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INTRODUCTION

Coronary centerline extraction from CCTA is one of the fundamental phases of coronary analysis. It allows for the assessment of stenosis, the inspection of coronaries in patients with suspect CAD and the characterization of plaques [START_REF] Leipsic | SCCT guidelines for the interpretation and reporting of coronary CT angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee[END_REF]. Manual centerline extraction is a burdensome and time-consuming task requiring years of experience in the visual inspection of CCTA examination.

Related methods

In the earliest approaches, automatic and semi-automatic centerline extraction is based on shortest path finding [START_REF] Krissian | Minimally Interactive Knowledge-based Coronary Tracking in CTA using a Minimal Cost Path[END_REF] from manually detected seed points (extremities). These methods rely on heuristic-based cost functions that model different scenarios (stenosis, plaques, artifacts). Another approach is to obtain the centerline as a byproduct of coronary segmentation. Coronary segmentation has mainly exploited analytical and morphological vesselness filters [START_REF] Ro Frangi | Multiscale vessel enhancement filtering[END_REF][START_REF] Merveille | Curvilinear Structure Analysis by Ranking the Orientation Responses of Path Operators[END_REF] or has been modeled as an optimization problem [START_REF] Merveille | $n$ D Variational Restoration of Curvilinear Structures With Prior-Based Directional Regularization[END_REF]. With the advent of machine learning and deep learning, heuristic-based cost functions are being replaced by supervised models that can exploit annotated data directly [START_REF] Sironi | Multiscale Centerline Detection[END_REF][START_REF] Dorobant | Coronary Centerline Extraction from CCTA Using 3D-UNet[END_REF][START_REF] Gao | Joint Coronary Centerline Extraction And Lumen Segmentation From Ccta Using Cnntracker And Vascular Graph Convolutional Network[END_REF][START_REF] Jeon | Deep Recursive Bayesian Tracking for Fully Automatic Centerline Extraction of Coronary Arteries in CT Images[END_REF]. The deeplearning state-of-the-art method extracts the centerline by iteratively tracking the coronary vessels using a Convolutional Neural Network for local Orientation Classification (CNN-OC) [START_REF] Litjens | State-of-the-Art Deep Learning in Cardiovascular Image Analysis[END_REF][START_REF] Jelmer | Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier[END_REF]. This method exploits the coronary centerline alone as supervision, which is a less expensive ground-truth annotation than lumen segmentation. The centerline of coronary structures is closely related to the topological skeleton.

Although not for centerline extraction, [START_REF] Shit | clDice -a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation[END_REF] proposed recently a novel topological loss (CL-Dice), which enforce connectivity in vessels by exploiting the differentiable morphological Soft-Skeleton. However, this formulation does not guarantee the connectivity of tubular structures. In general, the skeleton has many applications to study tubular or quasitubular objects. It conserves the original topology, provides 1-d dimensionality reduction and can be used to compute orthogonal frames. Orthogonal frames are critical in coronary inspection, enabling advanced visualization techniques [START_REF] Kanitsar | Diagnostic Relevant Visualization of Vascular Structures[END_REF] and automated diagnosis [START_REF] Melki | Learning-based automatic detection of severe coronary stenoses in CT angiographies[END_REF].

Skeletonization

Skeletonization is a classical process for shape simplification. In the continuous domain, the skeleton has an ideal set of properties [START_REF]Mathematical Morphology: From Theory to Applications[END_REF]: it should be centered in the object, with the same homotopy-type as the object (in particular connectivity), and be thin (e.g. its area or volume is negligible). The grassfire process [START_REF] Blum | A transformation for extracting new descriptors of shape[END_REF] is the first historical model that produces a skeleton. In the discrete domain, these ideal properties cannot be guaranteed. In mathematical morphology, the skeleton can be defined through Lantuéjoul's formula [START_REF] Leipsic | SCCT guidelines for the interpretation and reporting of coronary CT angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee[END_REF], which is thin in the sense that each point of the skeleton is a neighbor of the background (non-simple points) and centered with respect to the euclidean distance transform of the object. The resulting skeleton remains, however, disconnected.

S(X) = i∈N Si(X) = εκ i (X) ∖ γκ 0 [εκ i (X)], (1) 
where γ κ0 is the unit ball opening. ε κi is the erosion with κ i an element of a granulometric family of elementary convex structuring elements, i.e. such that ∀(i ≤ j), γ κi (κ j ) = κ j 2. METHOD

Soft-Persistent-Skeleton

The skeletonization approach proposed in [START_REF] Shit | clDice -a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation[END_REF] is based on the discretization of Lantuéjoul's formula [START_REF] Leipsic | SCCT guidelines for the interpretation and reporting of coronary CT angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee[END_REF]. In this case, the algorithm terminates with S(X) such that γ κ0 (X) = ∅.

It does not guarantee that the result has the same topology as the original object. For tubular structures, this usually results in disconnections. We propose an improved skeletonization algorithm that enforces connectivity in the discrete setting (fig. 1). The resulting skeleton S from Algo. 1 however, may still contain simple points. To get a thinner output, the algorithm its reapplied S ← Soft-Persistent-Skeleton(S, k).

As the implementation in [START_REF] Shit | clDice -a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation[END_REF] we used a connectivity of 6 for minpool and a connectivity of 26 for maxpool. The add connection extra step allows to reconnect within a 26 connectivity neighbourhood two consecutive iterations, in practive this limits the disconnections that may happen from the result the application of erosion and subsequent opening operation.

Algorithm 1 Soft-Persistent-Skeleton 

Input: I, K I ′ ← maxpool(minpool(I) ▷ opening S ← Relu(I -I ′ ) ▷ initialization for i ← 0 to K do S ← max(I ⊙ maxpool(S), S) ▷ add connection I ← minpool(I) ▷ erosion if I = ∅ then break end if I ′ ← maxpool(minpool(I)) ▷ opening S ← S + (1 -S) ⊙ Relu(I -I ′ ) ▷ union end for Output: S (a) (b) (c)

MS Loss and masked error

Hereafter we refer to the result of the Soft-Persistent-Skeleton applied on an argument as SPS( * ). We propose a Dice-like loss suited for centerline segmentation as follows:

MS Loss(X, Y ) = 1 - 2Prec(X, Y )Sens(SPS(X), Y ) Prec(X, Y ) + Sens(SPS(X), Y ) (2) 
Where X : Ω → [0, 1] Y : Ω → {0, 1} are binary valued functions defined on a continous image domain Ω ⊆ R 3 , and

P rec(X, Y ) = i X i Y i / i Y i and Sens(X, Y ) = i X i Y i / i Y i
are scalars functions. Equation 2 requires the computation of the skeleton employing alg. 1. Although being differentiable, it is iterative. Computing gradients with back-propagation requires each iteration step to be conserved in memory. We propose approximating the gradient by exploiting the centered property of the skeleton which implies that S(X) ≤ X, therefore S(X) = S(X) ⊙ X. By considering the segmentation as a constant factor S(X) = S(X const ) ⊙ X it implies that its derivative is trivial S(X) ′ = S(X const ) which is indeed a term of the analytical derivative S(X) ′ = S(X)+S ′ (X)⊙X. For a neural network feature map Z θ : Ω → R and the non linear activation function σ(x) = 1/(1 + e -x ) and given σ(Z θ ) = X θ the back-propagation development with respect to parameters θ using the chain rule follows (3). For the Sens function this formulation can be interpreted as a masking, and thus a change of variable of the back-propagated pixel-wise error err: ∂Sens(X θ ,Y ) ∂X θ ⊙ SPS(X θ ) = err ⊙ SPS(X θ ). The advantages of this formulation are that there is no need to finetune the number of iterations parameter K for the forward computation, and the back-propagation is resource-efficient (Fig, 2).

Sens(SPS(X θ ), Y ) =⇒ ∂Sens ∂θ = ∂Sens(SPS(X θ ), Y ) ∂SPS(X θ ) ∂SPS(X θ ) ∂X θ ∂X θ ∂θ = ∂Sens(SPS(X θ ), Y ) ∂SPS(X θ ) SPS ′ (X θ ) ∂X θ ∂θ = ∂Sens(SPS(X θ ), Y ) ∂SPS(X θ ) ⊙ SPS(X θ ) ∂X θ ∂θ = ∂Sens(X θ , Y ) ∂X θ ⊙ SPS(X θ ) ∂X θ ∂θ (3) 
3. EXPERIMENTS

Topology and Homology

Given a continuous image domain Ω ⊆ R Table 2. S Soft-Skeleton as in [START_REF] Shit | clDice -a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation[END_REF] SPS is the proposed Soft-Persistent-Skeleton, metrics computed on synthetic 3-d tubular structures I.

vanishes above the dimension of the domain Ω. For example for 3-d domains, β 0 , β 1 , β 2 correspond to the number of connected components, holes and tunnels respectively. We propose a simple check for homotopy (same topology) between two segmentations I and S(I) is to measure the difference of their Euler number 

E : Ω → Z as E dist (A, B) = | inf(E(A), E(B)) -sup(E(A), E(B))|

Coronary Tracking

The skeletonization algorithm proposed in [START_REF] Shit | clDice -a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation[END_REF] is not suited for centerline segmentation because of the disconnected skeleton. We propose combining the MS Loss and the resource-efficient back-propagation scheme to train a U-Net to segment the coronary centerline (MS-Unet). To this end, we collected a dataset of 225 CCTA examination scans paired with manually annotated centerline. These examinations are split into 100, 55, 70 for train, validation, and test, respectively. For training: as a preprocessing step, each image is resampled to 0.4 mm isotropic voxels, and a windowing (cen-ter=400, width=1000) is applied. The U-Net is fed with 32 voxels-sided cubic patches in a 64 batch. These patches are sampled around the centerline central position and augmented using random translation, rotation, scaling and skew. For the inference: the segmentation alone is not enough: extremities must be identified to isolate a single coronary centerline. We adapted the recursive tracking proposed in [START_REF] Jeon | Deep Recursive Bayesian Tracking for Fully Automatic Centerline Extraction of Coronary Arteries in CT Images[END_REF] by replacing the bayesian model with a Unet semantic segmentation (MS-Unet): First, the ostia locations are identified by precomputing the mask of the aorta. Second, next locations are identified by clustering the intersections of the U-Net output with a sphere of fixed diameter adjusted to the receptive field of the Unet model. This is done for a given current location inside the coronary and this process is executed recursively on next locations until the current location is marked as an extremity. The receptive field of the U-Net is large enough to bridge over stenosis. The recursive inference procedure outputs a set of locations, with associated segmentation and extremities. The union of all local segmentation is used to find the minimum cost path from the extremities to the corresponding ostium. All positive voxels of the segmentation output constitutes the nodes and the average U-Net output value as the weight of the edge between 2 voxels (see Fig. 5).

Evaluation

Our dataset employs 225 examinations: 100 for training 55 for validation, and 70 for the test. The test set was chosen by focusing on the clinical use of coronary tracking; most CCTA examinations have severe calcifications and present artifacts or stents, 40 patients presents a > 400 coronary artrey calcium (CAC) score wich is associated with high cardiovascular risk and stenosis among these 12 have stents. The proposed tracking method is evaluated on the test (fig. 3)(tab. 1) against a state-of-the-art deep-learning approach [START_REF] Jelmer | Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier[END_REF]. Predicted centerlines are evaluated with a standard evaluation method [START_REF] Schaap | Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms[END_REF]. Total overlap (OV), overlap until first error (OF), and overlap of the extracted centerline with the clinically relevant part of the vessel (radius ≥ 0.75 mm, OT) are computed using true positive (TP), false positive (FP) and false-negative (FN) detections. An TP point lies within the radius of the closest manually annotated point. An FP point does not lie within the radius of any manually annotated point. An FN point is a manually annotated centerline point with no corresponding automatically extracted point. The average inside accuracy metric (AI) measures the average distance between the manually annotated and extracted centerline for automatically extracted points.

CONCLUSION AND DISCUSSION

This work proposes an improved morphological skeletonization algorithm and a resource-efficient scheme for backpropagation functions involving skeletonization. Our formulation results in a connected skeleton enabling its use in deep-learning semantic segmentation algorithms. The resource efficient scheme is based on the derivative restricted to the morphological skeleton. Moreover, this approximation opens up new possibilities to exploit even better skeletonization algorithms that could improve the quality of the results. The proposed method rivals the deep-learning state-of-the-art method for coronary tracking and shows promising results on clinically relevant CCTA examinations; our test dataset has complete coronary annotations with more than 600 annotated centerlines and comprises mostly examinations with severe calcifications and stents (fig. 4). While this method has been implemented for a fixed voxel resolution of 0.4 mm, an improvement would be necessary to achieve subvoxel resolution. Although prior use of a U-Net [START_REF] Dorobant | Coronary Centerline Extraction from CCTA Using 3D-UNet[END_REF] our work proposes a taylored and effective implementation of a deep learning vessel centerline semantic sementation method using the centerline alone as supervision.

Fig. 1 .

 1 Fig. 1. (a) a tubular synthetic structure I. (b) its skeleton computed with Soft-Skeleton [12] until termination. (c) skeleton computed using Alg. 1.

Fig. 2 .

 2 Fig. 2. MS-UNet training curves comparison without (Train A , Valid A ) and with (Train B , Valid B ) the masked error back-propagation. Both uses alg. 1 with same K = 8. In terms of training resources. Time: 5h:57m vs 4h:47m; GPU-DRAM: 17.89 GB vs 12.02 GB; for (Train A /Valid A ) vs (Train B /Valid B ) respectively (GeForce RTX 3070 NVIDIA).

  which is a combination of Betti numbers: for 3-d objects, the Euler number is obtained as β 0 +β 1 -β 2 .An ideal skeleton S(I) ⊆ I ⊆ Ω is homotopic and has the same homology class as I and therefore same Euler number. tab. 2 holds the results of this empirical check on a set of tubular synthetic structures I(fig.1).

Fig. 3 .

 3 Fig. 3. Metrics measured on the test set of 70 CCTA patients with manually corrected centerlines. These metrics measure the performaces of a centerline tracker. AI metric takes account of all points not only the ones within the radius of the coronary.

Fig. 4 .Fig. 5 .

 45 Fig.4. A sample of extracted centerlines, rough coordinates are used to compute orthogonal frames to inspect the coronary visualized with multi-planar reconstructions at a sub-voxel resolution of (0.25 × 0.25 × 0.25)mm 3[START_REF] Kanitsar | Diagnostic Relevant Visualization of Vascular Structures[END_REF] 

Table 1 .

 1 MS-Unet (ours) 0.903 ± 0.066 [0.66;0.98] 0.754 ± 0.212 [0.17;1.00] 0.910 ± 0.066 [0.66;0.98] 0.460 ± 0.120 [0.204;0.65] Metrics (mean ± standard deviation [min; max]) on 70 CCTA examinataions of the test set compared with 2 deep learning based method: CNN-OC[START_REF] Jelmer | Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier[END_REF] MS-Unet, our proposal.

	Method	OV	OF	OT	AI
	CNN-OC [11]				

3 , a segmentation I ⊆ Ω has its d-dimension topological structure, called homology class, as an equivalence class of d-manifolds [17]. The homology class for a d-manifold is a countable set under I and its cardinality is the d th Betti number β d which 0.898 ± 0.099 [0.46;0.99] 0.742 ± 0.219 [0.46;0.99] 0.912 ± 0.099 [0.46;1.00] 0.485 ± 0.146 [0.214;0.7]