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Abstract

We derive a generalized heat conduction problem for a rarefied gas at slip regime
from a gradient system where the driving functional is the entropy. Specifically, we
construct an Onsager system (XXX,S ,Kheat) such that the associated evolution of the
system is given by ∂tu = +Kheat(u)DS (u), where the Onsager operator, Kheat(u),
contains higher-gradients of the absolute temperature u. Moreover, through Legendre-
Fenchel theory we write the Onsager system as a classical gradient system (XXX,S ,G )
with an induced gradient flow equation, ∂tu = ∇GDS (u). We demonstrate the
usefulness of the approach by modeling scale-size thermal effects in periodic media
that have been recently observed experimentally.
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1 Introduction

Fourier’s law of heat conduction, in its simplest form, relates the heat flux and the tem-
perature gradient, that is:

qqq = −κ∇u, (1.1)

where u is the absolute temperature and κ > 0 the thermal conductivity that depends
on properties of the material. In general κ may depend on the temperature, space, or
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time but often varies so little in cases of interest that it is reasonable to neglect this
variation. By now, Fourier’s law of heat conduction is widely regarded as a limiting
approximation of some general (potentially nonlinear) constitutive law for the heat flux
(see e.g. [2], [14], [1], [6]). For instance, the temperature of a rarefied gas at the slip regime,
namely 0.001 < Kn < 0.3 where Kn is the non-dimensional Knudsen number, deviates
from Fourier’s law of heat conduction [14]. Moreover, in the same article a generalized
heat conduction model, from a phenomenological point of view, was postulated under the
assumption that the gas is isotropic. The authors’ speculation was that the heat flux in a
rarefied gas in the slip regime, linearly depends on the temperature gradient but also on
higher-order temperature derivatives,

qqq = R1∇u+ R2:∇∇u+ R3
...∇∇∇u, (1.2)

where R1 is a second order tensor, R2 is a third order tensor, and R3 is a fourth order

tensor with : and
... denoting second and third order contraction, respectively. Since the

gas is usually assumed to be isotropic (and once a non-dimensionalization was performed),
the above flux reduces to the following,

qqq = −η0(u)∇u+ αη0(u)K
2
n div(∇∇u), (1.3)

where η0 is the heat conductivity, and α is a parameter that depends on the gaseous type
only. The postulated, higher-gradient model recovers Fourier’s law of heat conduction
when the Knudsen number vanishes (Kn = 0). As a matter of fact, the authors in [14]
showed numerically that when Kn = 0.001 the temperature distribution profile was (al-
most) linear, indicating that the higher-gradient model recovers Fourier’s classical law of
heat conduction for Kn < 0.001.

In addition to the above mentioned works, emerging primarily from the physics commu-
nity, non-classical laws of Fourier’s heat conduction have, for many years now, attracted
considerable attention from the theoretical mechanics community as well (see e.g. [2], [6]).
In recent years, the motivation for deriving non-classical heat conduction models in the
mechanics field stemmed from trying to understand the presence of thermal fluctuation
fields in heterogeneous materials with a microstructure. Specifically, the authors in [6]
postulate the existence of a free energy function that has an added dependence, in a non-
trivial way, on the gradient of the entropy density variable. Based on this enhanced free
energy, an enhanced heat equation was derived that has the structure of the Cahn–Hilliard
equation in mass transport theory and contains a term with a characteristic length related
to material parameters that can account for scale-size effects in microheterogeneous bodies.
Upon setting the aforementioned characteristic length equal to zero the classical law of
heat conduction is recovered.

Our aim in this communication is to show that we can derive the evolution of such a system
from an Onsager system where the driving functional is the entropy. Consequently, one
can construct a (classical) gradient system due to the one-to-one correspondence between
Onsager systems and classical gradient systems and derive a gradient flow equation for
such a system. The Onsager system approach achieves, primarily, two objectives: The
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first, it demonstrates that the higher-gradient heat evolution problem is of a geometric
nature and can be completely described by a functional and a geometric structure. The
second, modelling natural phenomena using Onsager systems permits us to exploit the
property of the associated Onsager operator to add different dissipative mechanisms so
long they are driven by the same functional. Furthermore, an Onsager system can easily
be incorporated into an even more general framework that combines reversible dynamics,
often expressed through a Poisson structure and an energy functional, as long as we impose
non-interaction conditions (see e.g. [9] for some examples of classical equations).

Finally, we demonstrate the applicability and the effectiveness of the above model in
modeling scale-size thermal effects in heterogeneous media (see e.g. [4], [3]) by introducing
an additional length scale parameter based on the absolute size of the constituents of the
heterogeneous medium. Furthermore, from a mathematical point of view this model enjoys
considerably better regularity properties than its classical counterpart.

2 Onsager system for Fourier’s law with higher-gradients

Definition of an Onsager system: An Onsager system is a triple (XXX,Φ,K) where XXX is
the state space containing the states u ∈XXX, Φ :XXX 7→ R∪{∞} is a driving functional, and
K(u) :XXX∗ 7→XXX is a linear, symmetric, and positive semi-definite operator often referred to
as the Onsager operator. The state space XXX is usually assumed to be a reflexive Banach
space with dual XXX∗ and the driving functional Φ is assumed to be differentiable. The
evolution of the state u is given by,

∂tu = −K(u)DΦ(u). (2.1)

The rate equation (2.1) is also called Onsager equation. Here onwards, we proceed formally
without specifying the function space XXX (this is standard procedure in thermo-mechanics
modelling as is pointed out in [9]). Moreover, functional derivatives can be interpreted as
variational derivatives by assuming that all functions are sufficiently smooth.

An Onsager system for a rarefied gas at slip regime: We consider a rarefied gas
that is diffusing inside a domain Ω ⊂ R3. Define the triple (XXX,S ,Kheat) where we choose
the entropy,

S (u) =

∫
Ω
log(u)dxxx, (2.2)

as the driving entropy functional and the following Onsager operator,

Kheat(u)□ = −div
(
η0(u)u

2∇□− αη0(u)K
2
n∇div(u2∇□)

)
. (2.3)

Then the evolution of the temperature u is given by the rate equation1,

1As it is pointed out in [10], the driving potential for the gradient system is −S . Throughout the letter,
we are careful in using the correct sign in the formulas. Hence, the current Onsager system gives rise to
∂tu = +Kheat(u)DS (u). The reader is encouraged to consult reference [10] for more details regarding
correct corresponding signs in different type of gradient systems
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∂tu = +Kheat(u)DS (u). (2.4)

We remark that, since u is the absolute temperature and the s 7→ log(s) is non-decreasing
the entropy is non-decreasing in accordance with the second law of thermodynamics.

Computing the variational derivative of the entropy we have,

⟨DS (u) | v⟩XXX∗,XXX =
d

dε
S (u+ εv)

∣∣
ε=0

=

∫
Ω

1

u
v dxxx. (2.5)

Calculations in (2.3) then yield,

∂tu = div
(
η0(u)∇u− αη0(u)K

2
n∇div(∇u)

)
. (2.6)

Furthermore, when the coefficient η0(u) is independent of temperature u, the Onsager
operator takes the following form,

Kheat(u)□ = −div
(
η0u

2∇□− div
(
αη0K

2
n∇(u2∇□)

))
, (2.7)

leading to the following, more convenient, Onsager equation,

∂tu = div
(
η0∇u− div

(
αη0K

2
n∇∇u

))
. (2.8)

Equation (2.8) is precisely the higher-gradient generalization of Fourier’s heat conduction
law employed in [14, eq. (8), pg. 849] in the one dimensional setting with no temporal
effects. Moreover, it is immediately clear that when the Knudsen number becomes negligi-
ble then we recover the Onsager system for the temperature of a gas that obeys Fourier’s
law of heat conduction (see [10]).

3 From an Onsager system to a gradient system

In this passage, we simply reproduce the train of thought in [9] that relates gradient
systems and Onsager systems only for completion purposes.

Definition of a gradient system: A gradient system is a triple (XXX,Φ,G ) where XXX is,
again, the state space, Φ : XXX 7→ R ∪ {∞} is a (differentiable) driving functional, and a
metric tensor G :XXX 7→XXX∗ that is linear, symmetric, and positive semi-definite. The above
gradient system induces a gradient flow equation which in the abstract force balance reads
as follows:

G (u)∂tu = −DΦ(u) ⇐⇒ ∂tu = −∇GΦ(u). (3.1)

The term ∇GΦ(u) is called the “gradient” of Φ and it is calculated by G (u)−1DΦ(u).
The name “gradient” is indeed appropriate since its computation depends, additionally,
on the geometry of the ambient space on which the driving functional is defined through
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the metric tensor G . Many well know, classical equations can be framed in terms of
gradient systems with an induced gradient flow equation that describes the evolution of
that system (see [9], [10] for an eloquent presentation and taxonomy regarding gradient
systems, Onsager systems, and gradient flow equations).

As it is pointed out in [9], there is a one-to-one correspondence between Onsager systems
and gradient systems. Hence, if we define the dual dissipation potential,

Ψ∗(u, ξ) =
1

2
⟨ξ | Kheat(u)ξ⟩XXX,XXX∗ . (3.2)

then (2.4) becomes ∂tu = DξΨ
∗(u,+DS (u)). Since we the dual dissipation potential

is convex (quadratic) we can apply the Legendre-Fenchel theory to compute the (direct)
dissipation potential Ψ(u, v) via,

Ψ(u, v) = sup
{
⟨ξ | v⟩XXX∗,XXX −Ψ∗(u, ξ) | ξ ∈XXX∗

}
=

1

2

〈
K−1

heat(u)v | v
〉
XXX∗,XXX

. (3.3)

This means that the metric tensor is the inverse of the Onsager operator, G (u) = K−1
heat(u)

since in a classical gradient system the dissipation potential is defined as,

Ψ(u, v) =
1

2
⟨G (u)v | v⟩XXX,XXX∗ . (3.4)

Hence, implicitly through Legendre-Fenchel theory, we can describe the metric tensor of
the gradient system that induces a gradient flow.

4 Application to diffusion in a composite

In light of recent experimental work [3], [4] regarding scale-size thermal effects in hetero-
geneous media, we apply the above generalized Fourier’s law to model scale-dependent
thermal effects. To that end, consider a composite Ω with a spatially periodic microstruc-
ture, so that the composite can be divided into periodic cells of typical dimension ℓ. Let
Yℓ denote a typical cell and Y α

ℓ the part of Yℓ occupied by material α, α = 1, 2 so that
Y 1
ℓ ∪ Y 2

ℓ = Yℓ. Moreover, we assume that each Y α
ℓ , α = 1, 2 is simply connected (fee

Fig. 1).

We start with the following Onsager system (H2(Ω),S ,Kheat) with,

S (u) =

∫
Ω
log(u)dxxx, (4.1)

the driving entropy functional and the following Onsager operator,

Kheat(u)□ = −div
(
Ku2∇□−M∇div(u2∇□)

)
. (4.2)
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Figure 1: Schematic of the periodic microstructure of the composite.

The tensors K and M are Yℓ periodic and piece-wise constant in each phase. They stand
for the thermal conductivity and spatial retardation, respectively. The above Onsager
system leads to the following Onsager equation:

∂tu = div (K∇u− div (M:∇∇u)) . (4.3)

We normalize all variables as well as material properties the following way:

t∗ =
t

τ
, xxx∗ =

xxx

L
, u∗(xxx∗) =

u(xxx)

L
, KK∗ = K, MM∗ = M. (4.4)

We have denoted by L the characteristic length of the macroscale, by K:=maxzzz∈Yℓ
|K(zzz)|

the characteristic value for the heat conduction K and by M:=maxzzz∈Yℓ
|M(zzz)| the char-

acteristic value for the spatial retardation M. Moreover, two different time scales can be
identified:

τ=L2/K and τ=ℓ2/K, (4.5)

which characterize the diffusion time over the macroscale and microscale, respectively.
Since we are interested in deriving effective equations we concerns ourselves only with time
behavior on the macroscale. Furthermore, unlike in classical homogenization problems,
we can now introduce an additional length scale relation between K and M as follows:

M = ℓ2TEK. (4.6)

Thus, the diffusion equation becomes,

∂t∗u
∗ = div∗

(
K∗∇∗u∗ −

(ℓTE

L

)2
div∗ (M∗:∇∗∇∗u∗)

)
. (4.7)

In the above context, the spatial retardation tensor contains gaseous type parameters and
the Knudsen number.
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The approach here motivated from generalized continuum mechanic theories (see e.g. [5]).
It is well understood that the effective properties of heterogeneous materials cannot depend
only on the volume fraction of the phases or their geometrical distribution but also on the
absolute size of the constituents (see e.g. [7], [13]). The intrinsic length ℓTE is directly
related to scale-size thermal effects that have been observed experimentally (see e.g. [4],
[3]) in heterogeneous materials with macroscale size and which cannot be modelled by the
classical Fourier’s law of heat conduction. Since we are interested only in the macroscopic
behavior of the composite, we assume that the microscopic scale ℓ is much smaller than the
macroscopic scale L, i.e. ℓ/L = ε ≪ 1 and let ε tend to 0. For classical homogenization,
these are the only two length scales one has to work with. However, in our case we must
also consider how ℓTE compares relative to ℓ or L. Specifically, we consider the following
scaling,

ℓTE/ℓ ∼ 1. (4.8)

The above scaling asserts that the scale-size thermal effects are roughly of the same magni-
tude as the length of the heterogeneity. Alternatively, we could re-write the above equation
as ℓTE/L ∼ ε and hence, we have full scale separation. This is a distinction that we need to
make since the proposed model allows for treatment where no scale separation is possible
(i.e. ℓTE/L ∼ 1). We will not address such a case here. We refer the reader to [12] for
different type of scalings in the context of non-simple materials. Therefore, dropping the
star notation for expediency, and introducing the parameter ε on the temperature u to
show the dependence of the the solution on ε, equation (4.3) becomes,

∂tuε = div
(
K(

xxx

ε
)∇uε − ε2div

(
M(

xxx

ε
):∇∇uε

))
, (4.9)

where the tensors K and M are assumed to be bounded and possess the property of strong
ellipticity.

In the context of asymptotic analysis with two space variables characterizing slow and
fast scales under the assumption of scale separation and enough smoothness of all func-
tions involved, the temperature, regarded as functions of the slow, xxx, and fast, yyy=xxx/ε, is
expanded in a two-scale series as follows,

uε(t,xxx)=u(0)(t,xxx,xxx/ε)+ε1u(1)(t,xxx,xxx/ε)+ε2u(2)(t,xxx,xxx/ε)+ · · · . (4.10)

Likewise, any derivatives are split in a way to represent the two scales as follows,

∇⇝ ∇x+ε−1∇y,

∇∇⇝ ∇x∇x+2ε−1∇x∇y+ε−2∇y∇y.
(4.11)

The above rule is very general and can be applied to different linear differential operators
such as the divergence or curl operators. Hence, using the above two-scale expansions we
have,
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∇uε=ε−1∇yu
(0)+ε0

(
∇xu

(0)+∇yu
(1)

)
+ε1

(
∇xu

(1)+∇yu
(2)

)
+ . . . , (4.12)

∇∇uε=ε−2∇y∇yu
(0)+ε−1

(
2∇x∇yu

(0)+∇yu
(1)

)
+ε0

(
∇x∇xu

(0)+2∇x∇yu
(1)+∇y∇yu

(2)
)
+ . . . ,

(4.13)

Therefore, the generalized flux expands as follows:

div qqqε=ε−2divyqqq
(0)+ε−1(divxqqq

(0)+divyqqq
(1))

+ε0(divxqqq
(1)+divyqqq

(2))+ · · · .
(4.14)

Matching at order ε−2. At order ε−2 we obtain,

−divy


qqq(0)︷ ︸︸ ︷

K(yyy)∇yu
(0) − divy(M(yyy):∇y∇yu

(0))

 = 0 in Y,

u(0)(t,xxx,yyy) is Y -periodic.

(4.15)

The above problem is a classical elliptic partial differential equation in the variable yyy that
possesses a unique solution. Since any function of xxx satisfies the above equation we obtain
that u(0)(t,xxx,yyy)=u(0)(t,xxx).

Matching at order ε−1. At order ε−1 we obtain,

−divy


qqq(1)︷ ︸︸ ︷

K(yyy)(∇xu
(0) +∇yu

(1))− divy(M(yyy):∇y∇yu
(1))

 = 0 in Y,

u(1)(t,xxx,yyy) is Y -periodic.

(4.16)

The above problem has a unique solution that is linearly dependent on the gradient (with
respect to xxx) of u(0),

u(1)(t,xxx,yyy) =
3∑

i=1

wi(yyy)
∂u(0)

∂xi
(t,xxx) + c(xxx), (4.17)

where wi (often referred to as the corrector) satisfies the following problem,
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{
−divy (K(yyy) (eeei +∇ywi)− divy (M(yyy):∇y∇ywi)) = 000 in Y,

wi(yyy) is Y − periodic,
(4.18)

and c an arbitrary function of xxx. Problem (4.18) has a unique solution (up to a constant
in xxx) as a consequence of the Lax-Milgram lemma and contains information about the
morphology of the heterogeneous medium and the volume fraction. One will further note,
that (4.18) is a fourth order partial differential equation and not the usual second order
equation that one obtains using Fourier’s classical heat conduction law.

Matching at order ε0. At order ε0 we obtain the macroscopic problem. Averaging over
Y and using the Y -periodicity of the flux qqq(i), i = 1, 2, 3, . . . we obtain,

∂tu
(0) =divx

∫
Y


qqq(1)︷ ︸︸ ︷

K(yyy)(∇xu
(0) +∇yu

(1))− divy(M(yyy):∇y∇yu
(1))

 d3y in Ω. (4.19)

Inserting formula (4.17) into the above equation we can re-write (4.19) as,

∂tu
(0) =divx

(
Keff∇xu

(0)
)

in Ω, (4.20)

where Keff is the effective conductivity given by the following formula,

Keff
ik :=

3∑
j=1

∫
Y
Kij(yyy)

(
δjk +

∂wk

∂yj

)
d3y, (4.21)

for i, k = 1, 2, 3. It is immediately obvious that (4.20) is Fourier’s classical law of heat
conduction.

Note that the effective conductivity is not simply the volume average of the thermal
conductivity of the two materials. Moreover, in the limit the higher-gradient effects are
present only in the microscopic problem (4.18). This is in contrast to classical results
where no higher-gradient effects appear on any scale. Furthermore, the appearance of
higher-gradient effects in the microscale is due to the scaling choice we made in (4.8). A
different scaling could in some way “transfer” the higher-gradient effects on different scales
or completely nullify them (see e.g. [11] in the context of non-simple materias).

5 Concluding remarks

Finally, we would like to remark that Fourier’s law of heat conduction has also been
recovered using probabilistic techniques (see [8, pg. 184–187] for a probabilistic derivation
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of the heat equation based on Brownian motion). The postulated theories put fourth in
[14], [1] all recover Fourier’s classical law of heat conduction when higher gradients are
negligible. An exception to this, is the article of [2] where they derive a nonlinear, higher-
gradient theory for the heat flux based on the principle of equipresence2, thermodynamics,
and symmetry considerations. In the approach of [2], when higher gradients are negligible,
the heat flux reduces to the following,

qqq = κ(u)∇u+ β(u)|∇u|2∇u, (5.1)

where κ and β are material parameters. Hence, Fourier’s law of heat conduction can be
recovered, if in addition to higher-gradients being negligible, β ≡ 0. However, since β is
a material parameter it is not clear whether such an assumption can or should be made.
Thus, we interpret the derived heat flux law in [2] as a replacement of Fourier’s heat
conduction law rather than a generalization.
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