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This paper deals with Single Image Depth-From-Defocus (SIDFD), a depth estimation approach based on local estimation of defocus blur. As both blur and scene are unknown in a single image, generic scene and blur models are commonly used in DFD algorithms. In contrast, we propose to directly learn image covariance using a limited set of calibration images which indeed encode both scene and blur (i.e. depth) information. Depth can then be estimated from a single image patch using a maximum likelihood criterion defined using the learned covariance.

Here, we also propose a performance model based on the calculation of the Cramér-Rao Bound with a learned scene model to predict the theoretical depth accuracy of SIDFD system. We validate our SIDFD algorithm and our performance model on an active chromatic SIDFD system dedicated to industrial inspection.

Single image depth-from-defocus with a learned covariance: algorithm and performance model for co-design

INTRODUCTION

The increasing interest for 3D camera in various sectors such as robotics, industrial inspection or medical imaging has led to the development of a multitude of depth measurement techniques in the last few years. While the accuracy remains the main characteristic of such 3D sensors, some aspects such as cost and compactness are also taken into account leading to the development of monocular systems.

Among depth estimation techniques using a single lens, Depth from Defocus (DFD) approaches, where depth is estimated from a local measure of the defocus blur, can provide compact 3D camera. As illustrated in Figure 1, if an object point source is situated before or after the in-focus plane of an imaging system, its image, referred to as the point spread function (PSF), shows a defocus blur of size ϵ. Using the thin lens law, the size of the defocus blur ϵ can be determined by Equation (1):

ϵ = Ds 1 f - 1 d - 1 s , (1) 
where D is the lens diameter, f is the focal length, d is the distance from point source to the lens and s is the distance from the sensor to the lens. Unlike other single camera 3D methods, DFD requires only one or two images. Acquisition is then easy and provides a large field of applications, but the processing is difficult, specially in the Single Image case (SIDFD) as both scene and blur are unknown. Besides, SIDFD suffers from ambiguity (the same blur amount can be measured in front or behind the in-focus plane) and from a "dead zone" where no measurement is possible in the camera depth of field. To improve depth estimation performance, unconventional optics dedicated to DFD have been proposed, based on coded aperture [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Martinello | Single image blind deconvolution with higher-order texture statistics[END_REF][START_REF] Sellent | Optimized aperture shapes for depth estimation[END_REF] , chromatic aperture [START_REF] Chakrabarti | Depth and deblurring from a spectrally-varying depth-of-field[END_REF] or lens with chromatic aberration [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF] . In particular, the use of lens with chromatic aberration removes both the dead zone and the depth ambiguity while increasing depth range.

In the literature of local blur estimation [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Chakrabarti | Analyzing spatially-varying blur[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF] , a common approach is to define a scene density of probability model while the relation between depth and blur is obtained through parametric PSF model or a calibration process of a finite set of potential PSFs. However, both approximations are not entirely realistic and limit the accuracy of the depth estimation. In order to prevent the use of such models, we propose to learn the image covariance which contains both scene and blur information. In this paper, we first demonstrate the use of image covariance learning for depth estimation.

Moreover, as performances of a DFD method are highly related to the parameters of the sensor, a performance model can be used to optimize jointly the optical system and his settings [START_REF] Trouvé-Peloux | Performance model of depth from defocus with an unconventional camera[END_REF] . It is even more required when using unconventional optics, whose interaction with the processing cannot be anticipated using conventional optimization tools. Here, we propose a new performance model for SIDFD using learned scene covariance and a parametric PSF model, enabling the joint optimization of processing and optical parameter in a end-to-end design approach. The proposed depth estimation algorithm and the performance model are validated using an experiment of active SIDFD for industrial surface inspection. 

RELATED WORKS AND CONTRIBUTIONS

DFD algorithm

Single image blur estimation methods can be tricky as both blur and scene are unknown. In the literature, Bayesian framework has been used to tackle this problem 6-8, 10, 11 . Blur is locally estimated using either a maximum likelihood criterion [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Chakrabarti | Analyzing spatially-varying blur[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF][START_REF] Levin | Efficient marginal likelihood optimization in blind deconvolution[END_REF] or an approximation of the a posteriori probability of the blur 10 . To derive an analytical expression of these criteria, the common approach is to marginalize the joint probability of the scene and image using a simple scene model in order to integrate the scene "out of the problem". In many works [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF][START_REF] Trouvé | Single image local blur identification[END_REF][START_REF] Buat | Active chromatic depth from defocus for industrial inspection[END_REF][START_REF] Levin | Efficient marginal likelihood optimization in blind deconvolution[END_REF] , a parametric Gaussian prior on the scene gradient is used. In references [START_REF] Chakrabarti | Analyzing spatially-varying blur[END_REF][START_REF] Fergus | Removing camera shake from a single photograph[END_REF] the scene gradients distribution is modeled using either a mixture or a scaled mixture of zero mean Gaussian distribution. All these simple and generic priors help to derive tractable criteria for blur estimation, but are not very realistic scene models, which can reduce the accuracy of blur estimation. Besides, in DFD to obtain absolute depth maps, blur to depth conversion is usually conducted using an heavy calibration step, which has to be conducted on and off axis in case of important field aberrations. This can also add uncertainties to depth estimation. Other approaches to DFD, avoiding scene model and blur calibration, involve the use of a supervised learning step in order to estimate depth [START_REF] Martinello | Single image blind deconvolution with higher-order texture statistics[END_REF][START_REF] Favaro | A geometric approach to shape from defocus[END_REF] . In these papers, blur is considered as a projection and the kernel subspaces related to each blur projection are learned on simulated or experimental images. The norm of the projection of an image patch on these kernels is minimized to select the blur that is the more likely. These methods are applied either on multiple images DFD or on a single image with a coded aperture. In paper [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] , we have proposed an SIDFD algorithm based on a learned scene and blur model. Using a limited set of calibration images, we directly learn the image covariance, avoiding both the specification of a structured and non realistic scene model and specific blur calibration with respect to depth. Depth is then estimated from a single image patch using a maximum likelihood criterion defined using the learned covariance. Recently, some papers described the use of defocus blur as a cue in a deep learning approach to estimate depth from a single image (Deep-DFD) [START_REF] Carvalho | Deep depth from defocus: how can defocus blur improve 3d estimation using dense neural networks?[END_REF][START_REF] Anwar | Deblur and deep depth from single defocus image[END_REF] . Despite being effective, these methods are designed for natural scenes and use a considerable amount of defocus images from databases to train their neural networks.

Performance Model

As performances of a DFD method are highly related to the parameters of the sensor, a performance model is useful to design the optical system and his settings [START_REF] Trouvé-Peloux | Performance model of depth from defocus with an unconventional camera[END_REF] . For multiple image DFD, papers have proposed performance models using a Cramér Rao bound (CRB) to optimize the blur ratio between a pair of images [START_REF] Shih | An error bound of relative image blur analysis[END_REF][START_REF] Mannan | Optimal camera parameters for depth from defocus[END_REF] in order to maximize the depth estimation accuracy while taking into account the influence of processing. However, these models are designed for multiple image DFD and are not suited for unconventional camera. Several authors have proposed performance models for unconventional camera, particularly for coded aperture [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF][START_REF] Martinello | Single image blind deconvolution with higher-order texture statistics[END_REF][START_REF] Sellent | Optimized aperture shapes for depth estimation[END_REF][START_REF] Zhou | Computational cameras: convergence of optics and processing[END_REF] . However, these models only consider the aperture shape and not the remaining of the optical system or the processing parameters and they only compare the results of depth estimation on different forms of coded aperture without providing a real accuracy nor information about the depth range of their systems. Trouve et al. [START_REF] Trouvé-Peloux | Performance model of depth from defocus with an unconventional camera[END_REF] propose a performance model based on the CRB only requiring the Point Spread Function (PSF) of a camera at at given depth to determine the theoretical accuracy of depth estimation, thus suitable for conventional and unconventional cameras. This model use a generic scene prior which is not always realistic depending on the observed scene.

Contributions and paper organization

In this paper, we propose to solve the crucial question of the scene and data model within the SIDFD context using a learning stage of the covariance matrix of these quantities. More precisely, for depth estimation we propose to learn directly the image covariance related to each potential depth. Thus, we avoid both the definition of a structured and non realistic scene model as well as the use of a blur model related to a specific calibration with respect to depth. Depth is then estimated using a maximum likelihood criterion computed using the learned image covariances.The algorithm, referred as LC-DFD for Learned Covariance Depth from Defocus was described in reference [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] . Note that the proposed algorithm can be used with any conventional or unconventional camera, however it can be particularly interesting when the scene fluctuation can be controlled, as in active DFD. We also propose here a performance model for co-design based on the calculation of the Cramér Rao Bound to predict the best theoretical depth accuracy attainable of a DFD system. To derive this model, we propose to use a learned scene covariance. Hence, our proposed performance model takes into account the texture of the scene, making it particularly suitable for active DFD for which the scene is projected onto the observed surfaces.

Finally, the proposed LC-DFD algorithm and performance model are used within an active DFD system using a dense textured projection and a lens with chromatic aberration for image acquisition. We present and analyze the theoretical and experimental performances obtained for such system.

The paper is organized as follow: Firstly, we present in Section 3 the covariance image learning. In Section 4 and 5, we describe respectively the DFD algorithm used for depth estimation and the performance model used to predict depth estimation accuracy, both based on a learning stage of respectively the image and the scene covariance. Then we evaluate the depth estimation performances of an Active Chromatic DFD system both experimentally and theoretically with the performance model in section 6. Conclusion remarks and discussions about the perspectives of this work are given in Section 7.

LEARNING IMAGE COVARIANCE

In state of the art papers on DFD 1, 5, 7, 8 , depth is estimated using a structured and generic scene model and calibrated or modeled PSF, which can lead to uncertainties in the depth estimation when using real scenes and DFD camera. In this paper, we propose another approach based on the learning of the image covariance. We describe in the following sections the proposed approach for this learning.

Image and Scene models

Defocus blur is a spatially varying blur, so an image patch is usually modeled with the local convolution of a scene patch with the PSF and addition of random acquisition noise. Using the vector representation on image and scene patches we have:

Y = H(d)X + N, (2) 
where Y (respectively X) collects k pixels of the image (resp. scene) patch in the lexicographical order. It is assumed that X is a zero mean random Gaussian vector with covariance R X . N stands for the noise process which is modeled as a zero mean white Gaussian noise (WGN) with variance σ 2

N . H(d) is a convolution matrix which depends on the defocus PSF at each depth d. Note that this generic formalism allows to model any DFD problem, using either a monochrome or a color sensor (either 3CCD or CFA). The differences between theses cases lay in the definition of H(d) and the vectors X and Y.

Image prior

The relation between X and Y being linear, Y is also a zero mean random Gaussian vector with covariance R Y and we have:

R Y (d) = H(d)R X H(d) T + σ 2 N I. (3) 
Assuming R Y invertible, the marginal probability density of the data is expressed :

p(y; d) = 1 |2πR Y (d)| 1/2 exp - y t R -1 Y (d)y 2 , ( 4 
)
where |R| is the determinant of matrix R.

Image covariance matrix learning

We propose to learn the covariance matrices R Y on a basis of representative windows of no-noise data Y = HX.

First we evaluate R Y (d) = H(d)R X H T (d), ( 5 
) then R Y is obtained by R Y (d) = R Y (d) + σ 2 N .
Whereas R Y is estimated once for all as a preprocessing, the noise parameter σ 2 N will be estimated for each data patch depth estimation. This makes the proposed method adaptive to local changes of the signal to noise ratio.

To perform the covariance matrix learning, a database of typical images containing scene and blur information is needed. We will discuss later the creation of such database in the case of active DFD for depth estimation using experimental data (see Section 6.2) or for the performance model using simulated data (see Section 6.3).

From this database, we extract n patches, each patch i is rearranged in a vector y i of mean y i . We construct a data matrix Y concatenating the vectorized data :

Y = 1 √ n [(y 1 -y 1 ), ... (y n -y n )], (6) 
Then, the covariance matrix R Y is obtained :

R Y = Y Y T . (7) 

DEPTH ESTIMATION ALGORITHM

In this section, we present briefly the SIDFD proposed in our reference [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] based on learned covariance and referred to as LC-DFD. Figure 2 provides a generic overview of the LC-DFD algorithm : an offline step is conducted first to learn an image covariance R Y (d) per depth as described in Section 3.3. A second online step make use of a maximum likelihood criterion calculated from Equation 4to evaluate the consistency of a given patch y with the learned covariance R Y (d) in order to estimate the depth d and the noise parameter

σ 2 N . { d, σ 2 N } = arg max d,σ 2 N p(y; R Y (d), σ 2 N ). ( 8 
)
More details about the implementation and resolution of this equation can be found in reference [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] . 

PERFORMANCE MODEL

A common challenge with depth estimation approach using DFD is to find a method to predict and analyze their performances. Having a performance model is then helpful to characterize and design jointly the optical and the processing parameters of a DFD system. In the following, we present the derivation of a performance model based on learned scene covariance and a parametric PSF model. This model hence takes into account jointly parameters from the SIDFD algorithm and the optical system.

Cramér Rao Bound derivation

We propose to use the Cramér Rao Bound (CRB) in order to predict the best performance of depth estimation accuracy attainable. For the estimation of a parameter θ from a data vector y, the CRB is expressed:

var( θ) ≥ σ 2 CRB = F I(θ) -1 = -E ∂ 2 p(y|θ) ∂ 2 θ -1 , ( 9 
)
where FI is the Fisher Information, p(y|θ) the likelihood of the data y and E the expectation function. Using the same formalism as in Section 3, for a Gaussian vector y of density expressed such as in equation 4, one can show that:

F I(θ) = 1 2 tr R Y (θ) -1 ∂R Y (θ) ∂θ R Y (θ) -1 ∂R Y (θ) ∂θ t ( 10 
)
where R Y is the covariance matrix of the data y and θ = d, σ 2 N .

Computation of the CRB with a learned scene covariance

The main objective of the performance model is to characterize the depth estimation accuracy with respect to the optical and processing parameters, that is why we simplify the calculation of the CRB and assume that the noise parameter σ 2 N is known, reducing the problem to the depth estimation such as θ = {d}. According to equation 9 and 10, the CRB depends only on the covariance matrix R Y . We then need to be able to compute at each depth d respectively H(d), the convolution matrix containing the blur information, and R X the covariance matrix of the scene.

H(d) is computed using a parametric PSF model depending on the optical settings, and R X is learned on a representative database of the scene for a given patch size using the same methodology as described in section 3.3 applied on vectors X rather than Y . To compute the derivative of R Y , we use numerical differentiation. Thus for a given depth d, we choose a small depth variation δ, we deduced R Y (d), R Y (d -δ) and R Y (d + δ) from Equation 3by computing H and learning R X beforehand at {d, d -δ, d + δ}. We also set the variance of the acquisition process noise σ 2 N . Finally, according to Equation 9we take the inverse square root of the Fisher Information to obtain the minimum standard deviation σ CRB (d) of depth estimation at the depth d.

APPLICATION TO AN ACTIVE CHROMATIC DFD SYSTEM

After the generic descriptions of the proposed approaches for depth estimation and performance model derivation in previous sections, we apply them in the following on a practical case of Active Chromatic DFD system, which has been previously described in Reference [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] and is shown in Figure 3. It is made-up of a projector and a camera equipped with an unconventional lens having chromatic aberration. A dense sharp texture is projected onto the scene and depth is estimated with our LC-DFD algorithm. In Section 6.1 we describe the 3D system, then we present results of experimental depth estimation in Section 6.2 and a validation of the performance model in Section 6.3. 

Description of the Active Chromatic DFD system

The sensor used is a UI-1240SE from IDS company with a resolution 1280 × 1024 pixels and a pixel size of 5.3 µm. The unconventional lens with chromatic aberration used during the experimentation described in this paper was originally designed in Reference. [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF] For this lens, the focal length of each color channel is respectively f G =25 mm, f R =25.09 mm and f B =24.9 mm, and the lens is open at f /4. The chromatic lens has been designed to perform on-axis, thus in the following, we only operate within a square of 300 × 300 pixels in the center of the image. We present results using this lens in the range of 305 -345mm, which is typical in the context of industrial inspection. For each color channel, blur size is calibrated using a Knife-Edge method relying on a Gaussian PSF model. The calibrated Gaussian standard deviation is displayed in Figure 4.

We also use the EFFI-Lase V2 LED pattern projector from the company Effilux 19 . This projector can be used with any lens, making the optical setting for the projector more flexible. Indeed, as no additional blur should come from the projector, the projected pattern must be in-focus on the whole working range of the camera, in other words the depth of field of the projector should be higher than the working range of 305 -345 mm. With lens of focal length 25 mm and a f-number of 8, the projector depth of field is 6cm which makes the projected pattern clear in the working range. The projected pattern used is a random binary (50/50 black and white) pattern at a scale around 4 (meaning that the size of the smallest element of the pattern is 4 pixels in the captured image).

The working fronto-parallel plane used to conduct the image covariance learning and the depth estimation is moved using an ESP300 motion controller from Newport. 

Experimental depth estimation

We present in this section the experimental performances of the Active Chromatic DFD system with our LC-DFD algorithm presented in reference [START_REF] Buat | Learning scene and blur model for active chromatic depth from defocus[END_REF] and in Section 4. As described in Section 3, a database is necessary for the image covariance learning preprocessing step. This database should theoretically be composed of noise-free images, which is not realistic for captured images from a digital camera. To create this experimental database, an average of 20 images captured at each depth of the blurred projected pattern is used in order to make the acquisition noise negligible. Depth is estimated within a central crop of the acquired images for each patch of size 10 × 10 pixels. Figure 5 displays the mean and the standard deviation of estimated depth in the center of the image. The experimental depth accuracy is around 1.5 mm. Note that the same estimation has been performed in the range 305-345 mm with a step of 0.2 mm and 1 mm and that the accuracy is the same in both cases. Thus, the calibration step is small enough so that the experimental accuracy is not limited by the calibration step. Our LC-DFD algorithm also estimates the standard deviation of the noise, which is approximately σ N = 10 -5 .

Validation of the performance model

In order to validate our performance model and calculate the CRB at each depth to deduce the theoretical depth estimation accuracy, R X and H have to be computed first. At each depth, H matrix is generated using a Gaussian PSF model and the standard deviations from polynomial fit shown in Figure 4, measured beforehand experimentally with a knife-edge method relying on a Gaussian fit of the PSF. R X is learned on a simulated image representing the experimental scene : a random binary pattern of scale 4. At each depth, R Y (d) is calculated with Equation 3 where σ N = 10 -5 to simulate the experimental acquisition process. Note that contrary to the depth estimation, where we have to learn R Y at each depth, we can learn R X only one time on simulated data as we have evaluated that the scale variation of the pattern is negligible here. Like described in 5.2, the Cramér Rao Bound is computed for each depth and displayed in Figure 6(a). The shape of the curve is a "U" form, the depth estimation being more accurate in the 320-330 mm range where the combined blurs are at the lowest, which is a common prediction obtained on previous paper concerning DFD with a lens having chromatic aberration [START_REF] Trouvé | Passive depth estimation using chromatic aberration and a depth from defocus approach[END_REF] . We can compare the theoretical performances to the experimental ones displayed in Figure 6(b). The theoretical depth accuracy is around 0.3 mm, approximately five times better than the experimental one, which is expected as the performance model gives the best estimation accuracy that can be expected. Nevertheless it can be used to analyze the general variation of the depth estimation accuracy along the depth range. The shape of the curve is the same in theory than in practice, the depth estimation being more accurate in the 320-330 mm range. This performance model could be useful in the future to compare depth accuracy of Active Chromatic DFD system with different optical and algorithm parameters in a co-design framework.

CONCLUSION AND PERSPECTIVES

In this paper, we have presented a new approach for both depth estimation and performance model of SIDFD, based on covariance learning. Using a limited set of images, we directly learn the image covariance, avoiding both the specification of a structured and non realistic scene model. Depth is then estimated from a single image patch using a maximum likelihood criterion defined using the learned image covariance. We also have proposed a performance model based on the calculation of the Cramér Rao Bound to predict the theoretical depth estimation accuracy of a DFD system. This model leverages on a learned scene covariance and a parametric PSF model, hence its takes into account both optical and processing parameters. The proposed algorithm and performance model can be used with any conventional or unconventional camera and is particularly interesting when the scene fluctuations can be controlled, as in active DFD. Finally, we have presented the theoretical and experimental performances of depth estimation obtained with an Active Chromatic DFD system using our LC-DFD algorithm and our performance model, and have shown a consistency between the variation of the theoretical performance with respect to depth and experimental depth estimation standard deviation, which validates the proposed model.

The main perspective of this work is to use the performance model presented here to carry out a complete end-to-end co-design study of the Active Chromatic DFD system. The aim would be to optimize the optical parameters of the camera and projector in order to improve the depth estimation performance of our system for a given setting.
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 1 Figure 1. Illustration of the relation between object localization and defocus blur size in geometrical optics. In green, the object is in the focus plane, in red it is defocused.

Figure 2 .

 2 Figure 2. Principle of the LC-DFD algorithm. Offline preprocessing : learning the image model (comprised of the projected pattern and the quantity of blur) by computing the empirical covariance RY of n patches at each depth d. Online processing step : estimating the depth and noise variance of each patch of an image with a maximum likelihood estimator.

Figure 3 .

 3 Figure 3. Experimental setup used for covariance image learning and depth estimation. The binary pattern is projected from the projector onto the screen and then imaged by a lens with chromatic aberration 5 . The screen-lens distance varies thanks to a motion controller.
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 4 Figure 4. Experimental variation of PSF standard deviation σ with depth for each color channel of the Active Chromatic DFD system. R,G,B experimental are measured with a knife-edge method relying on a Gaussian fit. Then a polynomial fit is used to obtain a continuous variation of σ for each color channel.
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 5 Figure 5. Depth estimation performances of the Active Chromatic DFD system with the LC-DFD algorithm in a 300×300pixel window in the center of the image. Mean standard deviation is 1.5 mm.
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 6 Figure 6. (a) Best theoretical depth estimation accuracy achievable according to the proposed performance model. (b) Experimental depth estimation standard deviation (STD) for the Active Chromatic DFD system using the LC-DFD algorithm.