N
N

N

HAL

open science

A Preliminary Study of Rhythm and Speed in the
Maven Ecosystem

Damien Jaime, Joyce El Haddad, Pascal Poizat

» To cite this version:

Damien Jaime, Joyce El Haddad, Pascal Poizat. A Preliminary Study of Rhythm and Speed in
the Maven Ecosystem. 21st Belgium-Netherlands Software Evolution Workshop, Sep 2022, Mons,

Belgium. hal-03725099

HAL Id: hal-03725099
https://hal.science/hal-03725099
Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03725099
https://hal.archives-ouvertes.fr

CEUR-WS.org/Vol-3245/paper3.pdf

A preliminary study of rhythm and speed in the
maven ecosystem

Damien Jaime’?, Joyce El Haddad® and Pascal Poizat™*

ISorbonne Université, CNRS, LIP6, F-75005, Paris, France
2SAP France S.A, F-92300, Levallois-Perret, France
SUniversité Paris Dauphine-PSL, CNRS, LAMSADE, F-75016, Paris, France

*Université Paris Lumiéres, Université Paris Nanterre, F-92000, Nanterre, France

Abstract

The analysis and the evolution of dependencies are central issues in software development. They can be
studied from an ego-centric perspective, i.e., focusing on a given software artifact and its dependencies.
But the scope can also be enlarged to take into account the whole context in which these artifacts and
their dependencies evolve, i.e., ecosystems. Our general objective is to study how the knowledge about
these ecosystems can guide developers in evolving software artifacts and their dependencies. In this
paper we perform a preliminary study of the Maven ecosystem with reference to two metrics related to
software artifact releases, namely rhythm and speed.

Keywords

software evolution, software ecosystem, dependency management, releases, rhythm, speed, Maven

1. Introduction

Using dependencies to third parties is popular because it reduces development time and improves
software quality [1]. Yet, this comes at a cost as these dependencies increase the architectural
complexity and maintenance costs.

Raemaekers et al. [2] studied in 2012 third-party stability through version analysis, and
concluded that depending on old third-party versions is a "maintenance debt". Updating depen-
dencies may however lead to a dilemma, since it may cause breaking changes [3]. A trade-off
has then to be found in dependency management between keeping dependencies as is, and, e.g.,
missing security patches, or updating them, and possibly being hit by new bugs.

The study of dependencies may be achieved with a single system (ego-centric) perspective, or
with an ecosystem one. The former may increase the quality of the system of interest, through
the analysis of dependencies within the system (endo-dependencies) or with third parties (exo-
dependencies) [4]. The latter paves the way to the empirical study of dependencies and, possibly,
allows one to develop concepts and development practices based on ecosystem-wide knowledge.

BENEVOL’22: The 21st Belgium-Netherlands Software Evolution Workshop, 12-13 September 2022, Mons, Belgium
& damien.jaime@lip6.fr (D. Jaime); joyce.elhaddad@lamsade.dauphine.fr (J. El Haddad); pascal.poizat@lip6.fr
(P. Poizat)

&} https://lip6.fr/Damien.Jaime (D. Jaime); https://www.lamsade.dauphine.fr/~elhaddad (J. E1 Haddad);
https://lip6.fr/pascalpoizat (P. Poizat)

@ 0000-0002-7503-4606 (D. Jaime); 0000-0002-2709-2430 (J. E1 Haddad); 0000-0001-7979-9510 (P. Poizat)

© 2022 Copyright 2022 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

mailto:damien.jaime@lip6.fr
mailto:joyce.elhaddad@lamsade.dauphine.fr
mailto:pascal.poizat@lip6.fr
https://lip6.fr/Damien.Jaime
https://www.lamsade.dauphine.fr/~elhaddad
https://lip6.fr/pascalpoizat
https://orcid.org/0000-0002-7503-4606
https://orcid.org/0000-0002-2709-2430
https://orcid.org/0000-0001-7979-9510
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

In 2015, Cox et al. proposed a metric to measure the dependency "freshness" and applied it, for
a single third-party, on a whole ecosystem [5]. Thereafter, Gonzalez-Barahona et al. proposed
the "technical lag" concept, focusing on the relation to vulnerabilities and bugs [6, 7]. Since
2018, several authors have carried out studies concerning technical lag in ecosystems. This
has led to analyses for Linux distributions [8, 9], Docker Hub [10], package managers [11] and
more specifically for npm [12, 13, 14, 15]. In 2021, Soto-Valero et al. [16], presented the notion
of "bloated dependencies”, and analyzed their presence in the Maven ecosystem.

In this paper, alike the above-mentioned works, we take an ecosystem perspective on third-
party and dependency study. Working in the context of industrial applications with both Java
and Javascript dependencies, we decide to focus, first, on the Maven ecosystem, which has been
less studied than the npm one. While a snapshot of Maven Central is available for study [17],
dated 2018, Ochoa et al. have shown how knowledge and truths could change over a few
years [18]. As a consequence, we propose first a study of Maven in 2022, differences with 2018
being clear in Table 1.

We want to define metrics according to the evolution in time. These metrics are part of
a larger study related to the quality of dependencies in software ecosystems. The goal is to
make software safer and more maintainable by improving its structural quality. This paper
introduces two new metrics related to artifacts and releases in ecosystems, namely rhythm and
speed. We will therefore introduce these terms first and then review some possible applications
of them. We believe that these metrics will help to solve the trade-off between updating or
not a dependency [19] by tracking the dynamics of a package or ecosystem over time (e.g.
accelerating releases may indicate a need to update the dependency). The research questions
that these metrics enable us to study, and the related analyses, are presented in Sections 4 and 5.
Experimental data and our Python Jupyter notebooks are available at [20].

2. Metrics for the Ecosystem Analysis

A software artifact release (or release for short) in the Maven ecosystem can be identified
by a triple x : y : 2, where x is the group id, y is the artifact id, and z is the version. An
artifact can indeed be denoted using only the first two parts of a release, i.e., x : y. Given a
release r, date(r) denotes its release date. Given two subsequent releases r;_1 = x:y:v;_1 and
r; = x:y:v; of an artifact, time(r;) denotes the number of days between the two releases, i.e.,
date(r;) —date(r;—1). When r; is the first release of an artifact, time(r;) is 0. We use [d1—d2] to
denote the time interval between d; and d2. We may use [0—d2] to denote time up to ds and [0—o0]
to denote the whole time. Given an artifact a and a time interval [d1 —da], releases|q,_4,)(a)
denotes the time-ordered sequence (71, ...,7;,...,r,) of releases of a in [d;—ds]. Finally, given
an ecosystem €, arti facts(e) denotes the set of artifacts in . We may now introduce our two
metrics: rhythm and speed.

Definition 1 (Rhythm). The release rhythm (or rhythm for short) of an artifact a over a time
interval [dy —da], denoted by Rq,_g,)(a), is given by the formula:

Rid-do) (@) = (time(r1), ..., time(r;), ..., time(ry,)) (1)

With (r1,...,7i,...,Tn) = releases|y_g,)(a).

Definition 2 (Speed). The average speed (or speed for short) of an artifact a over a time inter-
val [dy —ds], denoted by vy, _g4,)(a), is given by the formula:

[releases|q,_q,)(a)l

Vdy—d, (@) = (ds— o) (2)

where |s| denotes the size of sequence s. The speed is measured in releases per day (r/d).
Speed can be lifted up to ecosystems.

Definition 3 (Ecosystem Speed). The average speed (or speed for short) of an ecosystem € over
a time interval [dy —ds], denoted by V4,_g4,)(€), is given by the formula:

B Y acarti facts(c) |Teleasesq, —q,(a)]
Uldi-d,) (€) = Sartifacaly - — (3)
(d2 — dy) x |artifacts(e)]

One can note (i) that the speed of an artifact a is the speed of an ecosystem that is composed
only of a and (ii) that we also have:

Zaeartifacts(e) E[dlﬂiz} (a’)
lartifacts(€)|

(4)

Vldy—dy] (€)=

3. Presentation of the Datasets

In this section, we present the two datasets we use to perform the analysis of the Maven
ecosystem (see Tab. 1).

3.1. Maven Dependency Graph (MDG)

This dataset has been proposed by Benelallam et al. in [17]. It is a graph-based representation of
a snapshot of the Maven Central repository at September 6, 2018. Its vertices include for each
release its id, the packaging type (jar, war, ear), and the release date. Two kinds of edges are used:
one for the precedence relationship between releases (e.g., x:y:1.0.1 is next to x:y:1.0.0) and
one for the dependency relationship between artifact releases given a context (e.g., 1:y1:21
depends on x5 : 42 : 29 for the compiling context). As stated in [17] the data collection has been
achieved by "retrieving pom.xml files (at least one per artifact) from Maven Central and parsing
them to retrieve metadata".

Table 1

Descriptive statistics about the MDG (2018-09-06) and the MCI (2022-06-10) datasets.
Property MDG MCI Increase
Releases (unique x:y: z) 2,407,335 9,060,212 276%
Artifacts (unique z:y in x:y:2) 223,478 477,707 113%
Groups (unique z in z:y:2) 35,699 66,139 85%

Upgrades (release evolutions) 2,183,845 8,836,734 304%
Dependency relationships 9,715,669 - -

3.2. Maven Central Index extraction (MCI)

The MCl is available at Maven Central'. It contains all artifacts, updated weekly. We will use the
version at June 10*?, 2022. From the MCI we obtain a Lucene database using scripts available
at Maven Central and then we extract CSV files from it. These CSV files are available at [20].
As for the MDG, this dataset includes release ids and release dates. However, it does not (yet)
include dependency information.

It is interesting to see how the number of releases has grown in almost 4 years between the
MDG snapshot and the more recent MCI one. There is an important increase, which makes it
interesting to have recent data. We study the increase of ecosystem speed in Section 4.1, but it
would be interesting to study this behavior in more detail, especially by comparing it with npm
for example.

4. Dependency-independent Analysis

In this section, we study the Maven ecosystem independently of the dependencies between
releases. We wish to address two research questions :

« RQ1: How do rhythm and speed evolve over time in the Maven ecosystem?

« RQ2: Can important events in the life of an artifact be observed through the prism of
rhythm?

4.1. Analysis of the Maven ecosystem evolution

Table 1 shows an important increase in the number of releases between 2018 and 2022. This
raises the question of the evolution of rhythm between these two years.

To answer this question, we took the MCI dataset and computed the distribution of times
between releases (dtbr) respectively for all years up to 2018 and for all years up to 2022. For
this we used the the following function:

dtbr(i) = {time(r) | a € artifacts(e) A
r € releases;(a) N (5)
time(r) # 0}

where 7 is a date interval. This regroups all non-null times between releases for releases with
a date in the interval. Here, we use the [0 — 31/12/2018] and [0 — 31/12/2022] intervals and the
result is shown in Table 2.

We can consider that, regarding the date of the corresponding release, a release time around
Q1 is fast, around Q3 is slow, and around the median is medium compared to the ecosystem.
We can see that, within 4 years, the time between releases decreased which suggests an overall
acceleration.

Let us now study the general evolution of both rhythm and speed for all years between 2005
and 2022. We followed the same approach as before for aggregating the rhythm, this time

'https://maven.apache.org/repository/central-index.html

Table 2
Comparison of time between releases in days up to 2018 and up to 2022.

MCl up to 2018 MCI up to 2022

Medians 14.0 9.0
Means 43.9 35.6
Q1 4.0 2.0
Q3 43.0 32.0
Minimums 1 1
Maximums 101 77
Outlier maximums 4341 5206

focusing only on years of interest (instead of up-to), so given some year y we use Function (5)
with i = [01/01/y-31/12/y] (instead of [0-31/12/y]).

The result is given in Figure 1. Each box-plot corresponds to the aggregated rhythm for the
year of interest, while speed is computed using Formula 2 with yearly intervals. Note that 2022
is taken into account only until June, 10th,

We can observe an accelerating trend except for the period between 2009 and 2012 when there
is a deceleration. We can also distinguish different parts. There is an acceleration between 2005
and 2009, a deceleration between 2009 and 2012, a new acceleration between 2012 and 2019, and
finally a more important acceleration since 2019. It would be interesting to study the possible
causes of these variations (new Java or Maven release? COVID-19 emergence?). While this
preliminary study does not aim at finding causality relationships, these questions could be
addressed in a later study.

If we observe now the evolution of rhythm at the artifact level, we get the result presented
in Figure 2a. In this figure, we have computed the average time to release the z*" version of

§200 —— speed r0.025
@

© 150 10020 _
T z
g r0.015 =
é 100 E
E '0.010 %
@

a 20 I

a 0.005
E

= 0 r0.000

0506 07 0809 10 11 12 13 14 15 16 17 18 1920 21 22
year

Figure 1: Evolution of aggregated rhythm and speed in the Maven ecosystem between 2005 and 2022.

@

o
]
o

=]

o
=
w

time between releases (d)
5

time between releases (d)
=
o

20 5
. L| R -
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
releases releases
(a) all artifacts (b) only artifacts with more than 400 releases

h

Figure 2: Average time to release i'" versions.

artifacts, i.e., using the following formula:

> reaths (e) Lime(r)
= ’ 6
Fo®) == Jato(c,) ©
where z is the rank of the version (e.g., 4 means it is the fourth) and 2'"(e,z) =

UaEartifacts(E) TeleaseS[O—oo] (a) [l‘]
From the figure we can see, e.g., that on average the second release of an artifact takes about

85 days to release, while its 50 release takes only 20 days.

It seems that the more mature an artifact is, the more its rhythm tends to accelerate. But the
reality is more complex than that. It is important to distinguish several groups in the ecosystem
and to compare them independently. Indeed the artifacts with many releases have a different
rhythm than those with few releases, and the proportion of artifacts with 10 releases is not at
all the same as those with 400 releases.

Figure 2b, focuses only on the (931) artifacts with more than 400 releases. We can see that
they have immediately a very low time between releases. It would be interesting to define
groups of artifacts in the ecosystem to be able to associate a given artifact to the right group
and compare it (based on rhythm and speed) more precisely.

4.2. Analysis of the evolution of an artifact: log4j-core

We will now see if rhythm allows us to observe changes in an artifact’s life. Each artifact has
a different rhythm, so to know if a release was faster than the others we have to perform an
analysis at the artifact level.

Take the example of Apache Log4j2 (more precisely, artifact org.apache.logging.log4j:log4;j-
core), the most used logger library in the Java world. On December 9**, 2021, a level 10 security
fault (CVE-2021-44228) was discovered which impacted a large number of artifacts depending
on it. The rhythm distribution of Log4j2 before the issue discovery (last version on March 7",
2021) was medians: 63.0, Q1: 26.5, Q3: 124.0, which position it as a slow library compared to
the Maven ecosystem (see Sect. 4.1). At the time of writing this paper, the last version is dated
February 23" 2022, and the rhythm distribution is medians: 48.5, Q1: 19.0, Q3: 114.2. We can
see that the security issue has had an impact.

The blue plot in Figure 3 shows the rhythm of the project since 2020. If we focus on
[07/03/2021—23/02/2022], we get [277,4, 1,4, 2,1, 6, 1, 1, 56]. We observe a sharp drop on

—— Log4j2 rhythm
250 | —— Dependencies average rhythm
—— Dependencies releases number
------ Log4] shell CVE

200

100

time between releases (d)
releases number per month

AL

Figure 3: Evolution of the Log4j2 rhythm and relation to its dependents.

the same day as the issue was discovered. Speed had already suffered decelerations in the past,
but this one is distinguished by the fact that the drop is vertical and is followed by a plateau. We
can therefore say that there is a strong reactivity, a period of stabilization and then a beginning
of a return to normal.

Rhythm allowed us to observe a change in the life of Log4j2, through the imprint it had. Yet,
it would be interesting to analyze the whole Maven ecosystem to search for such patterns and
see, e.g., if there is a correlation between CVEs and rhythm changes.

5. Dependency-aware analysis

In this section, we bring dependencies into the big picture. We wish to address one research
question:

« RQ3: Does the rhythm of an artifact have an impact on the rhythm of artifacts that
depend on it?

Since we have seen in Section 4.2 how the rhythm of Log4j2 evolved concerning CVE-2021-
44228, we will address this question on this artifact.

To recover dependency information, we searched, in the Maven Repositoryz, for the uses of
the last version of log4j-core before the discovery of the issue, namely version 2.14.1 released
on March 12, 2021. Not having found either an API or export mechanisms for this, we created
a script for browsing and parsing the Web pages to find the dependent artifacts. This gave us
500 different releases, for 149 distinct artifacts. The data is, again, available at [20].

In Figure 3, we have seen that the blue plot is the Log4j2 rhythm from 2020 to 2022. The
red plot shows the average rhythm of the Log4j2 dependents on the same period. Finally, the

*https://mvnrepository.com/

green plot shows the total number of releases of these dependents. All three plots are computed
monthly.

We notice an increase in the number of releases of dependents in the month of the CVE-2021-
44228 discovery. In December 2021, 224 artifacts have made a release, the release time median
is 5 days, with a minimum value at 1 day and a maximum value at 594 days. Yet, the average
rhythm of these dependents does not show a significant variation. Possibly, artifacts that had
not been released for a long time and those that had just been released compensate for each
other. Thus, we can conclude that the average rhythm is not a tool precise enough to study the
effect of an artifact on its dependents.

6. Limitations & Threats to Validity

First of all, our analyses are based on extractions from Maven Central. Results may therefore
not apply to all of the Maven or Java ecosystem. Broadly, we need to study if our concepts are
amenable to software ecosystems in general.

We made artifact-centered experiments on Log4j2, with time intervals centered around the
CVE-2021-44228 discovery. This required to use the MCI dataset and own-made dependency
extraction. To generalize these experiments, we would have either to use the MDG dataset and
limit to 2018, update MDG, or add dependencies in our MCI extraction.

In experiments based on the time between release values or rhythm, we do not take into
account releases with a time value of 0 (any 7 such that time(r) = 0). This occurs for the first
releases of artifacts or if an artifact has several releases on the same day. We should study the
impact of this choice.

Finally, a need for categorization arises when comparing a specific artifact to the ecosystem.
This is due to possible heterogeneity between artifacts (we have seen an example of this in
Fig. 2a and 2b). It would be interesting to use labeling information (e.g., the Maven categories of
artifacts) or to use clustering to be able to relate a given artifact to close ones.

7. Conclusion & Perspectives

In this paper, we have studied the rhythm and speed of Maven Central until June 10*?, 2022.
We have explored possible applications of these metrics. It will be necessary to deepen their
applications, but we believe that they can be useful in the management and analysis of depen-
dencies. We have observed a general trend toward a decrease in time between releases, and
accordingly an increase in speed, even as the number of artifacts in the ecosystem increases.
We were also able to observe a correlation between the number of releases of an artifact and its
rhythm. Finally, we have seen that an event in the life of an artifact could have a visible imprint
on its rhythm and that we could observe a change of behavior in the artifacts depending on it,
even if not on their rhythm.

This preliminary study paves the way to further analyses such as clustering based on rhythm
and speed. We have first results showing a possible relation between the number of dependents
of an artifact and its speed. We have not been able to talk about it in this paper, due to room
running short, but our experimentation on the MDG dataset is available at [20].

A first perspective is to study how the knowledge of the rhythm and speed of one’s system
dependencies, including relative to the ecosystem, may help in managing these dependencies, e.g.,
prioritizing upgrades or selecting alternatives. Another perspective is related to the comparison
of the Maven and npm ecosystems, first from the rhythm and speed perspective. We also want
to extend the MDG dataset dependency graph model (or define our own) in three directions.
First, we want to support metrics related to aging dependencies, such as freshness [5], and study
how they compose transitively (along dependencies of dependencies). The second extension is
concerned with the expressiveness of dependency requirements. Maven for example supports
version ranges. Multiple dependency versions are also possible up to transitivity and Maven has
its own resolution algorithm for this. A consequence is that the effective dependency used at
some date d; may be different from the one used at d», even if the POM file has not changed in
between. A dependency graph should support expressive dependency constraints rather than
hardcoded dependency relations as in the MDG dataset, and realization of constraints (fixing
the version to be used) only when needed. The last extension is to include other parts of the
ecosystem in its dependency graph. Examples include the compiler, virtual machine, and build
system versions, which have an impact, e.g., on the success of a system build.

Acknowledgments

This work is funded by an ANRT PhD grant, number 2021/0047.

References

[1] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, E. Shihab, Why do developers use
trivial packages? An empirical case study on npm, in: Proc. of the Joint Meeting on
Foundations of Software Engineering, 2017, pp. 385-395.

[2] S.Raemaekers, A. van Deursen, J. Visser, Measuring software library stability through his-
torical version analysis, in: Proc. of the International Conference on Software Maintenance,
2012, pp. 378-387.

[3] S. Raemaekers, A. van Deursen, J. Visser, Semantic versioning and impact of breaking
changes in the maven repository, Journal of Systems and Software 129 (2017) 140-158.

[4] V. Musco, M. Monperrus, P. Preux, A generative model of software dependency graphs
to better understand software evolution, arXiv preprint (2014). doi:10.48550/ARXIV.
1410.79211.

[5] J. Cox, E. Bouwers, M. van Eekelen, J. Visser, Measuring dependency freshness in software
systems, in: Proc. of the International Conference on Software Engineering, 2015, pp.
109-118.

[6] J. M. Gonzalez-Barahona, P. Sherwood, G. Robles, D. Izquierdo, Technical lag in soft-
ware compilations: Measuring how outdated a software deployment is, in: Proc. of the
International Conference on Open Source Systems: Towards Robust Practices, 2017, pp.
182-192.

[7] J. M. Gonzalez-Barahona, Characterizing outdateness with technical lag: An exploratory

http://dx.doi.org/10.48550/ARXIV.1410.79211
http://dx.doi.org/10.48550/ARXIV.1410.79211

study, in: Proc. of the International Conference on Software Engineering, Workshops,
2020, pp. 735-741.

[8] D.Legay, A. Decan, T. Mens, On package freshness in linux distributions, 2020. doi: 10 .
48550/ARXIV.2007.16123.

[9] D. Legay, A. Decan, T. Mens, A quantitative assessment of package freshness in linux
distributions, 2021. doi:10.48550/ARXIV.2103.09066.

[10] A. Zerouali, T. Mens, A. Decan, J. M. Gonzélez-Barahona, G. Robles, A multi-dimensional
analysis of technical lag in debian-based docker images, Empirical Software Engineering
26 (2021) 1-45.

[11]]J. Stringer, A. Tahir, K. Blincoe, J. Dietrich, Technical lag of dependencies in major package
managers, in: Proc. of the Asia-Pacific Software Engineering Conference, 2020, pp. 228-237.

[12] A.Decan, T. Mens, E. Constantinou, On the evolution of technical lag in the npm package
dependency network, in: Proc. of the International Conference on Software Maintenance
and Evolution, 2018, pp. 404-414.

[13] A. Zerouali, E. Constantinou, T. Mens, G. Robles, J. M. Gonzalez-Barahona, An empirical
analysis of technical lag in npm package dependencies, in: Proc. of the International
Conference on Software Reuse, 2018, pp. 95-110.

[14] A. Zerouali, T. Mens, J. M. Gonzalez-Barahona, A. Decan, E. Constantinou, G. Robles,
A formal framework for measuring technical lag in component repositories - and its
application to npm, Journal of Software: Evolution and Process 31 (2019) e2157.

[15] F.R. Cogo, G. A. Oliva, A. E. Hassan, An empirical study of dependency downgrades in
the npm ecosystem, IEEE Transactions on Software Engineering 47 (2021) 2457-2470.

[16] C. Soto-Valero, N. Harrand, M. Monperrus, B. Baudry, A comprehensive study of bloated
dependencies in the maven ecosystem, Empirical Software Engineering 26 (2021) 1-44.

[17] A.Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, O. Barais, The maven dependency
graph: A temporal graph-based representation of maven central, in: Proc. of the Interna-
tional Conference on Mining Software Repositories, 2019, pp. 344-348.

[18] L. Ochoa, T. Degueule, J.-R. Falleri, J. Vinju, Breaking bad? Semantic versioning and impact
of breaking changes in maven central: An external and differentiated replication study,
Empirical Software Engineering 27 (2022) 1-42.

[19] D. Meil, Log4j and the thankless high-risk task of managing software
component upgrades, 2022. URL: https://cacm.acm.org/blogs/blog-cacm/
257897-log4j-and-the-thankless-high-risk-task-of-managing-software-component-upgrades/
fulltext.

[20] D. Jaime,]. El Haddad, P. Poizat, Data and notebooks for the "A Preliminary Study
of Rhythm and Speed in the Maven Ecosystem” paper., 2022. URL: https://github.com/
DaJaime/BENEVOL2022.

http://dx.doi.org/10.48550/ARXIV.2007.16123
http://dx.doi.org/10.48550/ARXIV.2007.16123
http://dx.doi.org/10.48550/ARXIV.2103.09066
https://cacm.acm.org/blogs/blog-cacm/257897-log4j-and-the-thankless-high-risk-task-of-managing-software-component-upgrades/fulltext
https://cacm.acm.org/blogs/blog-cacm/257897-log4j-and-the-thankless-high-risk-task-of-managing-software-component-upgrades/fulltext
https://cacm.acm.org/blogs/blog-cacm/257897-log4j-and-the-thankless-high-risk-task-of-managing-software-component-upgrades/fulltext
https://github.com/DaJaime/BENEVOL2022
https://github.com/DaJaime/BENEVOL2022

	1 Introduction
	2 Metrics for the Ecosystem Analysis
	3 Presentation of the Datasets
	3.1 Maven Dependency Graph (MDG)
	3.2 Maven Central Index extraction (MCI)

	4 Dependency-independent Analysis
	4.1 Analysis of the Maven ecosystem evolution
	4.2 Analysis of the evolution of an artifact: log4j-core

	5 Dependency-aware analysis
	6 Limitations & Threats to Validity
	7 Conclusion & Perspectives

