unknown dynamics matrix. By choosing
[Λ] = diag{[λi]}, i = 1, . . . , n, as a diagonal matrix, its elements λi



need to have negative real parts to describe contracting state enclo-
sures.

Using the exponential state enclosures (3) and a Picard iteration
with the iteration index κ, we obtain

x⋆
t ∈ [xe](κ+1)

= exp
(
[Λ]

(κ+1)
· t
)
· [xe](0)

= [xe](0) +

t∫
0

f
(
exp

(
[Λ]

(κ)
· s
)
· [xe](0)

)
ds.

(4)

The differentiation of (4) with respect to time, belonging to the inte-
gration interval t ∈ [t], leads to

ẋ⋆
[t] ∈ [Λ]

(κ+1)
· exp

(
[Λ]

(κ+1)
· [t]

)
· [xe](0) = f

(
exp

(
[Λ]

(κ)
· [t]

)
· [xe](0)

)
.

(5)

Assuming a converging iteration with [Λ]
(κ+1)

⊆ [Λ]
(κ)

and, thus, [λi](κ+1)
⊆

[λi](κ), the iteration formula for [λi](κ+1)
can be expressed as

[λi](κ+1)
=

fi

(
exp

(
[Λ]

(κ)
· [t]

)
· [xe,i](0)

)
exp

(
[Λ]

(κ)
· [t]

)
.[xe,i](0)

, i = 1, . . . , n. (6)

The guaranteed state enclosure at the time instant t = T = sup([t]) is
given by

x⋆
t ∈ [xe](t) = exp

(
[Λ] · T

)
· [xe](0), (7)

where [Λ] is the final result of the iteration (6).

Preliminary Results using DynIbex

The NMPC strategy is applied to stabilize a nonlinear inverted pen-
dulum with two serial joints, actuated by a DC motor whose angular
speed is the input variable. To evaluate the dynamic model of the



inverted pendulum, we can solve the IVP-ODEs in a validated way
using the DynIbex library. Figs. 1a and 1b show the measured pen-
dulum angle (black lines) with the computed enclosures by DynIbex
using point-valued parameters p (red enclosures) and interval param-
eters [p] (blue enclosures). We can notice that the simulated tubes of
the pendulum angle are close to the real measured signal. Moreover,
we have calculated the coverage ratios between the measurements and
the simulated tubes as recapped in Tab. 1. The coverage ratios con-
firm that the model is identified with high precision when the dynamic
parameters are considered as intervals that account for different uncer-
tainties related to the measurements and dynamic modeling. However,
the accuracy of the validated simulation should be enhanced because
the widths of the computed Rung-Kutta enclosures enlarge with time,
and the coverage ratios are not quite satisfactory.

(a) Initial conditions: [u0] =
[0Nm, 0Nm] and [x0] =
[0◦, 0◦]︸ ︷︷ ︸
[x10]

× [0, 0]︸︷︷︸
[x20]

× [−98◦,−100◦]︸ ︷︷ ︸
[x30]

× [0, 0]︸︷︷︸
[x40]

.

(b) Initial conditions: [u0] =
[0.15Nm, 0.18Nm] and [x0] =
[0◦, 0◦]︸ ︷︷ ︸
[x10]

× [0, 0]︸︷︷︸
[x20]

× [46◦, 50◦]︸ ︷︷ ︸
[x30]

× [0, 0]︸︷︷︸
[x40]

.

Figure 1: The validation of the dynamic model of a nonlinear inverted
pendulum using the DynIbex library. Comparison between the ac-
tual and simulated pendulum angles at different initial conditions with
point-valued and interval parameters.

Figs. 2a and 2b display the simulation results of the validated
NMPC approach. As it can be seen in Fig. 2a, the pendulum arm
starts from the downward position, and it is stabilized via the vali-



Table 1: Coverage rates between the model and physical reality.

Scenario (a) (b)
With interval-valued dynamic parameters [p] 51% 61%
With point-valued dynamic parameters p 38% 34%

dated NMPC in its vertical upright position interval [xr] with a small
settling-time (around tr5% ≈ 0.18 s). Despite its proven effectiveness in
making the system output converge to the desired reference interval,
it still has some drawbacks. The main ones are related globally to the
computation time, which depends mainly on a large number of bisec-
tions of the initial input domain [uk] preventing the validation of this
approach in real-time. This issue can be reduced by using exponen-
tial enclosure techniques in combination with an underlying feedback
controller.

(a) Tube for the pendulum angle. (b) Input Intervals.

Figure 2: Validated NMPC results starting from the downward posi-
tion.
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