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ABSTRACT

This paper introduces two informed spatial regularizations
dedicated to multiband image fusion. The fusion process
combines a multispectral image with high spatial resolution
and a hyperspectral image with high spectral resolution, with
the aim of recovering a full resolution data-cube. In this
work, we propose two spatial regularizations that exploit the
spatial information of the multispectral image. A weighted
Sobolev regularization identifies the sharp structures loca-
tions to locally mitigate a smoothness-promoting Sobolev
regularization. A dictionary-based regularization takes ad-
vantage of spatial redundancy to recover spatial textures
using a dictionary learned on the multispectral image. The
proposed regularizations are evaluated on realistic simula-
tions of James Webb Space Telescope (JWST) observations
of the Orion Bar and show a better reconstruction of sharp
structures compared to a non-informed regularization. Since
JWST is now in orbit, we expect to use this method on real
data in the near future.

Index Terms— Data fusion, informed regularization, hy-
perspectral imaging, high dimensional imaging, astronomy.

1. INTRODUCTION

Hyperspectral (HS) imaging provides a full description of
the acquired scene at high spectral resolution and has be-
come, in the past two decades, a common technique for
numerous spectral analyses, finding applications in remote
sensing [1], planetology [2], material science [3], etc. This
work focuses on astronomical HS imaging, particularly rele-
vant to study key mechanisms of the interstellar medium or in
cosmology. Observation instruments usually do not acquire
spectro-images combining full spatial and spectral resolu-
tions. Alternatively, astronomers typically observe the same
scene with two complementary instruments providing an HS
image with high spectral resolution and a multispectral (MS)
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image with high spatial resolution, respectively. The objec-
tive of the fusion task is to merge these two observations to
recover a data-cube with high spectral and spatial resolutions.

Data fusion has been primarily studied for Earth obser-
vation. The original heuristic methods tackles the so-called
pansharpening problem, which consists in combining a MS
or HS image with a panchromatic image, with component
substitution [4]. The first methods designed to fuse MS and
HS images rely on spectral unmixing paradigms and low-rank
approximations [5, 6]. Inverse problems approaches emerged
more recently and has been proven to be the most efficient
methods to fuse Earth observation data [7]. These methods
exploit observation models to formulate an inverse problem
complemented by spatial and spectral regularizations [8, 9].

Guided by these outcomes, we proposed in a previous
work a MS/HS image fusion method dedicated to astronom-
ical images [10]. We formulated an inverse problem derived
from observation forward models, taking into consideration
astronomical imaging specificities, namely the high dimen-
sionality of the data and the spectrally variant blurs. This
method relies on a low-rank approximation of the HS im-
age and regularizes the problem via a Sobolev penalty that
promotes smooth content. Under these assumptions, the re-
sulting objective function can be efficiently minimized in a
low-dimensional subspace after reformulating the problem
in the Fourier domain. However, numerous astronomical
scenes contain contrasting areas and sharp structures, e.g.
fronts and/or small details, that can be poorly restored with
a Sobolev regularized fusion process [11]. To overcome
this limitation, this work shows that the spatial information
brought by the high spatial resolution MS image can be con-
veniently and easily exploited to design quadratic informed
spatial regularizations. These regularizations have the great
advantage of preserving sharp structures identified in the MS
image while preserving the computational efficiency of the
fusion algorithm.

The paper is organized as follows. Section 2 introduces
the fusion inverse problem derived from observational for-
ward models. Section 3 describes the proposed informed spa-
tial regularizations. We compare the performance of several
spatial regularizations by fusing a realistic simulated dataset
of the Orion Bar in Section 4. Section 5 concludes the paper.



2. PROBLEM STATEMENT

The observed MS and HS images are denoted by Ym ∈
Rlm×pm and Yh ∈ Rlh×ph , respectively, where l· and p· refer
to the numbers of spectral bands and pixels, with lm ≤ lh and
ph ≤ pm. They are assumed to be obtained through spec-
tral and spatial degradations of a unobserved high resolution
data-cube X ∈ Rlh×pm

Ym ≈ LmM(X) (1)
Yh ≈ LhH(X)S (2)

The spectral degradation operators Lm ∈ Rlm×lh and Lh ∈
Rlh×lh account for the spectral response of each instrument.
The spatial degradation operators M : Rlh×pm → Rlh×pm

in (1) and H : Rlh×pm → Rlh×pm in (2) are 2D spatial con-
volutions with spectrally variant kernels and model the blurs
caused by the optical systems. This blur scales linearly with
the wavelength, following the Rayleigh criterion [12]. The
matrix S ∈ Rpm×ph stands for a 2D spatial downsampling op-
erator with an integer decimation factor d such that ph = pm

d2 .
Finally, the ≈ symbol models random noise and mismodel-
ing. Recovering X from these two observations Ym and Yh

can be formulated as a generic inverse problem

X̂ = argmin
X

(
1

2σ2
m

∥Ym − LmM(X)∥2F

+
1

2σ2
h

∥Yh − LhH(X)S∥2F + φspec(X) + φspac(X)

)
.

The two first terms refer to data fidelity terms and are related
to the MS and HS forward models. The two additional terms
φspec(·) and φspec(·) stand for spectral and spatial regulariza-
tions. As in previous works [5, 8, 10], the spectral regular-
ization φspec(·) is chosen to reflect the fact that the spectra in
X are expected to live in a subspace whose dimensions lsub
is much smaller than the spectral dimension lh. This assump-
tion can be formulated by imposing a low-rank structure on
fused image, i.e., X = VZ. The columns of V ∈ Rlh×lsub

span the signal subspace and are generally estimated before-
hand from the HS image, e.g. by a principal component anal-
ysis (PCA). The matrix Z ∈ Rlsub×pm gathers the representa-
tion coefficients associated with the projection of X onto this
subspace. In our previous work [10], the spatial penalization
φspat(·) is chosen as a conventional Sobolev regularization,
which showed poor performance for restoring sharp details.
The next section proposes two alternatives which exploit the
spatial information brought by the MS image while preserv-
ing the efficiency of the optimization procedure.

3. INFORMED REGULARIZATIONS

This section derives two informed spatial regularizations
φspa(·): a weighted Sobolev-like regularization and a quadratic
counterpart of a regularization based on a sparse representa-
tion in a dictionary. These two regularizations are formulated

in the spectral subspace, i.e., they are directly applied to the
representation coefficients Z. This is equivalent to a direct
formulation in the image domain, provided the matrix V is
orthonormal. It is worth noting that we intentionally limit
ourselves to quadratic regularizations for the sake of com-
putationally efficiency, which is needed here given the huge
dimension of the data.

3.1. Weighted Sobolev regularization

The first proposed regularization is based on the assumption
that the image is predominantly smooth but may contain some
sharp details. Generalizing the Sobolev regularization already
used in [10], we thus define

φspac(Z) = µ∥W ⊙ (ZD)∥2F (3)

where D is a 1st order 2D finite differences operator, W is a
weighting matrix, ⊙ accounts for the term-wise product and
µ ≥ 0 is the regularization parameter adjusting the strength
of the regularization. In smooth regions, coefficients in W
should be set to large values to promote smoothness whereas
around sharp structures, coefficients should be set to smaller
values. Following a empirical Bayesian approach, the weight-
ing matrix W is computed from the observed MS image Ym

of high resolution as follows

(W)p =

[
diag

(
VTV

∥(YmD)p∥2F
tr (LmLT

m)

)
+ ϵ

]−1

(4)

where p stands for the current pixel index and ϵ > 0 is a
small hyperparameter preventing denominator values to be
zero. The main asset of this regularization is the use of the
observed high spatial resolution information to mitigate the
effect of a smoothness-promoting regularization, thus making
it adaptable to a large range of astrophysical scenes.

3.2. Dictionary-based regularization

The second proposed informed regularization is inspired by
the regularization proposed in [9] and adapted in this work
for astronomical image fusion tasks. Using a hierarchical
Bayesian approach and a Gaussian prior, the regularization
is defined as

φspat(Z) = µ∥Z− Z̃∥2F. (5)

The authors in [9] define the prior mean Z̃ as a sparse linear
combination of atoms from an overcomplete dictionary, i.e.

Z̃ = P(BC)

where P(·) : Rlsubpp×np → Rlsubpm is a linear operator com-
bining np overlapping patches. The overcomplete dictionary
B ∈ Rlsubpp×na is composed of na atoms and C ∈ Rna×np

is the coding matrix. Thereafter, our method differs from the
approach proposed in [9]. In the latter, the dictionary B and
the support of coding coefficients are estimated on an approx-
imation of the solution of the fusion problem. In this work,



the goal is to take maximum advantage of the high spatial res-
olution and high frequency information that is observed in the
MS image and that could be lost in an approximation of the
fused data-cube. Hence, we propose to identify the dictionary
and the support of coding coefficients from the observed MS
image. More precisely, the overcomplete dictionary B is first
learned from MS image patches using online dictionary learn-
ing (ODL) [13]. As an output of this process, an estimate Cm

of a coding matrix for all MS bands is provided. This coding
matrix is then re-estimated using orthogonal matching pursuit
(OMP). A first estimation of the coding matrix C is obtained
by averaging Cm over the MS bands. The support of this ma-
trix is then defined by the non-zero entries of C. The atoms
of the dictionary B possibly activated to form each patch are
thereby identified during this step and extracted from the ob-
served high spatial resolution MS image.

3.3. Fast implementation

Although quadratic, the optimization problem introduced in
Section 2 cannot be easily solved by conventional methods
as fast gradient descent [14] or conjugate gradient [15] due
to spectrally variant blur operators in each forward models.
Indeed, storing and processing a few thousands of distinct
PSFs annihilate the dimension reduction induced by the spec-
tral regularization. However, we proposed in [10] to handle
convolutions as well as the high dimensionality of the data by
solving the problem in the frequency domain and in the low-
dimensional spectral subspace when using a non-informed
Sobolev spatial regularization. The strategy is adapted here
to solve the fusion inverse problem complemented with the
informed regularizations described in Sections 3.1 and 3.2.

The weighted Sobolev regularization in Eq. (3) includes
a term-wise product between W and ZD that cannot be
wisely expressed in the Fourier domain. Nevertheless, this
regularization is defined in the low-dimensional spectral sub-
space and does not involve the projection operator V. This
weighted Sobolev regularized inverse problem can thus be
solved efficiently following the strategy in [10] performing
direct and inverse Fourier transforms to compute the term-
wise products in the image domain but in a low-dimensional
spectral subspace, at low cost.

The dictionary-based regularized fusion problem is an op-
timization problem with respect to two variables Z and C.
The approach proposed in [9] and used here consists in solv-
ing the problem with a block coordinate descent algorithm,
minimizing alternatively the objective function with respect
to each variable, one at a time. First, the optimization task
with respect to Z conditionally on C can be performed us-
ing the strategy proposed in [10] at reasonable computational
cost. Secondly, the optimization problem with respect to C
conditionally on Z is a least-square problem whose solution
can be analytically and rapidly calculated at each iteration of
the alternate optimization algorithm [9].

4. EXPERIMENTS

Synthetic data – The relevance of each proposed regulariza-
tion is assessed within the fusion process performed on a real-
istic simulated dataset of the Orion Bar. This dataset is com-
posed of a high resolution synthetic reference image of the
Orion Bar and corresponding HS and MS images [11]. It has
been generated to asses high dimensional astronomical data
fusion. The reference scene is composed of 90×900 pixels
and 4974 spectral bands from 1 to 2.35 microns, in the near-
infrared range. The reference image is shown in Fig. 1 as a
RGB composition of 3 spectral bands.

From this reference scene and following forward models
(1) and (2), MS and HS images have been computed as they
would be observed by the near-infrared camera (NIRCam)
imager and the near-infrared spectrograph integral field unit
(NIRSpec IFU) embedded in the James Webb Space Tele-
scope [11]. These images correspond to observations which
have been planned as part of the PDRs4All observing pro-
gram [16], and will be obtained in 2022. The MS image
is made of 11 spectral bands and 90×900 pixels and the
HS image is composed of 4974 spectral bands and 30×300
pixels such that the subsampling factor d = 3. The degra-
dation operators involved in forward models are provided
by JWST documentation [17, 18, 19], including a mixed
Poisson-Gaussian noise. RGB compositions of 3 spectral
bandx of HS and MS images are shown in Fig 1.

Compared methods – Hereafter, we compare high dimen-
sional fusion methods complemented with the two informed
regularizations proposed in Section 3 and complemented with
a conventional (i.e., non-informed) Sobolev regularization.
The latter is proposed in [10] and has been shown to outper-
form state-of-the-art methods for astronomical data fusion on
this relatively smooth scene.

The subspace identification required by these methods has
been performed in this work by a PCA on the HS image. The
dictionary-based regularization involves a few hyperparame-
ters. The number of atoms in the dictionary has been set to
64. Each patch has a pre-determined size of 9×9 pixels with
a 6 pixels overlapping. The maximum number of atoms per
patch is 6. Finally, in Eq. (5), ϵ ≃ 10. These parameters have
been chosen empirically to obtain the best quantitative results.

Results – Fig. 1 displays RGB compositions of fusion prod-
ucts obtained with the Sobolev, the weighted Sobolev and the
dictionary-based regularization along with the ground-truth
reference image and the MS and HS observed images. Zooms
on sharp structures are shown in Fig. 2. Overall, the recon-
struction appears to be visually excellent. Spectral contrast
and most of spatial details are restored and denoising seems
to be efficient for each method. Sharp structures, in light blue,
come out slightly smoothed. However, the intensity of this
front is better restored with the use of the weighted Sobolev
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Fig. 1. RGB compositions of the reference image, the mul-
tispectral observed image, the hyperspectral observed image
and fused products with the Sobolev, the weigthed Sobolev
and the dictionary-based regularizations.
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Fig. 2. Zooms on strong structures from Fig. 1.

regularization. On the contrary, these structures are less sharp
in the fusion product obtained with the dictionary-based reg-
ularization. Moreover, the fused image shows a 9 × 9 pixels
pattern due to patches and an artefact in the smooth region in
red.

To quantitatively evaluate the reconstruction, we intro-
duce three comprehensive metrics. The average spectral an-
gle mapper (aSAM) [20] assesses the quality of the spectral
reconstruction through the measure of the spectral distortion
between reference and reconstructed spectra. The average
complementary structural similarity index (acSSIM) [21] es-
timates the degradation of spatial structures on each spectral
band thus evaluating the quality of the spatial reconstruction.
Finally, the peak signal-to-noise ratio (PSNR) quantifies the
overall quality reconstruction in the least-square sense. A
good reconstruction is fulfilled with low values of aSAM and
acSSIM and a large value a PSNR. Table 1 reports quanti-
tative results calculated over the entire field-of-view shown
in Fig. 1 while Table 2 shows metric values calculated on
the sharp structures areas displayed in Fig. 2. On the full
field-of-view, the spectral reconstruction metric is about 10%
less good for the dictionary-based reconstructed image. The
spatial reconstruction of the weigthed Sobolev fusion im-
age is 10 to 15% better than the other reconstructed images.

Table 1. Performance of fusion methods : aSAM (rad), ac-
SSIM, PSNR (dB), and time (preprocessing + fusion).

Methods aSAM acSSIM PSNR Time (s)

Sobolev 0.025 0.0022 73.75 2200 + 15

W. Sobolev 0.025 0.0020 74.97 2200 + 75

Dictionary 0.028 0.0024 73.01 2700 + 15

Table 2. Performance of fusion methods evaluated on sharp
details areas : aSAM (rad), acSSIM et PSNR (dB).

Methods aSAM acSSIM PSNR

Sobolev 0.053 0.0046 65.69

W. Sobolev 0.051 0.0038 66.92

Dictionary 0.064 0.0045 65.04

This method also improves by 1dB and by almost 2dB the
global reconstruction of the fusion with the Sobolev and the
dictionary-based regularizations, respectively. As expected,
the use of the Sobolev regularization slightly speeds up the
fusion task, as less computations are required. Evaluated only
on the sharp structured area depicted in Fig. 2, the spectral,
spatial and global reconstruction appears to be much better
with the weighted Sobolev regularization. Note that the dic-
tionary regularization is clearly outperformed by weighted
Sobolev, because the scene is mostly smooth and does not
contain much spatial redundancy. When it does and accord-
ing to our experience on other simulations, the dictionary
regularization can become quite competitive.

5. CONCLUSION

In this paper, we proposed two informed spatial regulariza-
tions to fuse high dimensional astronomical images. We for-
mulated a weighted Sobolev and a dictionary-based regular-
izations whose parameters were derived from the high spa-
tial resolution observations. These regularizations comple-
mented a fusion inverse problem relying on observation for-
ward models including astronomical instruments specificities
such as spectrally variant blurs. The problem was solved ef-
ficiently exploiting a fast implementation derived from our
previous work. We tested the proposed regularizations on
a realistic simulated dataset of the Orion Bar and showed
that the weighted Sobolev regularization outperformed a non-
informed regularization to recover sharp spatial structures.
Future work will be dedicated to perform extensive tests on
real data from the James Webb Space Telescope which is cur-
rently in orbit.
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[5] O. Berné, A. Helens, P. Pilleri, and C. Joblin, “Non-
negative matrix factorization pansharpening of hyper-
spectral data: An application to mid-infrared astron-
omy,” in Proc. IEEE GRSS Workshop Hyperspectral Im-
age SIgnal Process.: Evolution in Remote Sens. (WHIS-
PERS), 06 2010, pp. 1–4.

[6] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled Nonneg-
ative Matrix Factorization Unmixing for Hyperspectral
and Multispectral Data Fusion,” IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 2, pp. 528–537, Feb 2012.

[7] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyper-
spectral and multispectral data fusion : A comparative
review of the recent literature,” IEEE Trans. Geosci. Re-
mote Sens. Mag, vol. 5, no. 2, pp. 29–56, Jun 2017.

[8] M. Simoes, J. Bioucas-Dias, L. B. Almeida, and
J. Chanussot, “A Convex Formulation for Hyperspectral
Image Superresolution via Subspace-Based Regulariza-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6,
pp. 3373–3388, Jun 2015.

[9] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J.-Y.
Tourneret, “Hyperspectral and multispectral image fu-
sion based on a sparse representation,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 7, pp. 3658–3668,
Jul 2015.

[10] C. Guilloteau, T. Oberlin, O. Berné, and N. Dobigeon,
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