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The growth of spectral demand due to congestion in the electromagnetic spectrum is skyrocketing through the past years. Joint radar-communications systems are thus attracting more attention as they can share their bandwidth to alleviate the frequency spectrum. In such a system, communication codes are used to both transmit information and perform radar missions. The latter notably requires mitigating the sidelobe level energy, which is generally achieved via the use of a mismatched filter. However, such a filter may be costly to optimize, especially for largescale problems. Hence, this paper proposes a fast algorithm for computing the optimal integrated sidelobe level mismatched filter, based on the Lagrangian dual function of the primal problem. Once the Lagrangian function is calculated, the optimum values of its variables are computed, after formulating it as a monodimensional problem, in order to provide the desired filter. The resulting computational time shows a dramatic improvement on the execution time of the proposed method compared to the classical Matlab convex solver CVX, especially for large-scale problems.

I. Introduction

The continuous growth of communication applications gradually congests the electromagnetic spectrum. Concurrently, the need of alleviating the bandwidth occupation, adds up to the spectrum congestion problem [START_REF] Griffiths | Challenge problems in spectrum engineering and waveform diversity[END_REF]. To deal with this problem, it is imperative to combine two different applications, such as radars and communications systems. One of the possible ways of coupling them, without creating interference between them, is to design a joint radar communications framework that uses the same signal and allows simultaneous functioning at the same frequency bandwidth [START_REF] Hayvaci | Spectrum sharing in radar and wireless communication systems: A review[END_REF], [START_REF] Tedesso | Code shift keying based joint radar and communications for emcon applications[END_REF].

The radar application considered in this paper is a synthetic aperture radar (SAR) framework. In such context, the waveform is usually a linear frequency modulated pulse also called chirp [START_REF] Cumming | Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[END_REF]. However, such signals are not able to transmit binary information and thus cannot be used to create a combined SAR-communications system. To do so, communications codes are used, more precisely in our case we chose continuous phase frequency-shift keying (CPFSK) signals [START_REF] Anderson | Digital phase modulation[END_REF], in order to simultaneously generate the radar image and transmit binary information. Moreover, in SAR framework, target detection is essential and it is usually performed by the use of matched filtering, that aims at maximizing the target signal-to-noise ratio (SNR) [START_REF] Levanon | Radar signals[END_REF], [START_REF] Wang | Digital Signal Processing Techniques and Applications in Radar Image Processing[END_REF]. However, potentially strong sidelobes are created while using the matched filter processing in the presence of strong targets, which may prevent the detection of weaker targets [START_REF] Blunt | Overview of radar waveform diversity[END_REF] and potentially deteriorate the image contrast. Thus, a different compression filter can be used in order to mitigate the sidelobe level, which is called mismatched filter (MMF) [START_REF] Blunt | Overview of radar waveform diversity[END_REF]. An extensive literature has already been devoted to the subject of mismatched filter formulation and optimization [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF]- [START_REF] Chatzitheodoridi | A sidelobe level minimization mismatched filter using continuous phase frequency-shift keying codes for the off-grid delay problem[END_REF].

For sampled signals, apart from the particular case of spectral analysis and linear frequency modulation where the pulse compression can be carried out via weighting windows [START_REF] Harris | On the use of windows for harmonic analysis with the discrete fourier transform[END_REF], mismatched filtering is usually expressed as a convex problem under convex constraints. The criterion used in the cost function is usually either the Peak-to-Sidelobe Ratio (PSLR) or the Integrated Sidelobe Level (ISL) [START_REF] Stoica | Transmit codes and receive filters for radar[END_REF]- [START_REF] Baden | Optimal peak sidelobe filters for biphase pulse compression[END_REF], [START_REF] Maio | Design of radar receive filters optimized according to Lp-norm based criteria[END_REF]- [START_REF] Aittomäki | Mismatched filter design for radar waveforms by semidefinite relaxation[END_REF], and the convex constraints are typically considered to control the loss-in-processing gain or the mainlobe shape [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF].

In this paper, we consider the ISL criterion in order to create a joint SAR-communications system for which the sidelobe level should be controlled. Such a system needs to satisfy essential constraints for both applications. More precisely, the signals are over-sampled for the SAR image generation, and the transmitting codes are different at each acquisition in order to maximize the data rate. In such configuration, where the transmitting signals differ from pulse to pulse, the mismatched filter needs to be computed for every transmitted code. Optimizing a large number of over-sampled waveforms leads to solving a large-scale problem of high computational cost.

In many papers that deal with sidelobe suppression [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF], [START_REF] Maio | Design of radar receive filters optimized according to Lp-norm based criteria[END_REF], [START_REF] Jiu | Knowledge-based spatial-temporal hierarchical mimo radar waveform design method for target detection in heterogeneous clutter zone[END_REF], [START_REF] Jia | A novel method to suppress short-range clutter in airborne radar[END_REF], the Matlab toolbox CVX : Matlab Software for Disciplined Convex Programming [START_REF] Grant | CVX: Matlab Software for Disciplined Convex Programming, version 2.1[END_REF] is used to solve proteiform convex optimization problems. However, as mentioned in [START_REF] Grant | CVX: Matlab Software for Disciplined Convex Programming, version 2.1[END_REF], this solver is not recommended for largesized vector variables due to its computational cost. For instance, the problem considered in this paper introduces several thousands of pulses, each one of them containing some thousands of sampled points, and thus the overall computational cost for the generation of all the optimal filters was estimated around 11 years! It is thus essential to provide a different way to solve the convex optimization problem in order to reduce the computational time.

We show in this paper that the original optimization problem with convex cost function and convex constraints can be efficiently solved via the associated Lagrangian dual problem, in the the case of minimizing the ISL criterion. It can be mostly solved analytically, by converting the dual problem, containing several thousands of variables to a simple mono-dimensional optimization problem, which can be easily solved via a classic Newton-Raphson algorithm.

It is shown in the results section that the computational time of the proposed algorithm is dramatically improved, even just for only one long-size filter computation. Thus for some thousand filters that need to be computed for the SAR acquisitions, the gain in computational time is extraordinary. It was then possible to compute a resynthesized SAR image obtained from several thousand of different CPFSK signals and the associated optimal mismatched filters.

This paper is organized in 5 sections. The introduction of the paper is presented in section I and illustrates the state-of-the art, and the paper description and motivation. In section II, the definition of the convex mismatched filter optimization problem is provided, in order to allow in section III to introduce a different way to implement this problem by solving it mathematically using the Lagrangian dual function. Section IV presents the computational performance of the proposed algorithm and the classical Matlab Toolbox CVX, usually used for solving convex problems, and also a generated SAR image using different signal and by extension different mismatched filters. Finally, section V provides a conclusion of the paper.

II. Mismatched Filter Definition

Let s be a N -length sampled signal expressed as

s = s 1 s 2 . . . s N T , (1) 
where . T is the transpose operator. At reception, the signal is processed by a mismatched filter in order to constrain the sidelobe energy. The length K of the mismatched filter q ∈ C K can be equal to or greater than the length of the signal (K ≥ N ). The output signal can be expressed as [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF] 

y = Λ * K (s) q, (2) 
where . * is the complex conjugate,

q = q 1 q 2 . . . q K T ,
and where Λ K is the correlation matrix of s of size (K + N -1) × K.

If the filter is chosen as q = s, then the classical matched filter is obtained, that maximizes the SNR at the cost of potentially high sidelobes. But it can be chosen so as to optimize various criteria, dependent on the considered application.

As the SAR application is considered in this paper, the main criterion of interest is the Integrated Sidelobe Level (ISL), due to numerous scatterers present in the scene, that can be added up. When referring to the optimization problem formulation using the ISL criterion, extensive literature is available [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF], [START_REF] Stoica | Transmit codes and receive filters for radar[END_REF]- [START_REF] Baden | Optimal peak sidelobe filters for biphase pulse compression[END_REF], [START_REF] Maio | Design of radar receive filters optimized according to Lp-norm based criteria[END_REF]- [START_REF] Aittomäki | Mismatched filter design for radar waveforms by semidefinite relaxation[END_REF], and the problem is expressed as a L 2 -norm minimization problem [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF]:

min q q H Mq, s.t. s H q = s H s, q H q ≤ 10 β 10 s H s, (3) 
where M = Λ T K (s)FΛ * K (s) is a symmetric semi-definite positive matrix, F is a diagonal matrix of ones except for some zero values which correspond to the mainlobe position indices and β is a positive constant in dB that expresses the loss-in-processing gain. This value represents the maximum tolerated loss for the resulting filter with respect to the matched filter [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF].

As mentioned in [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF], the first constraint, which allows to discard the trivial null solution, is linear and thus convex, and the second one, that enables to control the loss-inprocessing gain, is also convex as it is a positive semidefinite quadratic constraint. Globally, the optimization problem is thus convex, as the L 2 -norm is convex, with convex constraints. As a consequence, any local optimum of the optimization problem is necessarily a global optimum.

It is important to note that if the second constraint on the loss-in-processing gain is removed from the problem (3), then the optimization problem can be analytically solved [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF]. Indeed, the solution can be obtained by applying the Lagrange multipliers method and it is expressed as:

q * analytic (s, M) = (s H s) M -1 s s H M -1 s .
where M = Λ T K (s)FΛ * K (s). This analytic solution provides the optimal sidelobe level but a worse loss-inprocessing gain, which is potentially unacceptable.

Considering that the problem ( 3) is convex, it can be solved using a convex solver, such as the CVX: Matlab Software for Disciplined Convex Programming [START_REF] Grant | CVX: Matlab Software for Disciplined Convex Programming, version 2.1[END_REF], as it is performed in [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF], [START_REF] Maio | Design of radar receive filters optimized according to Lp-norm based criteria[END_REF], [START_REF] Jiu | Knowledge-based spatial-temporal hierarchical mimo radar waveform design method for target detection in heterogeneous clutter zone[END_REF], [START_REF] Jia | A novel method to suppress short-range clutter in airborne radar[END_REF]. However, as mentioned in [START_REF] Grant | CVX: Matlab Software for Disciplined Convex Programming, version 2.1[END_REF], CVX is not suitable for large-scale problems due to high computational costs. Especially in the SAR-communications framework, it is infeasible to use this solver, as the need of using different and oversampled pulses creates a very large problem with very high computational time. Thus, it is necessary to bypass the use of CVX and manage to solve the convex optimization problem (3) via a much faster algorithm.

III. Mismatched Filter Optimization using the Dual Cost Function without the CVX Solver

In this section, a solution of the problem (3) is provided without the use of CVX solver. As mentioned, CVX solves generic convex problems and it is not recommended to deal with very large-scale problems, due to computational complexity. More precisely, the variable number, that need to be determined using CVX, is at least of the order of the filter size. As, the size of the filter is a large number in our framework, the computational complexity of the problem skyrockets. Thus, the Lagrangian function is calculated and the solution of the problem is provided by the dual problem.

The associated Lagrangian function combines the cost function and the weighted sum of the constraints of the primal problem [START_REF] Boyd | Convex optimization[END_REF]. It is expressed as

L(q, λ, ν) = q H Mq + λ(q H q -αs H s) + ν(s H q -s H s) = -λαs H s -νs H s independent of q + q H (M + λI)q + νs H q dependent on q . ( 4 
)
where α = 10 β 10 , λ ≥ 0 and ν ∈ R. After computing the gradient with respect to q of the Lagrangian function gives,

∇ q L(q, λ, ν) = 2(M + λI)q + νs, (5) 
the optimum filter is found by taking the null of the Lagrangian gradient,

∇ q L(q * , λ, ν) = 0 ⇐⇒ q * = - 1 2 ν(M + λI) -1 s. ( 6 
)
The dual function of the problem is defined as,

g(λ, ν) = inf q L(q, λ, ν) = L(q * , λ, ν).
Finally, after injecting the solution (6) in the Lagrangian function ( 4), the dual function can be written as

g(λ, ν) = -λαs H s -νs H s - 1 4 ν 2 s H (M + λI) -1 s. (7) 
The optimal pair (λ, ν) needs to be found in order to deduce the optimal filter for the dual problem from the equation [START_REF] Levanon | Radar signals[END_REF]. Since the dual function g is concave [START_REF] Boyd | Convex optimization[END_REF], its optimum can be easily found. More precisely, we have,

∂g ∂ν (λ, ν) = -s H s - 1 2 νs H (M + λI) -1 s, ∂g ∂ν (λ, ν) = 0 ⇐⇒ ν * = - 2s H s s H (M + λI) -1 s . ( 8 
)
After determining the optimal value of ν, the equation ( 8) is injected in the equation [START_REF] Wang | Digital Signal Processing Techniques and Applications in Radar Image Processing[END_REF], in order to provide a function g that depends only on the λ variable. We led thus our problem to have to solve numerically a monodimensional optimization problem of a concave function.

More precisely, let us denote the mono-dimensional function,

g(λ) = max ν g(λ, ν) = -λαs H s + (s H s) 2 s H (M + λI) -1 s (9)
which is a concave function.

Optimizing g(λ) cannot be performed analytically due to its structure, but the optimal value λ * can be found by using the Newton-Raphson method.

The Newton-Raphson method iterative formula is [START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF] 

λ k+1 = λ k - g (λ k ) g (λ k ) . ( 10 
)
For the sake of simplicity, let us denote,

h(λ) = s H (M + λI) -1 s (11)
The first and second derivatives of the function g, expressed in [START_REF] Rabaste | Mismatched filter optimization for radar applications using quadratically constrained quadratic programs[END_REF], are computed with respect to the λ variable in order to specify and perform the iterative algorithm using the formula [START_REF] Blunt | Doppler-compensated adaptive pulse compression[END_REF],

g (λ) = -αs H s -(s H s) 2 h (λ) h 2 (λ)
, and

g (λ) = -(s H s) 2 • h (λ)h(λ) -2[h(λ)] 2 h 3 (λ) .
The derivatives of g are dependent on function h, expressed in [START_REF] Stoica | Transmit codes and receive filters for radar[END_REF], and its first and second derivatives. This means that for every iteration, the function h and its associated derivatives need to be computed, that leads to inverse matrix computations, at each iteration. In order to avoid inverting matrices at each step of the gradient algorithm, which are more costly from a computational point of view, an eigenvalue decomposition of M is performed. More precisely, M can be written as M = P H DP, with P a square matrix, D a diagonal one and the conjugate transpose is used because M is symmetric. Then, the function h can be simplified as,

h(λ) = s H P H (D + λI) -1 Ps = s H P H diag 1 d + λ Ps ( 12 
)
where d is the vector that determines the diagonal elements of the matrix D, and now the inverse matrix term can be easily calculated [START_REF] Mirsky | An introduction to linear algebra[END_REF].

Similarly, the first and the second derivatives of the h function from the equation ( 12) can be expressed after performing the eigenvalue decomposition as

h (λ) = s H P H diag - 1 (d + λ) 2 Ps, h (λ) = s H P H diag 2 (d + λ) 3 Ps.
We can remark that the advantage of these expressions is that the square matrix P and the diagonal matrix D can be computed only once and for all for the optimization problem and the function h expressed in [START_REF] Cilliers | Pulse compression sidelobe reduction by minimization of Lp-norms[END_REF] and its derivatives are finally computed only by performing multiplications and no matrix inversions.

In order to ensure that the optimal pair (λ * , ν * ) of the dual problem coincides with the optimal solution of the primal convex problem defined in (3), strong duality should hold. It consists on proving that the duality gap is equal to zero, which means that the difference between the solution of the primal problem (3) and the solution of the dual problem ( 4) is zero.

Strong duality can be ensured when the primal problem is convex and Slater's constraint qualification is verified [START_REF] Boyd | Convex optimization[END_REF]. The first condition is already justified in Section II and the second qualification is proved in the following.

Lemma III.1 (Slater's condition). [23]

There exists an x 0 ∈ relint (D), where relint (D) the relative interior of D, and D the set of feasible solutions of the primal problem, that verifies the following equality and strict inequality of the problem,

s H x 0 = s H s, (i) x H 0 x 0 < αs H s. (ii)
This lemma III.1 is verified for x 0 = s. Indeed, when x 0 = s, the equality (i) is true. Besides, the strict inequality (ii) clearly holds whenever α > 1, which is always the case since α = 1 corresponds to no loss in processing gain, which means the matched filter solution.

Algorithm 1 illustrates the procedure to obtain one optimal mismatched filter, by providing the optimal pair (λ * , ν * ). It is repeated as many times as the number of transmitted signals.

IV. Simulation and Results

This section is dedicated to the framework explanation and the comparison of the computational cost between the proposed algorithm and the CVX solver. Then, an illustration of a SAR image is provided, which makes use of multiple mismatched filters computed with the Algorithm 1.

A. Computational cost between the proposed method and the CVX solver

The algorithm proposed in this paper can be applied to any sampled signal as long as we consider the integrated sidelobe level criterion. In order to allow simultaneously the generation of a SAR image and the transmission of binary information, communication codes are used. More precisely, continuous phase frequency-shift keying (CPFSK) codes [START_REF] Anderson | Coded modulation systems[END_REF], a family of continuous phase modulated codes, are chosen for their attractive properties, such as constant envelop signals, continuous phase and well-contained spectral energy [START_REF] Tierney | Adaptive waveform design for sar in a crowded spectrum[END_REF].

Algorithm 1: Mismatched Filter Optimization using Gradient Descent Input: Loss-in-progressing gain α, initialization ρ, max iterations max i , precision , Output: Optimal pair (λ * , ν * ), optimal mismatched filter q * ; s ← code generation;

M ← Λ T K (s)FΛ * K (s); [P, D] ← SVD(M); λ 1 ← ρ; for i ∈ [1, max i ] do h i ← s H P H diag 1 diag(D) + λ i Ps; h i ← s H P H diag - 1 (diag(D) + λ i ) 2 Ps; h i ← s H P H diag 2 (diag(D) + λ i ) 3 Ps; g i ← -αs H s -(s H s) 2 h i h 2 i ; g i ← -(s H s) 2 • h i h i -2h 2 i h 3 i ; λ i+1 ← λ i - g i g i ; if |g i | < then break; end end ν * ← - 2s H s s H (M + λ * I) -1 s ; q * ← - 1 2 ν * (M + λ * I) -1 s.
Table I lists some signal characteristics and algorithm parameters used for the SAR image generation while using CPFSK codes. Algorithm 1, displayed in section III, provides the procedure to compute one optimal mismatched filter. The number of different signals, transmitted by the airborne platform, indicates the repetition number of the algorithm execution. This number is determined by the pulse repetition frequency and the total integration time of the platform, which in our framework corresponds to as much as 6522 transmitted signals, as indicated in Table I. For each filter computation, initialization paramters are given to the algorithm, also indicated in Table I. More precisely, for the initialization of the λ variable, we fix λ 1 = 0.5, a maximum iteration parameter is also needed and set to 100 iterations for which the algorithm stops and provides the computed λ, and a precision parameter is set to 1e-10, to ensure the numerical convergence of the algorithm. Moreover, each one of these signals is composed of 3000 samples and the length of the associated mismatched filter is set to three times longer, which leads to 9000 samples. The choice of longer filters provides significantly lower sidelobe level energy than considering Table II: Computational cost of the proposed algorithm and the CVX solver for one optimal mismatched filter.

same signal length filters, as shown in [START_REF] Chatzitheodoridi | A mismatched filter for integrated sidelobe level minimization over a continuous Doppler shift interval[END_REF], [START_REF] Chatzitheodoridi | A sidelobe level minimization mismatched filter using continuous phase frequency-shift keying codes for the off-grid delay problem[END_REF]. Table II shows the computational time of the Algorithm 1 and of the Matlab CVX solver for one and for all the generated mismatched filters. Their computational time difference is enormous. The computational cost of one filter using our method is estimated to be equal to 3.48 minutes, after averaging over 30 different randomly drawn sequences, and it is compared with the 14.5 hours spent on average by the CVX algorithm on the same sequences. Extrapolated to the 6522 different sequences required for the formation of the SAR image, this computational time would be equal to 11 years, as shown in Table II. On the contrary, the proposed solution obtains all 6522 mismatched filters in less than 16 days.

B. SAR Image Generation from Multiple Transmitted CPFSK Signals

This section is dedicated to the creation and representation of SAR images and their associated impulse response, generated with different transmitted CPFSK signals and with either matched or mismatched filters. The proposed Algorithm 1 is implemented in Matlab and it is used in order to compute all 6522 mismatched filters, as indicated in Table I.

In order to compare the performance of the matched and mismatched filters with CPFSK codes on realistic images, we worked here with a real data image acquired with chirp signals. From this real SAR image, the scene reflectivity is obtained by deconvolving the image with the impulse response of the chirp signal. Then it is possible to convolve this scene reflectivity with each of the CPFSK signals, and perform the range compression either with the matched or the mismatched filter in order to obtain synthesized outputs.

In Figure 1, we first represent the impulse responses of chirp and CPFSK codes with the matched or the mismatched filter on a single point scatterer, and then the corresponding re-synthesized SAR images using the SAR image reconstruction algorithm.

Figure 1a represents the impulse response and the SAR image of the chirp and it is used as a comparison reference for the rest of the resulting images. It provides a benchmark in terms of image quality, but as it was obtained using chirp signals, no information transmission is possible. Figures 1b &1c illustrate the impulse responses and the SAR images of the CPFSK codes either using matched or mismatched filtering, respectively. Ideally, we want to provide a performance that converges to the chirp results, but at the same time provide the ability of transmitting information. When comparing the impulse responses from sub-figures 1b & 1c, the one generated with the mismatched filters provides an overall lower and more diffused sidelobe energy compared to the one generated using matched filtering. Due to the large number of transmitted signals, the sidelobe energy is spread in the "2D plan" and not only on the range and azimuth direction of the corner reflector, as seen at the chirp impulse response in sub-figure 1a. This effect may reduce high sidelobes over a direction but can potentially create more blurred zones on the image. The SAR image generated with CPFSK codes and mismatched filters, in sub-figure 1c, is close in contrast to the SAR image generated with the chirp signal, illustrated in sub-figure 1a. Still the contrast in the chirp image is better and the characteristics in azimuth direction are sharper. When comparing the SAR images generated with CPFSK codes and matched filters, subfigure 1b and mismatched filters, sub-figure 1c, we can remark that the energy level of sub-figure 1b is higher.This effect can potentially cover areas with not a lot of signal, or weak targets if the level of the sidelobes in the image increases.

V. Conclusion

Our paper proposes a fast algorithm for the computation of the mismatched filter which minimizes the integrated sidelobe level. It is based on optimization of the dual problem, which is shown to resort mainly to the optimization of a simple concave mono-dimensional problem that can be easily solved via a classical Newton-Raphson algorithm. This method provides the optimal mismatched filter, with a constraint on the loss in processing gain, and it is sufficiently fast to enable the computation of largesized vectors, which is infeasible while using other solvers, such as the convex CVX solver, due to computational time limits.

Table I :

 I Signal Characteristics and Algorithm Parameters.

	Parameters	Value	
	Bandwidth B	305 MHz	
	Pulse duration Tp	4.8 µs	
	Modulation index h	0.4	
	Chip duration T	19.2 ns	
	Sampling frequency Ts	625 MHz	
	Constellation	16	
	Signal Length	3000	
	Allowed loss in processing gain β	2 dB	
	Initialization ρ	0.5	
	Maximum iterations max i	100	
	Precision		1e-10	
	Pulse repetition frequency	5000 Hz	
	Number of transmitted signals	6522	
	Number of filters	Proposed Algorithm	CVX	Ratio
	1 6522	3.48 minutes 15.8 days	14.5 hours 11 years	249.7