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Abstract
This paper reports on an experiment involving 108 sixth-grade French students in which the history of Chinese numera-
tion was used in mathematics education. The aim of this study is to evaluate the relevance of using ancient number 
systems in mathematics education, which is common in French textbooks. In the experiment a pre-test with usual math-
ematics exercises and an activity with a post-test comprising history-based ones have been proposed. On this data, a 
factor analysis shows that the tasks based on the history of mathematics combined well with specific mathematical skills. 
Then, an analysis of the difficulty levels (1PL model) of the regular items and the history-based items helps identifying 
some key points for which the history of mathematics is relevant.

Keywords Mathematics education · Numeral systems · History of mathematics · Quantitative study

1 Introduction

In France, echoing classroom practices evidenced by activity files published over the past few decades [1, 2] and respond-
ing to an explicit institutional demand [3] to introduce mathematical history in mathematics education, ancient numera-
tion has become standard in grade 6. Indeed, this historical content is now found in most textbooks. For instance, in 22 
French sixth-grade textbooks published between 2005 and 2021, without counting documentary pages or inserts, there 
are 33 exercises relating to various ancient numeration systems, including Egyptian hieroglyphic numeration (10), Roman 
numeration (9), Babylonian cuneiform numeration (7), Chinese and Sino-Japanese numeration (5), Mayan numeration (1) 
and Greek numeration (1). In most cases, the exercises are nicely illustrated and highlight the civilizational era concerned. 
Only 8 textbooks do not have exercises with ancient number systems. However, beyond the cultural contribution of 
this content, the presence of ancient numeration systems in school exercises is linked to the teaching of mathematics. 
Indeed, these ancient systems of number representation can be associated, on the one hand, with learning objectives 
specific to the contemporary numbering system and to the difficulties it presents to students and, on the other hand, 
with the role that history plays in the teaching of mathematics. For the first aspect, didactic issues are well identified, 
as shown in international syntheses such as the International Commission on Mathematical Instruction (ICMI) study [4] 
or the French report [5] by the Centre national d’étude des systèmes scolaires (CNESCO). These syntheses highlight the 
importance of the construction of the first numbers (1, 2, 3, …) and of the exchange rule (the one-for-ten groupings in 
positional systems) as well as the roles of words (difference in construction between oral and written numeration) and 
the cultural context (presence or absence of a social practice). For the second aspect, many studies have been conducted 
for three decades on the place of history in mathematics education [6, 7]. From a methodological point of view, teaching 
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approaches in can be classified [8] in three categories: the “illumination approaches”, in which learning is supplemented 
by historical information; the “module approaches” devoted to specific cases in history; and “history-based approaches”, 
in which history shapes the sequence without appearing explicitly. On the learning goals, history of mathematics [9] can 
serve as a replacement (for another activity), as a way to create an unusual experience for students, or as cultural enlight-
enment; additionally, history is seen as a tool or as a learning objective in itself. In this paper, all of these dimensions and 
the choices made for the experiment conducted in the sixth-grade context are specified. This student-centered research 
on the place of ancient numerations is in line with other works, such as that of [10] and our previous experimentation on 
Inca quipus [11] or Babylonian numeration [12, 13]. Thus, in this article, I first present results on the learning of numbers 
and on its link with addition and subtraction algorithms. Then, after a brief presentation of the ancient Chinese number 
system, I will return to the main reflection on the use of the history of mathematics in the classroom.

2  Didactical and historical frameworks

2.1  Numeral system and computation

As Bartolini Bussi and Sun [4] point out in the introduction to the international ICMI study mentioned above, whole 
numbers and the first elements of arithmetic are the foundation of mathematics learning. Taught from kindergarten 
onward, integers are progressively mastered in elementary school to serve as a foundation for the notions and meth-
ods taught in secondary school and beyond. However, despite the recognized importance of this first learning and the 
time devoted to it in class, mastering our number system is not easy for students. As noted in the CNESCO report [5], 
large whole numbers, i.e., those to which students can no longer associate a collection of objects, constitute a difficulty 
for a significant proportion of students at the end of elementary school. This difficulty is generally associated with an 
insufficient conceptualization of decimal numbers, or even whole numbers. Therefore, there are didactic issues, which 
research has explored. In particular, Houdement and Tempier [14] explain that the understanding of numbers in units, 
tens, hundreds, etc., was seen very early on as a lever for learning and as an indicator of students’ mastery. Whether 
called multi-units [15], units of numbers [16], or units of numeration [14, 17, 18], these decompositions of numbers 
exist in oral designation but do not appear explicitly in writing, creating a gap that some students struggle to manage. 
This difficulty persists throughout schooling, leading to students’ failure in numbering tasks [19–23] and calculations 
or problem solving [5]. A key to our decimal number system is the switch from one rank (place value) to another by 
grouping 10 representatives of a number unit (e.g., ten) into 1 representative of the higher number unit (e.g., hundred). 
This operation in base 10 is also the point of support of the algorithms of calculation in which one finds the necessary 
mastery of the various ranks by the learners but to which are added competences related to the course of the technique 
itself. Again, Houdement and Tempier [14] note that the concordance between poor number knowledge and failure in 
computational tasks was identified early on by a great deal of research [24]. In particular, the authors mention the differ-
ences in performance when moving from a two-digit calculation to a three-digit calculation [25]. It is also in calculations 
where the poor mastery of large numbers appears [26, 27] and where the role of the classes of units, thousands, millions, 
etc. in which the same ranks (units, tens, hundreds) are repeated is structured [19]. In France, as the official instructions 
for elementary school emphasize [28], addition and subtraction algorithms rely entirely on a good understanding of our 
numbering system. This point led CNESCO [29], at the end of the 2015 consensus conference on numbers, operations 
and the first learning in elementary school, to propose a recommendation entitled “Associating the learning of operating 
techniques with the understanding of numbers”. This recommendation states that the teaching of procedures used to 
perform operations in writing (such as carry over in addition) must provide opportunities for students to develop their 
understanding of numbers. Numeration and calculation algorithms are thus linked, and this is one dimension that the 
present study proposes to explore through the use of historical materials. However, before going into the details of this 
experiment, similar to the overview of the didactic results above, it is appropriate to examine questions related to the 
use of the history of mathematics in the classroom.

In didactic studies, the value of a historical look at the evolution of number systems is commonly recognized [4]. 
Indeed, knowledge of the developments (simple tally systems, additive systems, multiplicative-additive systems, and 
positional decimal systems) that preceded our contemporary system highlights both the specific characteristics and 
the epistemological obstacles [30–32] that our system can present to students. It is therefore not surprising, as it was 
pointed out in the introduction, that ancient numeration systems are pervasive in mathematics education. The goal 
is then epistemological in nature by changing what is (supposed to be) familiar into something unfamiliar and thus 
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challenging students’ conventional perception of mathematical knowledge [7]. The experiment described in this article 
uses an ancient Chinese number system (writing numbers with rods) that is fairly well documented. This system is briefly 
overviewed as follows.

2.2  A Chinese ancient numeral system

In China, rod number writing likely appeared around the second century BC, as found in the Suàn shù shū [Book on cal-
culations made with sticks] [33], which dates from this period. This number system also appeared [34] in the Wang Mang 
period (9–23 A.D.) and lasted at least until the beginning of the eighteenth century. It is a positional decimal system in 
which different ranks are presented in an alternating horizontal and vertical representation. As Anicotte [33] states in 
his edition, in the text of the Book on Calculations, numbers were written with the words of the common language. For 
calculations, numbers were represented with sticks on a flat surface, and calculations were carried out by manipulating 
these sticks, called suànchóu. The digits of units, hundreds, and all even powers of ten were represented by arranging 
sticks vertically, with a horizontal bar for digits above five. For tens, thousands, and all odd powers of ten, the sticks 
were arranged horizontally, with a vertical bar for digits above five. For example, I = T represents the number 126, and I T 
represents the number 106. In ancient China, the numbering system did not include zero [33], but a blank space could 
be left to avoid confusion. Zero appeared as a small circle in much later versions, as seen in the arithmetic triangle [34] 
published in 1303 by Zhu Shijie (1260–1320). Negative numbers were represented by black rods instead of red ones. 
In writings after the eleventh century, these negative numbers appear marked with a slash. This system of number 
representation was widely used from the thirteenth century onward for the resolution of algebraic equations. Even in 
the seventeenth-eighteenth century [35], Takebe Katahiro (1664–1739), in his Hatsubi Sanpo Endan Genkai, annotated 
version of Seki Takakazu’s (1640?-1708) Hatsubi Sanpo treatise of 1687, borrows from this notation system.

In the experiment carried out with students, the decimal aspect of the system and the scriptural distinction between 
the even and odd digit ranks were used. The ambiguity related to the absence of an explicit zero was deliberately accentu-
ated. In the didactic presentation of the system to the students, there was no suggestion to introduce a space between 
the digits when number units were missing. On the activity sheet and in the exercises, the digits were simply placed 
side by side; it was up to the students to ensure that the symbols were arranged vertically or horizontally. However, 
the numerical values were chosen with only one missing rank to make this deduction possible. A presentation of the 
Chinese rod number system and its epistemological issues can also be found in Bartolini Bussi and Sun [4]. The Chinese 
numbering system has been chosen for its decimal character and for the explicit presence of the different ranks (units, 
tens, hundreds, …). Other ancient systems are quite similar and could allow the creation of quite similar activities. The 
Egyptian system (hieroglyphs) also presents a base 10 and different symbols for the units, tens… However, it is mainly an 
additive system which does not put forward the positional aspects. On the contrary, the Babylonian system (cuneiform 
writing) presents a strong positional dimension, but it is not based on the base 10. For this study, the Chinese system 
thus offered a double advantage.

2.3  Research question

The potential usefulness of history in mathematics education is world-wildly recognized [6, 36–41]. It represents an inter-
esting approach because of the cultural enrichment and epistemological distance it allows. However, while relevance of 
how students perceive and experience mathematics is well documented [42–47], several questions remain regarding 
how history in mathematics education affects learning. In particular, in their international synthesis, Clark et al. [7] ask 
for evidence on what students really learn when mathematics history is used in the classroom. Using the example of the 
introducing of Chinese numeration in the sixth-grade context, this article explores how history of mathematics can be 
relevant in a regular school context by allowing the creation of tasks of varying difficulty levels on a specific mathemati-
cal skill. The goal, then, is to see how the history can be integrated by providing supports for learning.

In light of elements of didactic analysis, a quantitative study on more than one hundred students has been conducted. 
The methods used are explained in the following paragraphs about the data and their analysis, but it is useful first to 
present the activity administered to the students in the experiment.
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3  Data and methods

3.1  Students’ worksheets and activity

The experiment was composed of three parts. The first part included ordinary mathematical exercises and served 
to support the evaluation of the way the history of mathematics was articulated with usual learning objectives. The 
second part was the historical activity. It included a presentation of the Chinese number system and examples. Finally, 
the third part was an evaluation of students’ understanding of the Chinese number system presented during the 
activity. The first exercise sheet was created in a session before the activity. The activity and the second worksheet 
were completed during the same one-hour session. To allow analysis using item response theory (IRT), all tasks were 
decomposed, and the responses were dichotomized by a strict rule, with values of 1 for total success and 0 otherwise. 
In terms of coding, the items on the first form on ordinary mathematical tasks were denoted M1a, M1b, M2a, M2b, 
etc. (M prefix) depending on the type of task and the sub-questions in the exercises. Similarly, items with a historical 
dimension in the second exercise sheet were coded H1a, H1b, H2a, H2b, etc. (H prefix). The activity part was carried 
out in dialogue with the teacher. The two worksheets were performed individually by each student. We now detail 
the content of these materials by specifying the didactic stakes for the various items.

3.1.1  First worksheet: ordinary mathematics

The first worksheet included six questions with a total of 21 items. The first question involved dictation of numbers. 
It aimed to evaluate students’ mastery of the contemporary number system. In accordance with the learning issues 
mentioned in the previous section, the numbers were chosen to highlight possible gaps. Thus, there were six items 
with zeros in some ranks (2305, 10 100, 30 095) and large numbers (215 230, 6 800 000, 45 900 030). Next, questions 
2 and 3 were related to calculation algorithms. In question 2, students were asked to add three decimal numbers; 
the point of this question was to check students’ understanding of the different ranks in our decimal system. The 
numbers chosen increased in complexity. The first two decimal numbers (3.29 + 1.05) had decimal parts of the same 
length. Then, the decimal parts had different lengths (66.7 + 2.42). Finally, the addition of an integer and a decimal 
hid the presence of the decimal point (786 + 8.6). Question 3 was built on the same model but involved subtraction 
(66.4 – 21.3), (24.1 – 0.25) and (2043 – 22.2). The objective was to allow the analyses to verify the presence of links 
between numeration and calculation. The fourth question presented divisions of whole numbers by 10, 100 or 1000 
to assess students’ understanding of the representation of decimal numbers. Four items of increasing difficulty were 
presented, (3500:10), (230:100), (451:100) and (75,659:1000). These calculations were to be completed directly in line. 
The last two questions, 5 and 6, involved the representation of fractions and integers on a graduated axis. Question 5 
included only one item in which students had to determine the fraction of the colored part of a flower ( 2

5
 ). Question 

6 presented two types of axes. On the first axis, students had to place 25 and 58 (simple axis, graduated in units, tens 
explained), and for the second, they had to place 3

5
 and 12

5
 (axis graduated in fifths, units explained). Questions 4, 5 

and 6 tested, above all, the mode of representation of numbers.

3.1.2  The activity on ancient Chinese numeral system

The discovery activity part was presented on two pages. The first page explained the historical context and the func-
tioning of the Chinese number system. The two sets of digits, those for even and those for odd ranks, were given. Two 
examples, in addition to those possibly proposed by the teacher during implementation in class, were written at the 
bottom of the sheet. These were two numbers, 167 and 107, for which the difficulty linked to the absence of the digit 
zero appeared. This difficulty was thus made explicit from the start, in addition to the alternation of symbols between 
the digit ranks. On the second page, reflecting what is widely found in school textbooks using an old numeration 
system, students had to switch from one form of writing to another [46] in several examples. Initially, this involved 
switching from contemporary decimal writing to the ancient Chinese system with increasingly larger numbers (12, 
33, 46, 332, 467, and 5678). Reverse encoding was then proposed for the numbers 51, 81, and 457. This transition 
from the Chinese system to our numbering system was an opportunity to return to the absence of zero with two 
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numbers, 40 and 409. To avoid ambiguity, it was clearly stated that these two numbers were less than 1000. The last 
part of the activity involved reading an original source from the seventh century written in the Chinese system (Fig. 1).

The numbers 9, 18, 27, 36, 45, 54, 63, 72 and 81 appeared in that source, and the students had to identify them and 
recognize the results of the multiplication table by 9. Again, the whole discovery activity was conducted in dialogue in 
the classroom; the students could converse with each other and with the teacher.

3.1.3  The second worksheet: evaluation

After the activity, an evaluation was given to the students. This worksheet repeated the tasks seen during the discovery 
of the Chinese number system. Throughout the worksheet, the ranges in which the numbers fell were always specified, 
and throughout the assessment, students could consult the activity sheet. The assessment was in the form of a sequence 
of five questions, each with two to four items, for a total of 13 items. In question 1, students were asked to write the 
numbers 73, 221, and 6789 in Chinese, and in question 2, they were asked to rewrite the numbers 42, 50, 346, and 306 
in our system. The numbers were increasing in size and intentionally included zeros. Therefore, these first two exercises 
involved the direct application of what students had already done. Exercises 3, 4, and 5, on the other hand, presented 
new challenges to students, relating to the notions of the successor and predecessor of an integer. In connection with 
the notions of addition and subtraction, the objective was to determine whether the use of another decimal system also 
allows for work on the fundamental one-for-ten exchange rule. In question 3, the students had to write, using the Chinese 
system, the successor of 23 and then that of 29. The situation was similar in Exercises 4 and 5, which had predecessors 
of 23 and 80 and of 6789 and 6780, respectively.

3.2  Data and processing

The experiment was conducted in four sixth-grade classes, each with a different teacher. In all, 108 students (63 girls 
[58%]; 45 boys [42%]) participated all or part of the experiment. Mainly because of the pandemic, some students were 
absent from some parts of the experiment. It should also be noted that for questions 3, 4 and 5 (regarding predecessors 
and successors), some students may have had difficulty understanding the instructions; they wrote the numbers in our 
system instead of in the Chinese system. In both cases, the items were considered not addressed (NA), i.e., missing data. 
In total, out of 3672 observations, there are 196 missing data points, i.e., approximately 5%, which is compatible with 
statistical analysis. Eighty-six students completed all exercises and activities. This point leads to specify the limits of this 
study because the first thing to note, in connection with what has just been said, is that even if it is representative of 
what can be found in textbooks, the activity remains unique. As a result, it undoubtedly benefits from a novelty effect 
that has not been measured. The second limitation of this experiment concerns the representativeness of the sample. 
Indeed, although involving more than a hundred students, the experimentation took place in the same school. The 
teachers were different each time and the school is considered to be ordinary, but biases could be due to the profiles of 
the students tested.

Fig. 1  Part of the activity 
worksheet. Translation: The 
manuscript below is a mathe-
matical text from the seventh 
century. The last line gives a 
sequence of numbers. Write 
this list of numbers with the 
French system. The numbers 
are: Do you recognize this 
sequence of numbers?
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The data were processed in the R environment [48] with the psych package [49] for data consistency checking and 
factor analyses, in the ltm package [50] for 1PL modelling. The ltm package, known for its performance [51, 52], was 
chosen because of its algorithms specifically dedicated to dichotomous items and its missing data model fitting that 
takes into account the observed part of the sample according to the missing at random (MAR) presupposition [53].

4  Results

4.1  Items reliability and filtering

For the 34 items, the final average score was 24.98 (standard deviation 6.56), which means that the experiment 
was globally successful for the students. This result is in line with the objective of creating a classroom activity 
that is integrated into regular practice, with a large amount of student involvement, and not a single test with a 
certification purpose. However, each group of questions has both easy and more difficult items. Table 1 presents 
the success rates item by item.

The data do not show a difference between girls and boys. Student’s t-test (t = 0.061832; df = 78.767; 
p-value = 0.9509) yields a p-value much higher than 0.05 and is thus not significant. The items were filtered using 
item-inclusive and item-exclusive point-biserial correlation coefficients. The literature [54–56] suggests a cutoff 
value of 0.2, but for consistency in modeling, a slightly higher cutoff of 0.25 was chosen. Items with any of the values 
below the threshold were removed. M1a, M3a, M6a and H2a were excluded. Then, after checking all the remaining 
items, H2c, whose value was under the threshold was also removed. For the remaining 29 items, the consistency is 
good and sufficient interitem correlation is ensured by a Cronbach [57] alpha of 0.91, a KMO [58, 59] index of 0.74.

Table 1  Success rate m by item and standard deviation sd 

Item M1a M1b M1c M1d M1e M1f M2a M2b M2c M3a M3b M3c

m 0.971 0.962 0.876 0.943 0.771 0.781 0.905 0.848 0.667 0.895 0.609 0.562
sd 0.167 0.192 0.331 0.233 0.422 0.415 0.295 0.361 0.474 0.308 0.490 0.498

Item M4a M4b M4c M4d M5a M6a M6b M6c M6d H1a H1b H1c

m 0.562 0.428 0.409 0.429 0.724 0.990 0.943 0.854 0.438 0.922 0.913 0.854
sd 0.498 0.497 0.494 0.497 0.449 0.097 0.233 0.501 0.498 0.269 0.284 0.354

Item H2a H2b H2c H2d H3a H3b H4a H4b H5a H5b

m 0.903 0.718 0.777 0.476 0.785 0.731 0.828 0.419 0.595 0.315
sd 0.297 0.452 0.418 0.502 0.413 0.446 0.379 0.496 0.493 0.467

Table 2  Extraction of two 
factors by factor analysis with 
oblimin rotation

Item MR1 MR2 Item MR1 MR2 Item MR1 MR2

M1b 0.687 M4a 0.762 H1c 0.624
M1c 0.484 M4b 0.854 H2b 0.493
M1d 0.784 M4c 0.960 H2d 0.584
M1e 0.868 M4d 0.898 H3a 0.596
M1f 0.890 M5a 0.466 H3b 0.835
M2a 0.621 M6b 0.577 H4a 0.714
M2b 0.676 M6c 0.618 H4b 0.372
M2c 0.644 M6d 0.657 H5a 0.713
M3b 0.497 H1a 0.721 H5b 0.541
M3c 0.597 H1b 0.693
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4.2  Item content specificity

To determine how the items cluster around certain mathematical skills or learning objects, a factor analysis was 
conducted. Since the parallel analysis suggested two factors, these factors were extracted with an oblimin rotation 
that allowed the best separation of variables (Table 2).

The first axis accounts for 33.3% of the variance and the second 15.8%, i.e., 49.0% in total. With a threshold value for 
the loadings of 0.3 [60], the first factor MR1 consists mainly of items M1a to M3c and all the H items. The second factor 
MR2 consists only of items M4a to M6d. It can be noted that with the exception of item M6b, the items of questions 
4, 5, and 6 on the ordinary mathematics worksheet do not group together with the items of the Chinese numeration 
worksheet. It can therefore be assumed that the targeted skill is not the same. Since the didactic analysis shows that 
items M1x, M2x, and M3x are based on the articulation between the mastery of decimal numbering and the calcula-
tion of addition and subtraction, it can be concluded that the items H1x, H2x, H3x, H4x and H5x concern the same 
competence. Items M4x, M5x and M6x include a dimension related to the representation of numbers, which does 
not seem to work with the evaluation of the historical part, although it could have been expected to be activated 
by the use of the new symbols of Chinese numeration. For the rest of the analyses, only items M1x, M2x, and M3x 
and the set of H items are kept, that is, 21 items. For this new set, the data consistency is stable, with alpha = 0.89, 
KMO = 0.74. The parallel analysis suggests a single principal component and a single factor. Unidimensionality [61, 
62] is further confirmed by the ratio between the first eigenvalue and the second eigenvalue being greater than 4 
(here 10.59/1.92 = 5.51). Modeling with a one parameter logistic model (1PL) is therefore conceivable [63].

4.3  Item content specificity

To more precisely identify the groupings of the items, an ascending hierarchical classification was carried out consid-
ering the difficulty levels of the items based on a 1PL model (model relevance verified by bootstrapping [50] using 
the dedicated function in the ltm package). The classification helps identifying three main groups, each one broken 
down into two subgroups, i.e., six sets of items (Table 4).

To study the different groupings of items and their consequences on learning, each item has been assigned a 
coding according to its main didactic issues. We will thus distinguish five symbols: (=), (p), (1), (+), and (−). The two 
codings (=) and (p) reflect the positional dimension of the numeral systems used in the experiment. The code (=) 
characterizes items for which the writing of the different digits can be done in a simple way, in the sense that there 
is only one digit (different from zero) in each rank or blocks of three digits for each class (units, thousands, millions). 
In both cases, the number can be written by joining the different digits or groups of digits. On the other hand, the 
code (p) indicates items for which the syntax rules of numeration must be fully mastered. These items have in par-
ticular empty ranks which are thus either marked with a zero (usual system) or with an absence of digit (Chinese 
system). The three other codes (1), (+), and (−) concern the role of groupings by ten in the writing of numbers. Code 
(1) simply indicates items where a unit is added or subtracted, without using the one-for-ten exchange rule. When 
the exchange rule is used, two situations can be distinguished. The first one, marked by (+), refers to items in which 
the base 10 is used in the way of grouping 10 units of a certain rank into 1 unit of the higher rank. Conversely, when 
the item requires re-decomposing 1 unit of a rank into 10 units of the lower rank, they are marked with the code (−). 
Grouping and decomposition are the two main aspects of the implementation of the decimal dimension common to 
the numeral systems used. The coding of the items will allow us to highlight the grouping of certain items on common 
learning objects (Table 4) as well as several breaks in the continuum of difficulty levels measured by the modeling.

On the mastery of the positional system, the items marked with the code (=) are concentrated in the sub-group 1.1 
whereas the items identified by the code (p) will, on the contrary, be concentrated in the other groups 2 and 3. The break 
line appears in subgroup 1.2 where the two types of items (=) and (p) coexist. The experimentation does not allow the 
demonstration of a perfectly clear separation on this hierarchy between items requiring a simple implementation of the 
various ranks and those with a more complex use of the positional system. However, one can note the predominance 
of two blocks with on one side group 1 (or even the sub-group 1.1) and on the other side groups 2 and 3 (or even 1.2, 
2, and 3). In all cases, the items fall under both the ordinary mathematical part and the part with a historical dimension.

The break between the learning implemented in group 1 and those of groups 2 and 3 is also valid for the addition 
or removal of a unit to numbers written in Chinese. The items coded (1) are indeed in these two groups of higher 
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difficulty than in group 1. It can also be noticed that this separation coincides with a break in the historical items in 
the direction of the translation between the two numbering systems. The items concerning the translation from the 
usual writing to the Chinese writing appear in group 1 whereas those mobilizing the opposite direction are positioned 
in groups 2 and 3. We can suppose that the addition or removal of a unit in coded items (1) requires first a conversion 
from the Chinese system to the usual system, but this aspect has not been specifically studied.

On the mastery of the exchange rule, the situation is clearer. As can be seen in Table 4, the items marked with the 
sign (−) are concentrated in group 3. These items are also the most difficult for the students (difficulty of − 0.4 to 0.7), 
both for the mathematical part and for the historical part. The application of the one-for-ten exchange rule in its de-
composition way thus creates a new level of difficulty compared to the decimal re-grouping way. This is true both in 
its expression in the calculations performed and in the manipulation of the Chinese numeral system involving the 
notions of predecessor and successor of a number.

The correspondence between the groupings of items and the learning objectives confirms the adequacy of the 
history of mathematics to precise didactic objectives, in this case, the mastery of the decimal and positional dimen-
sions (Fig. 2).

5  Discussion

Above analyses of the activity show that the different tasks proposed in the part on ancient numeration have math-
ematical objectives similar to those of some items in the first part. Among these, learning related to the use of the 
one-for-ten exchange rule, common to both numbering systems, is clearly emphasized. This fundamental rule of the 
decimal numeral system is also what makes the addition and subtraction algorithms work, particularly when there 
is a carry over. Even if the presence of symbols and ancient sources creates an unusual situation [64], mathematics 
learning is above all based on what is common in the ancient Chinese and contemporary systems of numeration. This 
point makes explicit the interest of a thorough didactic analysis to properly define a targeted dual objective [65] for 
an activity with historical support. The school anchoring of the activity thus offers a response to several objections 
to the use of history pointed out by literature [66, 67] such as the wish to teach a subject first before its historical 
dimension or the lack of suitable resources. As seen in the analyses, such tasks can be of varying difficulty based on 
variation in the numerical values chosen (presence or absence of zero, presence or absence of carry over in opera-
tions, large numbers) and in the historical dimension (new symbols, new rules for writing numbers). While writing a 
number with fewer than four digits does not pose a problem for students in the contemporary system, writing even 
small numbers can be difficult in the ancient Chinese system. For example, in the contemporary system, the writing 
of 10,100 (item M1b) has a modeled difficulty of − 2.599, while in the Chinese system, the writing of 6789 (item H1c) 
is − 1.502 (about 1 logit difference). The gap is even more pronounced in moving from the rod number system to 
the contemporary system, where the modeled difficulty of writing the number 306 (item H2d) is 0.069 (2 logit dif-
ference). There is thus a shift in the level of cognitive difficulty introduced by the historical content, as presumed by 
Agterberg et al. [68] and objectified in this study.

Fig. 2  Tasks difficulty vs 
mathematical learnings in 
history-based tasks
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6  Conclusion

This paper explored how an activity involving the history of mathematics is relevant for learning. In relation to existing 
classroom practices or those suggested by textbooks and official instructions, the aim was to know precisely what this 
type of activity allows students to learn. Different statistical analyses on data collected from 108 students revealed that 
the history-inspired items worked together with some regular mathematics items but not others. Thus, the ancient 
Chinese numeration allowed work on the different ranks in the writing of numbers and on the role of groupings by 10 
in the decimal systems. On the other hand, the introduction of new symbols in this ancient numeration did not seem to 
be associated with modes of graphic representation of numbers such as graduated axes or colored parts for fractions. 
The items were therefore filtered according to their consistency for the whole test and to this grouping to a precise 
didactic objective. The tasks proposed in the historical part of the activity were of various difficulties and fit well within 
the ordinary mathematical tasks. These two aspects justify the relevance of the history approach in a school context. In 
all analyses, I stayed as close to the statistical model as possible. The value of this method is to draw conclusions that are 
as independent as possible of a particular implementation. The levels of difficulty of the various tasks and the learning 
objectives are then ensured by the model and not by particular empirical values or subjective analyses. One can therefore 
be more confident in the fact that the proposed activity, and probably others built on the same model, will be as relevant 
and precisely focused, regardless of the context.

Acknowledgements Not applicable.

Author contributions This work was conducted by a sole author.

Funding Institut National Supérieur du Professorat et de l’Éducation de l’académie de Lille—Hauts-de-France—France

Availability of data and materials The dataset supporting the conclusions of this article is available in the zenedo.org repository, https:// doi. 
org/ 10. 5281/ zenodo. 63929 84. The activity sheet and the pre-test-post-test worksheets are available upon request to the author.

Declarations 

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Hocquenghem ML, Missenard C, Missenard D, Monnet F, Serfati AM, Tardary G. Histoire des mathématiques pour les collèges. IREM de 
Paris 7. 1982.

 2. Moyon M, Tournès D. Passerelles : enseigner les mathématiques par leur histoire au cycle 3. ARPEME. 2018.
 3. Ministry of Education. Bulletin Officiel n°31, 30 juillet 2020. 2020. www. educa tion. gouv. fr/ bo/ 20/ Hebdo 31/ MENE2 01871 4A. htm Accessed 

21 Jan 2022.
 4. Bartolini Bussi MGB, Sun XH. Building the foundation: Whole numbers in the primary grades. The 23rd ICMI Study. Springer. 2018. https:// 

doi. org/ 10. 1007/ 978-3- 319- 63555-2.
 5. Chesné JF, Fischer JP. Les acquis des élèves dans le domaine des nombres et du calcul à l’école primaire. Rapport pour la conférence de 

consensus Nombres et opérations : premiers apprentissages à l’école primaire. CNESCO. 2015. www. cnesco. fr/ fr/ numer ation/ Accessed 
21 Jan 2022.

 6. Fauvel J, Van Maanen J. History in mathematics education. Kluwer Academic Publishers. 2000. https:// doi. org/ 10. 1007/0- 306- 47220-1.
 7. Clark KM, Kjeldsen TH, Schorcht S, Tzanakis C. Mathematics, education and history: towards a harmonious partnership. Springer Interna-

tional Publishing. 2018. https:// doi. org/ 10. 1007/ 978-3- 319- 73924-3.

https://doi.org/10.5281/zenodo.6392984
https://doi.org/10.5281/zenodo.6392984
http://creativecommons.org/licenses/by/4.0/
http://www.education.gouv.fr/bo/20/Hebdo31/MENE2018714A.htm
https://doi.org/10.1007/978-3-319-63555-2
https://doi.org/10.1007/978-3-319-63555-2
http://www.cnesco.fr/fr/numeration/
https://doi.org/10.1007/0-306-47220-1
https://doi.org/10.1007/978-3-319-73924-3


Vol.:(0123456789)

Discover Education            (2022) 1:10  | https://doi.org/10.1007/s44217-022-00010-1 Research

1 3

 8. Jankvist UT. A categorization of the “whys” and “hows” of using history in mathematics education. Educ Stud Math. 2009;71(3):235–61. 
https:// doi. org/ 10. 1007/ s10649- 008- 9174-9.

 9. Barbin E, Tzanakis C. History of Mathematics and Education. In: Lerman S (ed), Encyclopedia of Mathematics Education. New York: Springer. 
2020. p. 333–42.

 10. de Varent C. Experimentation on the Effects of Mathematical Diversity. In: Clark KM, Kjeldsen TH, Schorcht S, Tzanakis C, eds. Mathematics, 
education and history: towards a harmonious partnership, Berlin: Springer. 2018. p. 255–281.

 11. De Vittori T, Leroy A. Travailler la numération décimale avec les quipus incas : bienfaits et limites autour d’une expérience en classe de 
sixième. Repères IREM. 2017;107:21–44.

 12. De Vittori T, Visentin MP. Supports historiques et enseignement des mathématiques : sur le rôle de l’imagination. Grand N. 2021;108:85–110.
 13. De Vittori T. On the role of imagination in the use of history in mathematics education. Int Electr J Math Educ, 2021; doi https:// doi. org/ 

10. 29333/ iejme/ 11296
 14. Houdement C, Tempier F. Understanding place value with numeration units. ZDM Mathematics Education, 2019;51(1):25–37. https:// doi. 

org/ 10. 1007/ s11858- 018- 0985-6 https:// hal. archi ves- ouver tes. fr/ hal- 02081 109
 15. Fuson KC. Conceptual structures for multiunit numbers: Implications for learning and teaching multidigit addition, subtraction, and place 

value. Cogn Instr. 1990;7(4):343–403. https:// doi. org/ 10. 1207/ s1532 690xc i0704_4.
 16. Houdement C, Chambris C. Why and how to introduce numbers units in 1st and 2nd grades. In: Ubuz B, Haser Ç, Mariotti MA, eds. Pro-

ceedings of the Eight Congress of the European Mathematical Society for Research in Mathematics Education. Antalya, Turkey. 2013. p. 
313–22. https:// hal. archi ves- ouver tes. fr/ hal- 02269 013

 17. Chambris C. Relations entre les grandeurs et les nombres dans les mathématiques de l’école primaire. Évolution de l’enseignement 
au cours du 20e siècle. Connaissances des élèves actuels. Université Paris Diderot, Thesis. 2008. https:// tel. archi ves- ouver tes. fr/ tel- 
00338 665/ fr/

 18. Chambris C. The influence of theoretical mathematical foundations on teaching and learning: a case study of whole numbers in 
elementary school. Educ Stud Math. 2018;97(2):185–207. https:// doi. org/ 10. 1007/ s10649- 017- 9790-3.

 19. Tempier F. La numération décimale de position à l’école primaire. Une ingénierie didactique pour le développement d’une ressource. 
Université Paris Diderot, Thesis. 2013. https:// tel. archi ves- ouver tes. fr/ tel- 00921 691

 20. Tempier F. Composer et décomposer : un révélateur de la compréhension de la numération chez les élèves. Grand N. 2016;98:67–90. 
https:// hal. archi ves- ouver tes. fr/ hal- 01724 732

 21. Tempier F. New perspectives for didactical engineering An example for the development of a resource for teaching decimal number 
system. J Math Teacher Educ, 2016;19(23):261–276.

 22. Chambris C, Tempier F. Dealing with large numbers: What is important for students and teachers to know? In: Dooley T, Gueudet G. 
Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education. Dublin, Ireland: DCU Institute 
of Education and ERME. 2017. p. 245–52. https:// hal. archi ves- ouver tes. fr/ hal- 01849 570

 23. Chambris C, Tempier F, Allard C. Un regard sur les nombres à la transition école-collège. Repères IREM, 2017;108:63–91. https:// hal. 
archi ves- ouver tes. fr/ hal- 01724 757

 24. Barr DC. A comparison of three methods of introducing two-digit numeration. J Res Math Educ. 1978;9(1):33–43. https:// doi. org/ 10. 
5951/ jrese mathe duc.9. 1. 0033.

 25. Thomas N. The development of structure in the number system. In: Hoines MJ, Fuglestad AB. 28th Conference of the International 
Group for the Psychology of Mathematics Education. Bergen University College Press. 2004. p. 305–12. https:// eric. ed. gov/? id= ED489 
656

 26. Bednarz N, Janvier B. The understanding of numeration in primary school. Educ Stud Math. 1982;13(1):33–57. https:// doi. org/ 10. 1007/ 
BF003 05497.

 27. Baturo A. Construction of a numeration model: A theoretical analysis. In: Bana J, & Chapman A. Proceedings 23rd Annual Conference of 
the Mathematics Education Research Group of Australasia. 2000. pp. 95–103. http:// eprin ts. qut. edu. au/ 8387/

 28. Ministry of Education. Enseignement du calcul : un enjeu majeur pour la maîtrise des principaux éléments de mathématiques à l’école 
primaire. Bulletin Officiel spécial n°3 du 5 avril 2018. 2018. www. educa tion. gouv. fr/ bo/ 18/ Speci al3/ MENE1 80904 2N. htm. Accessed 21 
Jan 2022.

 29. CNESCO. Nombres et calculs au primaire. Recommandations du jury de la conférence. 2015. www. cnesco. fr/ fr/ numer ation/ Accessed 21 
Jan 2021.

 30. Bachelard G. La formation de l’esprit scientifique. Vrin; 1938.
 31. Brousseau G. Theory of didactical situations in mathematics (Edited and translated by Balacheff N, Cooper M, Sutherland R, Warfield V). 

Springer. 2002. https:// doi. org/ 10. 1007/0- 306- 47211-2.
 32. Brousseau G. Théorie des Situations Didactiques. New York: Lapensée Sauvage; 1998.
 33. Anicotte R. Le livre sur les calculs effectués avec des bâtonnets : Un manuscrit du -IIe siècle excavé à Zhangjiashan. Presses de l’Inalco; 

2019. https:// doi. org/ 10. 4000/ books. press esina lco. 18815
 34. Eberhard‐Bréard A. Mathematics in China. In: Selin H. (eds) Encyclopaedia of the History of Science, Technology, and Medicine in Non-

Western Cultures. Springer; 2008. https:// doi. org/ 10. 1007/ 978-1- 4020- 4425-0_ 9453
 35. Takenouchi O. The mathematical works of Takebe Katahiro. In: Furinghetti F, Kaijser S, Tzanakis C. Proceedings HPM 2004 - ESU 4 (Uppsala), 

Rev. edition. 2006. https:// www. mathu nion. org/ filea dmin/ ICMI/ docs/ HPM20 04Pro ceedi ngs. pdf
 36. Fasanelli F, Fauvel J. History of the international study group on the relation between the history and pedagogy of mathematics: the first 

25 years 1976–2000. In: Furinghetti F, Kaijser S, Tzanakis C. Proceedings of HPM 2004 & ESU 4. Iraklion: University of Crete. 2006. https:// 
www. mathu nion. org/ filea dmin/ ICMI/ docs/ HPM20 04Pro ceedi ngs. pdf.

 37. Schubring G. Ontogeny and philogeny. Categories for cognitive development. In: Furinghetti F, Kaijser S, Tzanakis C. Proceedings of HPM 
2004 & ESU 4. Iraklion: University of Crete. 2006. p. 329–39. https:// www. mathu nion. org/ filea dmin/ ICMI/ docs/ HPM20 04Pro ceedi ngs. pdf

 38. Schubring G. Conception for relating the evolution of mathematics concepts to mathematics learning – epistemology, history, and 
semiotics interactive. Educ Stud Math. 2011;77(1):79–104.

https://doi.org/10.1007/s10649-008-9174-9
https://doi.org/10.29333/iejme/11296
https://doi.org/10.29333/iejme/11296
https://doi.org/10.1007/s11858-018-0985-6
https://doi.org/10.1007/s11858-018-0985-6
https://hal.archives-ouvertes.fr/hal-02081109
https://doi.org/10.1207/s1532690xci0704_4
https://hal.archives-ouvertes.fr/hal-02269013
https://tel.archives-ouvertes.fr/tel-00338665/fr/
https://tel.archives-ouvertes.fr/tel-00338665/fr/
https://doi.org/10.1007/s10649-017-9790-3
https://tel.archives-ouvertes.fr/tel-00921691
https://hal.archives-ouvertes.fr/hal-01724732
https://hal.archives-ouvertes.fr/hal-01849570
https://hal.archives-ouvertes.fr/hal-01724757
https://hal.archives-ouvertes.fr/hal-01724757
https://doi.org/10.5951/jresematheduc.9.1.0033
https://doi.org/10.5951/jresematheduc.9.1.0033
https://eric.ed.gov/?id=ED489656
https://eric.ed.gov/?id=ED489656
https://doi.org/10.1007/BF00305497
https://doi.org/10.1007/BF00305497
http://eprints.qut.edu.au/8387/
http://www.education.gouv.fr/bo/18/Special3/MENE1809042N.htm
http://www.cnesco.fr/fr/numeration/
https://doi.org/10.1007/0-306-47211-2
https://doi.org/10.4000/books.pressesinalco.18815
https://doi.org/10.1007/978-1-4020-4425-0_9453
https://www.mathunion.org/fileadmin/ICMI/docs/HPM2004Proceedings.pdf
https://www.mathunion.org/fileadmin/ICMI/docs/HPM2004Proceedings.pdf.
https://www.mathunion.org/fileadmin/ICMI/docs/HPM2004Proceedings.pdf.
https://www.mathunion.org/fileadmin/ICMI/docs/HPM2004Proceedings.pdf


Vol:.(1234567890)

Research Discover Education            (2022) 1:10  | https://doi.org/10.1007/s44217-022-00010-1

1 3

 39. Furinghetti F, Radford L. Contrasts and oblique connections between historical conceptual developments and classroom learning in 
mathematics. In: English L, Bartolini Bussi M, Jones GA, Lesh RA, Sriraman B, Tirosh D, editors. Handbook of international research in 
mathematics education. 2nd ed. New York: Routledge; 2008. p. 630–59.

 40. Clark C, Kjeldsen TH, Schorcht S, Tzanakis C, Wang X. History of mathematics in mathematics education: Recent developments. In: Radford 
L, Furinghetti F, Hausberger T. Proceedings of the 2016 ICME Satellite Meeting – HPM 2016. IREM de Montpelier. 2016. p. 135–179. https:// 
hal. archi ves- ouver tes. fr/ HPM20 16

 41. Barbin E, Guillemette D, Tzanakis C. History of mathematics and education. In Lerman S. Encyclopedia of mathematics education. Springer. 
2020. https:// doi. org/ 10. 1007/ 978-3- 030- 15789-0_ 69

 42. Marshall GL. Using history of mathematics to improve secondary students’ attitudes towards mathematics. Illinois State University, 
Bloomington−Normal, Illinois. Thesis. 2000. https:// www. proqu est. com/ openv iew/ c6fc7 93a6d 484c5 344bc 6e0c9 ada4e 3c/1

 43. Bütüner S. Impact of Using History of Mathematics on Students Mathematics Attitude: A Meta-Analysis Study. Eur J Sci Math Educ 
2015;3(4):337–349. Doi https:// doi. org/ 10. 30935/ scima th/ 9442

 44. Bråting K, Pejlare J. On the relations between historical epistemology and students’ conceptual developments in mathematics. Educ Stud 
Math. 2015;89(2):251–65. https:// doi. org/ 10. 1007/ s10649- 015- 9600-8.

 45. Jankvist UT. A first attempt to identify and classify empirical studies on ’History in Mathematics Education’. In: Sriraman B. Crossroads in the 
History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast Monographs 12. Information Age Publishing. 
2012. p. 295–332. https:// eric. ed. gov/? id= ED531 687

 46. Jankvist UT. Changing students’ images of “mathematics as a discipline.” J Math Behav. 2015;38:41–56. https:// doi. org/ 10. 1016/j. jmathb. 
2015. 02. 002.

 47. Lim SY, Chapman E. Effects of using history as a tool to teach mathematics on students’ attitudes, anxiety, motivation and achievement 
in grade 11 classrooms. Educ Stud Math. 2015;90(2):189–212. https:// doi. org/ 10. 1007/ s10649- 015- 9620-4.

 48. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. 
www.R- proje ct. org

 49. Revelle W. psych: Procedures for personality and psychological research, Northwestern University, Evanston, Illinois, USA, Version = 2.1.6. 
2021. https:// cran.r- proje ct. org/ web/ packa ges/ psych/

 50. Rizopoulos D. ltm: An R package for latent variable modelling and item response theory analyses. J Stat Softw. 2006;17(5):1–25. www. 
jstat soft. org/ v17/ i05/

 51. Béland S, Magis D, Raîche G. Estimation des paramètres d’item et de sujet à partir du modèle de Rasch : une étude comparative des 
logiciels BILOG-MG, ICL et R. Mesure et évaluation en éducation. 2013;36(1):83–110. https:// doi. org/ 10. 7202/ 10244 66ar.

 52. Kim T, Paek I. A comparison of item parameter and standard error recovery across different R packages for popular unidimensional IRT 
models. In: van der Ark LA, Wiberg M, Culpepper SA, Douglas JA, Wang WC. Quantitative Psychology: The 81st Annual Meeting of the 
Psychometric Society, Asheville, North Carolina, 2016. Springer; 2017. https:// doi. org/ 10. 1007/ 978-3- 319- 56294-0

 53. Hancock GR, Stapleton LM, Mueller RO. The reviewer’s guide to quantitative methods in the social sciences (Second Edition). Taylor & 
Francis Group: Routledge; 2019.

 54. Bodner GM. Statistical analysis of multiple-choice exams. J Chem Educ. 1980;57(3):188–90. https:// doi. org/ 10. 1021/ ed057 p188.
 55. Di Battista D, Kurzawa L. Examination of the quality of multiple-choice items on classroom tests. Can J Scholarship Teach Learn, 2011;2:2.
 56. Slepkov AD, Van Bussel ML, Fitze KM, Burr WS. A baseline for multiple-choice testing in the university classroom. SAGE Open. 2021. https:// 

doi. org/ 10. 1177/ 21582 44021 10168 38.
 57. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16:297–334. https:// doi. org/ 10. 1007/ BF023 10555.
 58. Kaiser HF. An index of factorial simplicity. Psychometrika. 1974;39:31–6. https:// doi. org/ 10. 1007/ BF022 91575.
 59. Kaiser HF, Rice J. Little Jiffy, Mark IV. Educ Psychol Measur. 1974;34(1):111–7. https:// doi. org/ 10. 1177/ 00131 64474 03400 115.
 60. Cliff N, Pennell R. The influence of communality, factor strength, and loadings on the sampling characteristics of factor loadings. Psycho-

metrika. 1967;32(3):309–26. https:// doi. org/ 10. 1007/ BF022 89594.
 61. Gorsuch RL. Factor analysis. Hillsdale: L. Erlbaum Associates; 1983.
 62. Slocum SL. Assessing unidimensionality of psychological scales: using individual and integrative criteria from factor analysis. University 

of British Columbia, Thesis. 2005. http://doi.org/https:// doi. org/ 10. 14288/1. 00544 14
 63. Rasch G. Probabilistic models for some intelligence and attainment tests. Copenhagen: Denmarks Paedagogiske Institut; 1960.
 64. Guillemette D. History of mathematics in secondary school teachers’ training: towards a nonviolent mathematics education. Educ Stud 

Math. 2017;96(1):349–65. https:// doi. org/ 10. 1007/ s10649- 017- 9774-3.
 65. De Vittori T. Les tâches des élèves dans une activité mathématique à dimension historique. Petit x. 2015;97:5–26. https:// hal. archi ves- 

ouver tes. fr/ hal- 01207 488
 66. Tzanakis C, Arcavi A, Correia de C, Isoda M, Lit CK, Niss M, PitombeiradeCarvalho J, Rodriguez M, Siu MK. Integrating history of mathemat-

ics in the classroom: an analytic survey. In: Fauvel J, van Maanen J (Eds.), ICMI Study (pp. 201–240). Dordrecht: Kluwer;2000.
 67. Siu MK. No, I don’t use history of mathematics in my classroom. Why? In: Furinghetti F, Kaisjer S, Tzanakis C (Eds). Proceedings of HPM 

2004 & ESU 4. Iraklion: University of Crete; 2006. p. 268–77.
 68. Agterberg DA, Oostdam RJ, Janssen FJJM. From speck to story: relating history of mathematics to the cognitive demand level of tasks. 

Educ Stud Math. 2021. https:// doi. org/ 10. 1007/ s10649- 021- 10093-6.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://hal.archives-ouvertes.fr/HPM2016
https://hal.archives-ouvertes.fr/HPM2016
https://doi.org/10.1007/978-3-030-15789-0_69
https://www.proquest.com/openview/c6fc793a6d484c5344bc6e0c9ada4e3c/1
https://doi.org/10.30935/scimath/9442
https://doi.org/10.1007/s10649-015-9600-8
https://eric.ed.gov/?id=ED531687
https://doi.org/10.1016/j.jmathb.2015.02.002
https://doi.org/10.1016/j.jmathb.2015.02.002
https://doi.org/10.1007/s10649-015-9620-4
http://www.R-project.org
https://cran.r-project.org/web/packages/psych/
http://www.jstatsoft.org/v17/i05/
http://www.jstatsoft.org/v17/i05/
https://doi.org/10.7202/1024466ar
https://doi.org/10.1007/978-3-319-56294-0
https://doi.org/10.1021/ed057p188
https://doi.org/10.1177/21582440211016838
https://doi.org/10.1177/21582440211016838
https://doi.org/10.1007/BF02310555
https://doi.org/10.1007/BF02291575
https://doi.org/10.1177/001316447403400115
https://doi.org/10.1007/BF02289594
https://doi.org/10.14288/1.0054414
https://doi.org/10.1007/s10649-017-9774-3
https://hal.archives-ouvertes.fr/hal-01207488
https://hal.archives-ouvertes.fr/hal-01207488
https://doi.org/10.1007/s10649-021-10093-6

	Relevance of a history-based activity for mathematics learning
	Abstract
	1 Introduction
	2 Didactical and historical frameworks
	2.1 Numeral system and computation
	2.2 A Chinese ancient numeral system
	2.3 Research question

	3 Data and methods
	3.1 Students’ worksheets and activity
	3.1.1 First worksheet: ordinary mathematics
	3.1.2 The activity on ancient Chinese numeral system
	3.1.3 The second worksheet: evaluation

	3.2 Data and processing

	4 Results
	4.1 Items reliability and filtering
	4.2 Item content specificity
	4.3 Item content specificity

	5 Discussion
	6 Conclusion
	Acknowledgements 
	References




