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ABSTRACT

Coronary CT angiography (CCTA) is the only non-invasive
imaging technique that reliably depicts the anatomic extent
of Coronary Artery Disease (CAD). While occlusion remains
a highly predictive indicator of major cardiovascular events
(MACE), there is growing evidence that the presence and
characteristics of coronary atherosclerosis provide additional
prognostic information. In CCTA calcified plaques display
high-intensity Hounsfield Units (HU) representative features
while more complex representations characterize high-risk
soft plaques. As such, accurate identification and quantifi-
cation is burdensome and time consuming because of the
limited temporal, spatial and contrast resolutions of X-ray
scanners. Despite the success of deep learning in medical
imaging, automatic localization of coronary plaques and es-
pecially soft plaques remains a challenging subject in CCTA
vessel analysis. For this study, 150 CCTA scans were retro-
spectively collected. All patients were accepted at triage with
minimal to severe CAD suspicion. Selection was carried out
with uniform CAD-RADS severity distribution which nor-
mally follows an exponential decay function, thus obtaining
a higher than normal concentration of plaques. The proposed
method outperforms the state of the art for the localization
of diverse types of plaques by exploiting the self-attention
mechanism of transformers networks to embed contextual
features of the coronary tree.

Index Terms— Medical image analysis, Computer-aided
diagnosis, Angiorgraphic imaging, Heart, Vessels

1. INTRODUCTION

Coronary artery plaques present features of varying nature
with corresponding functional values linked to CAD risks
[1]. In recent studies, non calcified plaques were identified
as a coronary obstruction independent factor associated with
major adverse coronary events (MACE) [2]. A standard refer-
ence for automatic non invasive coronary analysis in CCTA is
the FFRct [3][4] (Fractional Flow Reserve estimated via CT)
which aims at simulating FFR invasive procedure used to pre-
dict vessel rupture risk and revascularization. This method,
solely based on the segmentation of the coronary luminal

volume, does not take into account anatomical plaque com-
position features. However in recent studies [5] it has been
shown that a multivariate regression model including Calcium
Score [6] and visually assessed anatomical plaque composi-
tion is as effective at predicting MACE as the FFRcrscore,
while both have superior predictive power compared to the
sole stenosis severity score. Advantageously, anatomical fea-
tures have more reliable clinical interpretability, therefore
plaque localization and characterization is necessary in order
to achieve automatic clinical diagnosis.

1.1. Related methods

The 3D RCNN method [7] processes the curved planar refor-
mat (CPR) of the straightened coronary volume [8] as a se-
quence of 3D cubes, each cube is processed individually by a
3DCNN and the sequence of extracted features is aggregated
by a RNN. In this work the authors propose to character-
ize each manually annotated coronary segment with a label:
whether it contains a plaque, its characteristic (calcified,
mixed, soft) and stenosis (no-stenosis (0%), non-significant
stenosis (> 1%, < 50%), occlusive stenosis (> 50%) ). To
overcome the sequence classification shortcomings of poor
localization the inference was performed on sliding fixed
length sequences. In [9] the authors propose to avoid training
the 3D CNN backbone in favor of Radiomics [10] feature
extracted from the vessel wall segmentation, these features
make use of the same RNN architecture for pooling infor-
mation and were tested against an FFR functional score for
validation. Subsequently in [11] the authors proposed to use
as input two orthogonal views of the CPR volume to a 2D
CNN classifier based on VGG-16 features extractor [12]. The
method achieved similar results to the 3D RCNN in predict-
ing revascularization and obstruction for a given input lesion,
but with a more efficient pipeline.

2. METHOD

In our proposed method, 24 x 24 x 24 3D patches with
isotropic resolution of 0.34 mm are sampled from the CCTA
volume along the extracted centerline, each patch is pro-
cessed individually by a 3D-CNN to extract local features.



The 3D-CNN is composed of 4 convolutional blocks in-
terleaved with max pooling to achieve spatial reduction:
243 +— 123 — 63 — 3. Each convolutional block has 3
convolutional layers with residual connections and non-linear
activation followed by batch normalization layers. The last
convolutional layer is pooled by a global average pooling
layer to obtain a fixed size feature vector (256 channels). The
number of layers was tuned experimentally to be as small as
possible without loss of performance.

We then exploit the directed tree structure in order to em-
bed positional encodings in the features extracted. Given the
graph G = (V, E),V = v1,...,v,, E € V X V we begin
with the definition of the k-hop (k-th order) neighborhood of
the central node v; as \V; = v; € V|d(i, j) < k. If we were to
consider an image as a 2D lattice grid a k-hop neighbourhood
is what is usually referred to as a patch: We will define the
layer operating on such neighbourhood as follows:

v? = v; + pos;
Q =o(Wau; ™)
K =o(WgN; ™)

V6 =o(WyN/™)

ot = Softmax(QéKfT/v i)V} M

Where Wy, Wq, Wy are weight matrices multiplying
each node feature vector v; € AN; and ¢ is a non linear
activation function, where we overload the row vector multi-
plication to operate on sets as the result of v'Z! is the same
independently of the ordering of A;. This operations are
equivalent to the self-attention mechanism of the transformer
architecture proposed in [13] which can efficiently model
relations within a set of elements, we will also employ the
technique of adding positional embedding pos; as in eq ( 1).
Positional encodings pos; are computed locally by exploiting
the directed tree structure using a simple signed hop count
from the center node (+1 if distal, -1 if proximal). In [14]
the authors propose using spectral embedding: however due
to the arbitrary orientation of the eigenvector decomposition,
the desirable property of a constant predecessor representa-
tion does not hold, so we choose to use the simple signed
hop count. This is also preferable to a learnable positional
encoder as it remains order-invariant.

The complete algorithmic pipeline is composed by the lo-
cal features extractor 3D-CNN, these features are then added
to the positional encodings to embed distal and proximal con-
text. These features are merged within the Self Attention
Block of the Spatial Transformer to obtain an attention vector
and a prediction, the prediction being compared to the manu-
ally annotated label during training.

Fig. 1. CCTA image is preprocessed to extract the approxi-
mate locations along of the coronary centerline.
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Fig. 2. Algorithmic pipeline for one location along the cen-
terline.



3. EXPERIMENTS AND RESULTS

3.1. Training

Our model was trained in two separate sessions. First the 3D-
CNN is trained to extract relevant features and is then frozen
so that the Spatial Transformer can learn to merge the local
image features and the positional encodings. The model is
trained with a fixed batch size of 32 randomly sampled cen-
tral nodes with corresponding neighbourhood for 200K steps
using the Adam optimizer with automatic learning rate. This
2-stage strategy facilitates the notoriously difficult training of
the Transformer [15].

3.2. Data

The dataset used in this work includes 150 coronary CT an-
giography (CCTA) scans, collected during a 2-year period
from various clinical sites in France, USA and Italy. Im-
ages were acquired with tube voltage between 100 kVp and
120 kVp, a current between 600 mA and 1000 mA, a pixel
spacing between (.35 mm and 0.48 mm and 0.625 mm slice
thickness. Each patient underwent both CCTA and anatom-
ical tests [6] and was assigned a CAD-RADS [16] score by
trained radiologists. The collection was carried out to obtain
a CAD-RADS < 4 uniform distribution: 24, 38, 30, 33, 25 pa-
tients with CAD-RADS from 0 to 4 respectively. This sam-
ple contains a higher than normal concentration of plaques
as CAD-RADS distribution usually follows an exponentially
decaying function. Each scan is paired with annotated coro-
nary centerlines: for each lesion a starting and ending point
is marked so that each point of the centerline is associated to
a label: 0 (no-plaque), 1 (calcified plaque), 2 (mixed plaque),
3 (soft plaque) and a stenosis degree 0 (non-occlusive) 1 (oc-
clusive). All annotations are based on clinical reports issued
during medical review. Because of the impact of image qual-
ity [17] manual annotations were carried out to match the
clinical report and the final annotations were submitted to a
trained cardiologist for review. A subset of 50 patients with
224 annotated segments with plaques (49 soft, 78 mixed, 97
calcified plaques, and 182 non-occlusive, 42 occlusive steno-
sis) was chosen for testing using random stratified sampling.

3.3. Evaluation

The presented method is evaluated on the task of plaque lo-
calization. The classes were reduced to 0 (no-plaque) and 1
(calcified, mixed, soft plaque and occlusive and non-occlusive
stenosis) or healthy and non-healthy or simply no-plaque and
plaque. For the evaluation we choose to compare against [7]
by excluding non suited methods present in literature. In [11]
the method is provided with the starting and ending point to
pad or stretch the plaque to a fixed window size, therefore it
cannot be used for localization. In [9] the method bases the
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Fig. 3. ROC measurements. It must be noted that original data
non occlusive stenosis comprises only > 1% < 50% stenosis
(non-significant) and not < 50% stenosis.

prediction on the radiomics features extracted from the lu-
men and vessel wall segmentation, it is therefore not suited
for the proposed pipeline as we do not rely on the segmen-
tation results. In [7] the method addresses plaque localiza-
tion directly and solely relies on centerline extraction and the
CPR straightened coronary volume. The original data test set
from [7] comprises 65 patients with 191 annotated segments
with plaques (28 Soft, 64 Mixed, 99 Calcified and which 155
non-occlusive, 36 occlusive stenosis). In order to compare
with the state of the art performances is evaluated at the seg-
ment level. To avoid the bias of manually defined segments,
we define segments as a contiguous coronary tract between
2 bifurcations, only segments with length < 3.0 mm are ex-
cluded. We will adopt the same criteria used in [7] in which a
true negative is a segment containing no positive labels, a true
positive has labels which overlaps predictions. The maximum
score for a given overlapping prediction over a segment is
used to compute ROC measurements (fig. 3). It must be noted
that in our dataset we define all non occlusive plaques with
< 50% stenosis including 0% stenosis while the original data
of [7] the non occlusive plaque was considered > 1% < 50%
stenosis (non-significant). We tested localization using 3 sub-
sets of data: all data, soft plaque and no plaque, non occlu-
sive plaque and no plaque, the results are reported in tab. 1.
We conducted an ablation evaluation between CNN+ATT and
CNN+GNN (Graph Neural Network) using weighted adja-
cency matrix (tab. 2).

4. DISCUSSION AND CONCLUSION

We presented a study focused on coronary plaque localiza-
tion. In the literature coronary analysis methods tend to focus
on different tasks related to coronary analysis (occlusion [9],
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Fig. 4. A sample of the inference result displayed along
the coronary with CPR reconstruction. For each picture
the top and bottom bars represent the ground truth predic-
tion (calcified, mixed and soft) overlapped with prediction of
CNN+ATT.

Plaque ‘ Data Sens Spec Prec F1 G-m
CNN+ATT | Ours 0.89 090 080 0.84 0.89
RCNN[7] | Ours 0.76 0.88 0.78 0.77 0.81
RCNN [7] | Orig 0.81 0.88 0.81 0.84 0.84
Soft Plaque | Data Sens Spec Prec Fl1 G-m
CNN+ATT | Ours 0.70 090 04 050 0.78
RCNN[7] | Ours 034 088 0.15 020 0.54
RCNN[7] | Orig 032 088 025 028 0.53
Non-occlus | Data Sens Spec Prec Fl1 G-m
CNN+ATT | Ours 0.85 090 0.65 0.74 0.88
RCNN[7] | Ours 0.71 0.88 0.60 0.65 0.79
RCNN[7] | Orig 0.78 085 0.74 0.76 0.82

Table 1. Fl1 = 2(Prec * Sens)/(Prec + Sens) is an

aggregated of Precision and Sensitivity , while G-m =
Vv Spec x Sens is an aggregated of Sensitivity and Specificity

AUC ‘ PLAQUE SOFT NON-OCCL
CNN+ATT 0.95 0.86 0.92
CNN+GNN 0.94 0.82 0.90

Table 2. During ablation the CNN+ATT proposed method
performed better than CNN+GNN

revascularization [11]) thus making comparing methodolo-
gies complex. For this work we decided to group all of these
into a binary task: localizing healthy vs non-healthy (no-
plaque, plaque) coronary segments. As previously discussed,
non-occlusive (< 50% stenosis) and soft plaques are clini-
cally relevant and therefore an automated diagnostic support
tool must be able to localize them prior to characterization.
The absence of coronary plaque sensibly reduces the risk of
MACE, thus achieving reliable plaque localization could lead
to a cost effective automatic patient triage, mitigating the
burden on healthcare systems. The presented method outper-
forms the state of the art for CCTA soft, non-occlusive plaque
localization. Unlike other methods for coronary analysis,
the presented method does not rely on a straightened repre-
sentation of coronaries and therefore can model bifurcations
seamlessly. However [7] has good localization capability
for a weakly supervised method making it less susceptible
to incorrect annotations. [11] can predict revascularization
quite efficiently (with 2D slices), when location of the le-
sion of interest is provided: therefore plaque characterization
can be seen as a downstream task. These results show how
soft plaque detection remains a highly challenging task. The
model decision boundary between healthy and soft plaque
tissue is fuzzy, especially in cases with absence of stenosis.
This impacts on precision (tab. 1) because of false positive
detection in the majority class, however the original dataset
from [7] has a different class balance. Hard cases mining
and the use of a focal loss can address this issue in an unsu-
pervised manner and identify anomalous cases. We regard
these as future directions to model and develop automated
anatomical coronary analysis tools.

5. COMPLIANCE WITH ETHICAL STANDARD

5.1. Human rights
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identification of the patient.

6. REFERENCES

[1] Udo Hoffmann, Maros Ferencik, and Udelson, “Prog-
nostic Value of Noninvasive Cardiovascular Testing
in Patients With Stable Chest Pain: Insights From
the PROMISE Trial (Prospective Multicenter Imaging



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Study for Evaluation of Chest Pain),” Circulation, vol.
135, no. 24, pp. 2320-2332, June 2017.

Michelle C. Williams, Alastair J. Moss, and Marc
Dweck, “Coronary Artery Plaque Characteristics As-
sociated With Adverse Outcomes in the SCOT-HEART
Study,” Journal of the American College of Cardiology,
vol. 73, no. 3, pp. 291-301, Jan. 2019.

Ji Hyun Lee, Dalio Institute of Cardiovascular Imaging,
New York-Presbyterian Hospital, New York, NY, USA,
and Briain 6 Hartaigh, “Fractional Flow Reserve Mea-
surement by Computed Tomography: An Alternative to
the Stress Test,” Interventional Cardiology Review, vol.
11, no. 2, pp. 105, 2016.

Gianluca Pontone, Daniele Andreini, and Andrea I.
Guaricci, “Rationale and design of the PERFECTION
(comparison between stress cardiac computed tomogra-
phy PERfusion versus Fractional flow rEserve measured
by Computed Tomography angiography In the evalua-
tion of suspected cOroNary artery disease) prospective
study,” Journal of Cardiovascular Computed Tomogra-
phy, vol. 10, no. 4, pp. 330-334, July 2016.

Wijnand J. Stuijfzand, Alexander R. van Rosendael, and
Fay Y. Lin, “Stress Myocardial Perfusion Imaging vs
Coronary Computed Tomographic Angiography for Di-
agnosis of Invasive Vessel-Specific Coronary Physiol-
ogy: Predictive Modeling Results From the Computed
Tomographic Evaluation of Atherosclerotic Determi-
nants of Myocardial Ischemia (CREDENCE) Trial,”
JAMA Cardiology, vol. 5, no. 12, pp. 1338, Dec. 2020.

Arthur S. Agatston, Warren R. Janowitz, and Hildner,
“Quantification of coronary artery calcium using ultra-
fast computed tomography,” Journal of the American
College of Cardiology, vol. 15, no. 4, pp. 827-832, Mar.
1990.

Majd Zreik, Robbert W. van Hamersvelt, and Jelmer M.
Wolterink, “A Recurrent CNN for Automatic Detection
and Classification of Coronary Artery Plaque and Steno-
sis in Coronary CT Angiography,” IEEE Transactions
on Medical Imaging, vol. 38, no. 7, pp. 15881598, July
2019.

Armin Kanitsar, Dominik Fleischmann, and Rainer We-
genkittl, “Diagnostic Relevant Visualization of Vascular
Structures,” in Scientific Visualization: The Visual Ex-
traction of Knowledge from Data, Georges-Pierre Bon-
neau, Thomas Ertl, and Gregory M. Nielson, Eds., pp.
207-228. Springer-Verlag, Berlin/Heidelberg, 2006.

Felix Denzinger, Michael Wels, Nishant Ravikumar,
et al., “Coronary Artery Plaque Characterization from
CCTA Scans Using Deep Learning and Radiomics,” in

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

Medical Image Computing and Computer Assisted In-
tervention — MICCAI 2019, Dinggang Shen, Tianming
Liu, and Terry M. Peters, Eds., vol. 11767, pp. 593-601.
Springer International Publishing, Cham, 2019.

Philippe Lambin, Emmanuel Rios-Velazquez, Ralph
Leijenaar, and Sara Carvalho, “Radiomics: Extracting
more information from medical images using advanced
feature analysis,” European Journal of Cancer, vol. 48,
no. 4, pp. 441-446, Mar. 2012.

Felix Denzinger, Michael Wels, and Katharina
Breininger, “Deep Learning Algorithms for Coronary
Artery Plaque Characterisation from CCTA Scans,” in
Bildverarbeitung fiir die Medizin 2020, Thomas Tolx-
dorff, Thomas M. Deserno, Heinz Handels, Andreas
Maier, Klaus H. Maier-Hein, and Christoph Palm,
Eds., pp. 193-198. Springer Fachmedien Wiesbaden,
Wiesbaden, 2020.

M. Cimpoi, Subhransu Maji, and A. Vedaldi, “Deep
filter banks for texture recognition and segmentation,”
2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3828-3836, 2015.

Ashish Vaswani, Noam M. Shazeer, and Niki Parmar,
“Attention is all you need,” ArXiv, vol. abs/1706.03762,
2017.

Vijay Prakash Dwivedi and Xavier Bresson, “A general-
ization of transformer networks to graphs,” CoRR, vol.
abs/2012.09699, 2020.

Liyuan Liu, Xiaodong Liu, and Jianfeng Gao, “Under-
standing the Difficulty of Training Transformers,” in
Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Online,
2020, pp. 5747-5763, Association for Computational
Linguistics.

Harvey S. Hecht, Paul Cronin, and Michael J. Blaha,
“2016 SCCT/STR guidelines for coronary artery cal-
cium scoring of noncontrast noncardiac chest CT scans:
A report of the Society of Cardiovascular Computed To-
mography and Society of Thoracic Radiology,” Journal
of Cardiovascular Computed Tomography, vol. 11, no.
1, pp. 74-84, Jan. 2017.

Farhood Saremi and Stephan Achenbach, “Coronary
Plaque Characterization Using CT,” American Jour-
nal of Roentgenology, vol. 204, no. 3, pp. W249-W260,
Mar. 2015.



