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ABSTRACT

We compute the rates P at which acoustic energy is injected into the solar radial p modes for several solar models. The solar models are
computed with two different local treatments of convection: the classical mixing-length theory (MLT) and the formulation by Canuto et al.
(1996, ApJ, 473, 550, CGM). Among the models investigated here, our best models reproduce both (i) the solar radius and the solar luminosity
at solar age and (ii) the observed Balmer line profiles. For the MLT treatment, the rates P do significantly depend on the properties of the
atmosphere, whereas for the CGM treatment, the dependence of P on the properties of the atmosphere is found to be smaller than the error
bars attached to the seismic measurements. The excitation rates P for modes associated with the MLT models are significantly underestimated
compared with the solar seismic constraints. The CGM models yield values for P closer to the seismic data than do the MLT models. We
conclude that the solar p-mode excitation rates provide valuable constraints and, according to the present investigation, clearly favor the CGM
treatment with respect to the MLT, although neither of them yields values of P as close to the observations as recently found for 3D numerical
simulations.
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1. Introduction

In the outermost part of the convective zone (CZ) of intermedi-
ate mass stars, convection is highly superadiabatic because of
the rapid radiative heat gains and losses of the convective fluid.
In that region, entropy fluctuations are the largest, and the re-
sulting decrease in the convective transport efficiency is com-
pensated for by a large increase in the eddy motions, which is
responsible for the oscillation mode driving. Modelling ineffi-
cient convection is complex. 3D numerical simulations are now
being performed but remain still very time-consuming. Hence
for massive stellar computations, 1D stellar models are used
in which only simple prescriptions of convection are imple-
mented.

Among these simplified treatments, the Canuto &
Mazzitelli (1991, CM91 hereafter) approach differs from the
classic mixing length approach (MLT hereafter) in that it takes
the contribution of eddies with different sizes into account in
the calculation of the convective flux and velocity, while keep-
ing the computational expenses as low as the MLT. An im-
proved version was proposed by Canuto et al. (1996, CGM
hereafter), which takes into account the feedback of the tur-
bulence on the energy input from the source which gener-
ates turbulent convection. These multi-eddy convection models

are usually refered to as Full Spectrum of Turbulence (FST)
models.

Several non-local formulations of convection have also
been proposed (Gough 1977; Xiong 1978, 1985; Canuto 1992,
1993; Canuto & Dubovikov 1998). However, we focus here on
the effects of proposed improvements in the description of the
energy spectrum and therefore consider only local treatments
and compare FST models with MLT ones.

Any model of convection must satisfy several observational
constraints provided by our Sun: the solar radius at the solar
age, the Balmer line profiles, and the uvby color indices. The
MLT, CM91’s, and CGM’s local treatments have been con-
fronted to these observational constraints (e.g. Fuhrmann et al.
1993, 1994; van’t Veer-Menneret & Megessier 1996; Smalley
& Kupka 1997; Bernkopf 1998; Heiter et al. 2002; Montalbán
et al. 2004). One main result is that these observational quan-
tities are more sensitive to the adopted value of the convective
scale length of the eddies than to the formulation of convection.

Solar seismic observations provide strong additional con-
straints. Comparisons of theoretical oscillation frequencies
with observed solar ones have shown for instance that signif-
icant improvement in the agreement between observation and
model at high frequency and degree � can be achieved with
3D simulations (Rosenthal et al. 1999). We are interested here
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in amplitudes of oscillation that can also bring several con-
straints on the convective process in the outer solar envelope.
Indeed, the amplitudes of solar-like oscillations result from a
balance between excitation and damping. Measurements of the
oscillation mode growth rates (through their line-widths) and
of the mode amplitudes enable the evaluation of the excita-
tion rates P. Excitation of solar-like oscillations is known to be
both due to turbulent convective motions through the driving by
the turbulent Reynolds stresses (see Goldreich & Keeley 1977;
Balmforth 1992; Samadi & Goupil 2001) and due to the advec-
tion of turbulent entropy fluctuations by the turbulent move-
ments (see Samadi & Goupil 2001). The excitation rates P are
thus directly related to the velocity of the convective elements
and to the amount of thermal energy advected by convective
motions (i.e. the convective flux). The excitation rates then
depend crucially on the way the convective velocity and flux
are modelled (see Houdek et al. 1999). Solar seismic measure-
ments therefore provide – through a model of mode excitation
– additional constraints on the stellar convective properties. In
this framework, the goal of the present paper is to investigate
the influence of different local treatments of convection on the
calculation of the rates at which energy is injected into the so-
lar radial p modes and to compare our results with the solar
seismic constraints.

For this purpose we compute two calibrated solar models
with the Böhm-Vitense formulation of the MLT (Böhm-Vitense
1958, hereafter BV) and with the CGM multi-eddy convec-
tion treatment. In each case, the same convection formulation is
adopted for the interior and the model atmosphere. Models for
the internal structure are built so as to reproduce the solar ra-
dius and the solar luminosity at the solar age. The atmosphere
of each model is constructed using a T (τ) law which is de-
rived from a Kurucz’s model atmosphere (Kurucz 1993) com-
puted with the same convection formulation (as described in
Heiter et al. 2002). These model atmospheres are built in order
to provide the best agreement between synthetic and observed
Balmer line profiles (as in van’t Veer-Menneret & Megessier
1996, for the MLT treatment) (Sect. 2). The matching of the
model atmosphere with the interior model is performed – in
the manner of Morel et al. (1994) – by ensuring the continuity
of the temperature gradient, ∇, and of the convective flux in a
transition region between the interior and the atmosphere.

We also compute two models with an Eddington gray at-
mosphere, one with the MLT treatment and the second with the
CGM formulation. These two additional models are considered
for comparison purpose only. Indeed, they have an atmosphere
with the same mixing-length parameter as in the interior and
do not reproduce the Balmer line profiles. As a consequence,
in contrast with the interior models including a Kurucz’s at-
mosphere as described above, their atmospheres do not fulfill
constraints on the properties of the convection at the surface.

Calculation of the excitation rates requires the computation
of the convective flux, Fc, and of the convective velocity, v. This
is done in Sect. 3 by paying special attention to the problem
of the transition region. Indeed, the continuity of ∇ and of Fc

through the transition region imposes a spatial variation of the
mixing-length parameter in the transition region. This variable
mixing-length parameter is then used in Sect. 3 to compute v.

Note that our approach, which is used here to compute v and P,
is different from that of Schlattl et al. (1997), who built stellar
models that assume a spatially varying mixing-length parame-
ter, with a spatial variation imposed a priori from a comparison
to 2D numerical simulations of convection, in order to compute
p mode frequencies.

As a last step (Sect. 4), we compute the adiabatic eigen-
modes and the excitation rates P for each model. The adopted
model of excitation is that of Samadi & Goupil (2001, Paper I
hereafter) in which the characteristic wavenumber k0, the
wavenumber dependency of the turbulent spectra, as well as
the frequency component (χk) of the correlation product of the
turbulent velocity field are constrained with a 3D simulation
of the Sun as in Samadi et al. (2003c, Paper II hereafter) and
Samadi et al. (2003b, Paper III hereafter). Comparison with so-
lar seismic constraints then allows us to conclude about the best
local treatment of convection in the solar case (Sect. 5).

2. Solar models

All solar models discussed here are computed with the CESAM
code (Morel 1997) including the following input physics and
numerical features:

1. Equation of state (EOS): CEFF EOS (Christensen-
Dalsgaard & Däppen 1992).

2. Opacities: OPAL (Iglesias & Rogers 1996) data, com-
plemented by Alexander & Ferguson (1994) data for
T <∼ 104 K, both sets of data being given for Grevesse &
Noels (1993) solar mixture.

3. Thermonuclear reaction rates: Caughlan & Fowler (1988).
4. Convection: either MLT or CGM’s formalism. The same

convection formalism has been used in the interior and in
the model atmosphere.

5. Microscopic diffusion: all models include microscopic dif-
fusion of helium and heavy elements calculated according
to the simplified formalism of Michaud & Proffitt (1993),
where heavy elements are treated as trace elements.

6. Chemical composition and mixing length parameter for
convection: the Grevesse & Noels (1993) heavy elements
solar mixture has been adopted. The constraint that so-
lar models have the observed solar luminosity and radius
at solar age yields the initial helium content Y0 and the
mixing length parameter of the interior model αi (solar
model calibration). Microscopic diffusion modifies the sur-
face composition, therefore the initial ratio of heavy ele-
ments to hydrogen (Z/X)0 is adjusted so as to get the ratio
(Z/X)� = 0.0245 at solar age.

7. The models were calculated with 285 shells in the atmo-
sphere and about 2000 shells in the interior.

The CGM formulation of convection is implemented according
to Heiter et al. (2002). In contrast with Heiter et al. (2002),
we use a characteristic scale length of convection for the two
formulations which is the mixing-length Λ = αHp, where Hp

is the pressure scale heigth and α the mixing-length parameter,
which can be different in the interior and in the atmosphere.
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Fig. 1. The observed solar Hβ profile is compared to theoretical ones computed with CGM models and assuming different values for αa.
Abscissae are distances in Å from the line center, and ordinates are the flux in the profile normalized to the continuum. The large scatter is due
to the presence of many spectral lines which overlap and cause an apparent enlargement of the true profile.

2.1. The “Kurucz models” (KMLT and KCGM models)

We consider here two stellar models: one computed with the
MLT formulation of convection and the second one with the
CGM formulation. They will be labelled hereafter as KMLT
model and KCGM model, respectively.

Treatment of the atmosphere: the model atmospheres of
those models are computed using the ATLAS 9 code (Kurucz
1993) as described in Heiter et al. (2002). Solar model atmo-
spheres are built assuming different values for αa, the mixing-
length parameter assumed for the model atmosphere: αa =

0.4, 0.5, 0.6, 0.7. The model atmospheres with αa = 0.4 and
αa = 0.5 provide the best agreement between synthetic and
observed Hβ Balmer line profiles for the two formulations of
convection. This is shown in Fig. 1 for the CGM model at-
mosphere. For the MLT treatment, see Fuhrmann et al. (1993,
1994) and van’t Veer-Menneret & Megessier (1996). Above
αa � 0.6, the synthetic profile rapidly departs from the ob-
served one, as well as the effective temperature Teff from the
known solar Teff .

There are no significant differences for the Hβ Balmer line
profile between the model atmospheres with αa = 0.4 and
αa = 0.5. Among those model atmospheres we adopt arbitrarily
those with αa = 0.5. Indeed, choosing the model atmospheres

with αa = 0.4 instead of αa = 0.5 will not change the con-
clusions of this article. For each formulation of convection we
then obtain a T (τ) law.

The atmospheres of the KMLT and KCGM stellar models
are recomputed according to the procedure described in Morel
et al. (1994) from the T (τ)-laws mentioned above; the fit be-
tween interior (where the diffusion approximation is valid) and
atmosphere is performed in a region where τ1 <∼ τ <∼ τ2 (an
acceptable range of values for τ1 and τ2 is discussed below). In
the interior region where τ >∼ τ2, the temperature gradient ∇i is
obtained from the MLT or CGM formalism. In the atmospheric
region, where τ <∼ τ1, the temperature gradient ∇a is computed
using the T−τ law of the model atmosphere built with the same
model of convection as in the interior. In the transition region,
where τ1 <∼ τ <∼ τ2, in order to ensure the continuity of the tem-
perature gradient, ∇ is obtained by a linear interpolation of ∇i

and ∇a as a function of the optical depth as follows:

∇ = β(τ)∇a + (1 − β(τ))∇i (1)

where β(τ) = (τ2 − τ)/(τ2 − τ1).
Once the temperature gradients of the interior and the at-

mosphere are linked together in the transition region according
to Eq. (1), we compute afterward in that region the convective
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flux and an equivalent mixing-length parameter (i.e. a depth-
dependent mixing-length parameter) as explained in Sect. 3.

Acceptable ranges for τ1 and τ2: using a Newton-Raphson
scheme, ∇i is adjusted in order that F(i)

c + F(i)
rad = L�/4πr2,

where L� is the luminosity of the Sun and F(i)
rad is the radiative

flux of the internal model. Calculation of F(i)
c assumes the diffu-

sion approximation for the radiative transfer for Frad. This ap-
proximation is valid at rather high values of τ, typically τ � 10
(see Morel et al. 1994). Therefore, τ1 cannot be much smaller
than τ � 10. Otherwise, ∇i will have an unrealistic contribu-
tion to ∇ below τ � 10. On the other hand, for the calculation
of F(a)

c , the radiative flux Frad is based on a Kurucz’s model at-
mosphere, which treats the radiative transfer more realistically
than the diffusion approximation.

The Kurucz model atmosphere is based on the Kurucz
(1992, 1993) opacity tables which are given up to T � 2×105 K
and P = 108 dyn cm−2. As a consequence, τ2 cannot be larger
than τ � 107.5, i.e. layers for which T � 30 000 K. In order to
ensure a satisfactory continuity of the temperature gradient, τ2

must be sufficiently larger than τ1. On the other hand, the tran-
sition region should be as small as possible; i.e. τ2 − τ1 must
be as small as possible. The main constraint for this region is
thus to avoid discontinuities between the interior and the atmo-
sphere. It is defined through an empirical procedure rather than
based on a strict physical theory.

In practice, we find that τ1 = 4 is the minimal acceptable
value for τ1; below this value the bias introduced by the dif-
fusion approximation has a significant effect on Fc. In addi-
tion, we find that above τ2 � 50, the convective velocity v (see
Sect. 3.2) shows a pronounced “kink” at τ = τ2 for the CGM
model (see Fig. 3, such a “kink” is also observed for Fc, but it
is less pronounced). On the other hand, the choice of τ2 = 20
avoids the angular point. For the MLT model, whatever the
value of τ2, v shows such a feature. This is a consequence of the
much higher values of the mixing length parameter required in
the interior in order to still obtain the correct solar radius, if a
lower value of α is also used in regions further within the enve-
lope. The requirement of matching R� hence provides a more
stringent upper limit for the choice of τ2 (cf. also the discussion
in Montalbán et al. 2004 on the computation of solar entropy as
a function of radius). In the following, we will consider τ1 = 4
and τ2 = 20 as our optimal choice.

Calibration: the mixing-length parameter αi for the inter-
nal structure, Y0, and (Z/X)0 are adjusted such that the stel-
lar model simultaneously reproduces the solar radius, the so-
lar luminosity, and the observed ratio (Z/X)� = 0.0245 at
the solar age. The calibration yields (Z/X)0 = 0.0279 and
Y0 = 0.275. At solar age, the helium abundance in the convec-
tion zone is Y = 0.246, in reasonable agreement with the value
Y = 0.249 ± 0.003 obtained from seismology (Basu 1997).
Table 1 gives the calibrated values of the mixing-length param-
eters αi for each complete solar model. The radius resulting
from the adjustement of αi, as well as the size of the convec-
tive zone, are given in Table 2. All the interior models have a
depth of the convective zone of �0.286 R�, which is in good
agreement with the value of 0.287 ± 0.003 R� determined seis-
mically by Christensen-Dalsgaard et al. (1991).

Table 1. Values of the mixing-length parameters of the KCGM and
KMLT models: αi (for the interior) and αa (for the model atmosphere).
αi results from the calibration of the full model while αa is fixed (see
Sect. 2.1).

model αi αa

KMLT 2.51 0.50
KCGM 0.78 0.50

Table 2. ∆R ≡ R − R�, where R� is the radius at the photosphere (i.e.
at T = Teff), and depth of the convective zone (CZ) for the KCGM and
KMLT models. These quantities are given with respect to the solar
radius R� (we assume the Guenther et al. (1992) value of R�).

model ∆R/R� depth CZ

KMLT −10−6 0.2860
KCGM 5 10−6 0.2859

Table 3. Values of the the mixing-length parameter α of the ECGM
and EMLT models obtained for calibrated solar models.

model α

EMLT 1.76
ECGM 0.69

2.2. Eddington approximation based models (EMLT
and ECGM models)

For comparison purposes, we consider two additional stellar
models here with an Eddington classical gray atmosphere in-
stead of the Kurucz atmosphere models described in Sect. 2.1.
One of these models assumes the MLT formulation of con-
vection and the other the CGM formulation. In the following
they will be labelled as EMLT model and ECGM model, re-
spectively. The mixing-length parameter α of these models (the
same α in the interior as in the atmosphere) is adjusted in or-
der to reproduce the solar luminosity and radius at the solar
age. However, as mentioned in the introduction, these models
do not reproduce the Balmer line profiles. Table 3 gives the
calibrated values of the mixing-length parameters.

2.3. Comments

With the CGM treatment, αi is found to be less than one and
closer to αa = 0.5. In contrast, with the MLT treatment the
value of αi is much larger than αa = 0.5.

The CGM models result in a much lower value for the
mixing-length parameter (αi for the KCGM model and α for
the ECGM model) than the MLT models, because the convec-
tion in nearly adiabatic regions is more efficient with the CGM
formulation than with the MLT one. Indeed, for the same value
of the mixing-length parameter and in the region of high con-
vective efficiency (below the superadiabatic region), the CGM
treatment predicts a convective flux ten times larger than the
MLT one for a given superadiabatic gradient. In a solar model,
this behavior results in a gradient closer to the adiabatic one
below a smaller superadiabatic zone in comparison to the MLT
case (Canuto et al. 1996). At the top of the quasi-adiabatic
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Fig. 2. The superadiabatic gradient ∇−∇ad is plotted versus the optical
depth τ in the outer region for the KMLT model (dashed line), EMLT
model (dot-dashed line), ECGM model (dot-dot-dot-dashed line), and
KCGM model (solid line). The dotted vertical lines correspond to the
layers where τ = τ1 = 4 and τ = τ2 = 20, respectively, and delimit the
transition region.

region, energy is predominantly transported by convection,
such that Fc � F where Fc is the convective flux and F the
total energy flux. Above, convective transport is no longer ef-
ficient (Fc < F). Therefore, the solar energy flux F at the top
of the quasi-adiabatic region can be reproduced for the CGM
models with a lower value of the mixing-length parameter than
the one required for the MLT.

The superadiabatic gradients are displayed in Fig. 2 as a
function of τ. The angular point observed in ∇ − ∇ad at the op-
tical depth τ � 20 for the KMLT model corresponds to the
matching point; i.e. at R� − r � 100 km, where R� is the
solar radius at the photosphere, defined to be where τ = 2/3
and calibrated at the precision level given in Table 2. It results
from the large difference between αi and αa. This difference is
much smaller for the KCGM model, and therefore the “kink”
at τ � 20 is much less pronounced.

Our last comment concerns the large difference in the value
of the mixing-length parameter between the KMLT and the
EMLT models. Both models differ only by the structure of
their uppermost layers located 50–100 km below the photo-
sphere (see Fig. 3, middle), which represent a tiny fraction
of the convection zone depth. The KMLT has a model atmo-
sphere in which convection is much less efficient than that of
the EMLT model as a consequence of the fact that αa = 0.5 in
the Kurucz’s model atmosphere (see Sect. 2.1). This is why the
superadiabatic gradient, ∇ − ∇ad, at that depth reaches much
higher values for the KMLT model than for the EMLT model.
Now if ∇ − ∇ad from two models are vastly different, so is the
entropy jump of both. Hence, if a certain entropy of the inte-
rior convection zone and thus a certain radius of the convection
zone are to be matched, a much more drastic change in α is re-
quired with the KMLT model to avoid to large an entropy jump
(see a detailed discussion in Montalbán et al. 2004).

Fig. 3. Top: Fc is plotted versus R� − r for the KMLT model (dashed
curve), EMLT model (dot-dashed line), ECGM model (dot-dot-dot-
dashed line), and KCGM model (solid line). As in Fig. 2, the dotted
vertical lines delimit the transition region. Middle: same as the top
panel for α∗ (see Sect. 3.2). Bottom: same as the top panel for the root
mean square of the convective velocity, v.

3. Convective velocity and entropy fluctuations

3.1. Convective flux

Part of the mode excitation rates stems from the advection of
turbulent entropy fluctuations by turbulent motions (the so-
called “entropy source term”). This term scales – see Paper I
– as α2

s〈s2
t 〉u2

0, where st represents the entropy fluctuations due
to turbulent convection, αs ≡ (∂p/∂s)ρ, ρ, s, and p are, re-
spectively, the density, the entropy and the pressure, 〈〉, denotes
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spatial and time average, u2
0 ≡ 1/3 〈u2〉, where u is the velocity

field associated with the turbulence. The factor 1/3 arises from
the simplifying assumption made in Paper I that the acoustic
emission is injected into the p-mode isotropically in all three
directions.

The “entropy source term” scales as the square of the con-
vective flux Fc. Indeed, we show (see Appendix A) that it scales
as (αs/ρ0T0)2

(
Φ̄/3

)
F2

c , where T0 and ρ0 are the mean temper-
ature and density, respectively, and Φ̄ is the spatially averaged
anisotropy factor, which is defined as (Gough 1977):

Φ̄(r) ≡ 〈u
2〉
〈u2

z 〉
≡ v

2

w2
(2)

where uz is the vertical component of u, and v and w are defined
as v2 ≡ 〈u2〉 and w2 ≡ 〈u2

z 〉, respectively.
For the CGM formulation, Fc is computed according to

Eqs. (2) and (17)–(21) in Heiter et al. (2002), and for the MLT
treatment, it is calculated according to Eq. (14.118) in Cox
(1968, Chap. 14).

Fc can be viewed as function of α and ∇, Fc = h(∇, α),
where h is given by the adopted model of convection.

ECGM and EMLT models: for these two models only one
mixing-length parameter is involved and Fc can directly be re-
trieved from α and ∇.

KCGM and KMLT models: in the outer region (τ < τ1),
as well as in the interior region (τ > τ2), values of Fc can
be directly retrieved from α and ∇. In the transition region
(τ1 < τ < τ2), however, we have to deal with two functions
for the convective flux: F(i)

c = h(∇i, αi), the convective flux cal-
culated as in the interior, and F(a)

c = h(∇a, αa), the convective
flux calculated for the atmosphere. As a result of Eq. (1), the
convective flux Fc of the model in the transition region can be
related to F(i)

c and F(a)
c as follows:

Fc = λ(τ)F
(a)
c + (1 − λ(τ))F(i)

c (3)

where λ(τ) is – like β(τ) (Eq. (1)) – a function of τ, which en-
sures the continuity of the convective flux. This function must
decrease with τ and must fulfill λ(τ) = 1 for τ ≤ τ1 and
λ(τ) = 0 for τ ≥ τ2. We point out that both F(i)

c and F(a)
c fulfill

Fc + Frad = L�/4πr2 at any optical depth τ. Just as for β(τ), the
choice λ(τ) is rather arbitrary. As for the case of ∇ (Eq. (1)),
we assume λ(τ) = β(τ) = (τ2 − τ)/(τ2 − τ1) for τ1 < τ < τ2.
Figure 3 shows Fc as a function of τ for the KMLT and KCGM
models.

Calculation of the driving by the entropy source term re-
quires, in addition to the convective flux (Fc), a model for
the mean anisotropy (Φ̄). In the CGM model of convection,
the expressions for v2 and Fc do not depend explicitly on the
mean anisotropy factor Φ̄. However, CGM adopt a model of
anisotropy which fixes the ratio x ≡ kh/kv, where kh and kv
are the horizontal and vertical wavenumbers associated with
the eddy of wavenumber k (note that k2 = k2

h + k2
v ). As a re-

sult of that model, for the largest scales x = 1/2, while it
increases quadratically with the total wavenumber k for the
smaller scales. Let us defineΦ(k) ≡ u2(k)/u2

z (k), a k-dependent
anisotropy factor. For an incompressible fluid – a property as-
sumed by the models investigated here (see also CM91) – one

can show that Φ(k) = 1 + x−1. Hence x = 1/2 implies Φ = 3,
i.e. an isotropic velocity field. As a result of its functional de-
pendence on k, from the larger scales (k ∼ k0) to the smaller
scales (k � k0) Φ(k) decreases in the CGM model from ∼3 to-
wards ∼1. However, we recall that the model of stochastic exci-
tation (MSE) we consider is basically isotropic. The anisotropy
is taken into account only at large scales through Gough’s mean
anisotropy factor (Φ̄). Therefore, although CGM’s treatment
adopts a model where the anisotropy varies with k, we are left
with the inconsistency that the turbulent spectrum, E(k), as-
sumed for the MSE (see Sect. 4.1), is isotropic along the turbu-
lent cascade. A possible anisotropy is only taken into account
at large scales through Φ̄. But as the modes are predominantly
excited by turbulent eddies with k ∼ k0, which carry most of
the kinetic energy, this approximation is not expected to affect
our prediction significantly. Hence, we assume Φ̄ = 3 for the
CGM models in the discussion given below.

3.2. Convective velocity

Driving of the oscillation modes by the Reynolds term is pro-
portional to ρ0v

4.
Like the convective flux, the convective velocity v can be

viewed as a function of ∇ and α, i.e. v = f (∇, α), where
the function f depends on the formulation of convection.
For the CGM treatment, v = f (∇, α) is computed accord-
ing to Eqs. (88)–(90) of CGM. For the MLT approach, we
first compute w(∇, α) according to Eq. (14.110) of Cox (1968,
Chap. 14). We then deduce v = f (∇, α) from Eq. (2) with Φ̄ = 2
consistently with BV’s formulation of the MLT (see Gough
1977).

ECGM and EMLT models: as for the convective flux, v can
be retrieved from α and ∇.

KCGM and KMLT models: in the outer region (i.e. τ < τ1),
as well as in the inner region (τ > τ2), only one α and one
∇ are defined. In those regions v is computed as v = f (∇, α).
However, in the transition region we must deal with two differ-
ent values of α (namely αi and ∇i from the inner region and αa

and ∇a from the atmosphere) and v is not a linear function of α.
We thus face the difficulty of properly defining a convective
velocity consistent with Fc (Eq. (3)) in this region.

We proceed as follows: ∇(τ) and Fc(τ) are defined by
Eqs. (1) and (3), respectively. Then, at fixed ∇ and τ, we
define an equivalent mixing-length parameter, α∗, such that
Fc = h(∇, α∗). This parameter is variable with depth. We next
compute v = f (∇(τ), α∗) which is thus consistent with Fc of
Eq. (3).

Figure 3 (middle and bottom) shows α∗ and v as a function
of depth. For the MLT models, our calculation of v assumes
Φ̄ = 2, which is consistent with BV’s formulation of the MLT
(see Gough 1977), and for the CGM models it assumes Φ̄ = 3.

3.3. Comments

As shown in Fig. 3, the EMLT and KMLT models have very
different convective structures: up until close to the top of the
superadiabatic region (located at R� − r ∼ 70 km for those
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models), the EMLT model results in a convective velocity and
convective flux smaller than those of the KMLT model. This
is a consequence of the fact that αEMLT < αKMLT

i (see Tables 1
and 3). On the other hand, the EMLT model results in larger v
and Fc above the top of the superadiabatic region because
αEMLT > αKMLT

a = 0.5.
In contrast with the MLT models, the KCGM and ECGM

models have rather similar convective structures. Indeed,
vKCGM and vECGM (FKCGM

c and FECGM
c resp.) have very simi-

lar shapes. This in turn is a consequence of the fact that the
CGM models require values of αKCGM

i and of αECGM close to
that one required for the atmosphere (αa = 0.5).

For the KMLT model, there is a pronounced “kink” at the
bottom boundary of the transition region (i.e. at τ = 20 or R� −
r = 100 km), especially for v. For the KCGM model, the “kink”
is much less important. These features are directly connected
with the angular point observed for∇ in that layer (see Sect. 2.3
and Fig. 2).

At the bottom of the transition region (i.e. at τ = τ2), for
both the KMLT and KCGM models, α∗(τ) reaches – as ex-
pected – the “interior” value of the mixing-length parameter
(i.e. αi), namely: αKCGM

i = 0.78 and αKMLT
i = 2.51. At the top

of the transition region (i.e. at τ = τ1), α∗(τ) reaches for both
the KCGM and KMLT models the asymptotic value α∗ � 0.50.

4. Calculation of the solar p mode excitation rates

4.1. Procedure

We compute the rate P at which acoustic energy is injected
into solar radial p-modes according to the theoretical model of
stochastic excitation of Paper I, and assume here – as in Paper II
and Paper III – that injection of acoustic energy into the modes
is isotropic and consider only radial p modes. The rate at which
a given mode with frequency ω0 = 2πν0 is excited is then cal-
culated with the set of Eqs. (1)–(11) of Paper III and Eq. (3) of
Samadi et al. (2005).

The calculation requires the knowledge of three different
types of quantities. First of all, quantities which are related to
the average properties of the medium:

• the mean density ρ, αs (Eq. (A.5)), the mean square convec-
tive velocity v2, and the mean square of the entropy fluctua-
tions s2 (Eq. (A.6)). They are obtained from the equilibrium
models as explained in Sect. 3.

Secondly, quantities which are related to the oscillation modes:

• the eigenfunctions ξr and the eigenfrequency ν. They are
computed with the adiabatic pulsation code FILOU (Tran
Minh & Leon 1995) for each model.

Finally, quantities which are related to the properties of the tur-
bulent flow:

• the wavenumber (k) dependency of E, i.e. the turbulent ki-
netic energy spectrum;
• the values and depth dependency of k0, the wavenumber

at which the convective energy has its maximum and is “in-
jected” into the inertial range of the turbulent kinetic energy
spectrum E;

Fig. 4. The computed solar p mode excitation rates, P(ν), are plotted
versus the frequency for the KMLT (dashed line), EMLT (dot-dashed
line), ECGM (dot-dot-dot-dashed line), and KCGM (solid line) mod-
els. The filled circles represent the “observed” solar values of P(ν)
derived – according to Eq. (4) – from the amplitudes and line widths
of the � = 0 p-modes measured by Chaplin et al. (1998).

• the ν-dependency of χk, the frequency component of the
auto-correlation product of the turbulent velocity field.

According to the results in Papers II and III obtained on
the basis of a 3D numerical solar granulation simulation, the
k-dependency of E(k, ν) is approximately reproduced by an
analytical spectrum called “Extended Kolmogorov Spectrum”
(EKS) and defined in Musielak et al. (1994). The ν-dependency
of χk is found to be better modelled with a Lorentzian function
rather than by a Gaussian function, which is usually assumed
for χk (see Paper III). Within most parts of the excitation re-
gion, the spatially averaged anisotropy factor Φ̄ is found almost
constant with a value of Φ̄ ∼ 2 in agreement with BV’s value.

At the top of the superadiabatic region, it was found that
k0 ∼ 3.6 Mm−1 and that k0 decreases slowly inwards with depth
(see Paper II). A good approximation for our region of interest
within the Sun is to assume a constant k0.

4.2. Comparison with the observations

Results for P are presented in Fig. 4. The theoretical esti-
mates for P are compared with the “observed” Pobs, calculated
from the seismic data of Chaplin et al. (1998) according to the
relation:

Pobs(ν) = 2π Γ
I

ξ2r (rs)
v2s(ν) = 2π ΓM v2s(ν), (4)

where: ν is the mode frequency; rs is the radius at which oscil-
lations are measured;

I ≡
∫ M

0
dm ξ2r (5)

is the mode inertia; M = I/ξ2r (rs) is the mode mass; and fi-
nally Γ and vs are the mode line-width and the mode surface ve-
locity, respectively, and are obtained from Chaplin et al. (1998).
We point out that, according to the definition of Eq. (4), the de-
rived value of Pobs depends on the model one considers through
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Fig. 5. The integrand dP/dm (Eq. (2) of Paper II) is plotted versus
R� − r for a mode with order n = 20 (n = 1 being the fundamen-
tal mode) for the KMLT model (dashed line), EMLT model (dot-
dashed line), ECGM model (dot-dot-dot-dashed line), and KCGM
model (solid line).

M. Indeed, for a given mode, M – a priori – differs from one
model to another. However, the mode masses of the models
we consider here are very close to each other such that the
changes on Pobs due to the use of the mode mass of the different
models are not significant compared to the error bars attached
to the measurements. For each mode, we can then compute a
unique value for Pobs and compare the values of P obtained for
the different models to each other and to Pobs. We choose to
derive M from the radial eigenfunctions ξr computed for the
KCGM model and adopt rs = R� + 200 km consistently with
the Chaplin et al. (1998) observations.

As shown in Fig. 4, differences between PKCGM and PECGM

are found smaller than the error bars associated with Pobs from
Chaplin et al. (1998). This is a consequence of the fact that
the ECGM and KCGM models present very similar convective
structures (see Sect. 3.3 and Fig. 3). On the other hand, PKMLT

is found significantly larger than PEMLT as a consequence of the
fact that the KMLT models result in larger v and Fc values than
the EMLT ones (see Sect. 3.3 and Fig. 3) for τ � 10 . . .20.

Furthermore, PKCGM and PECGM are found closer to Pobs

than PKMLT. However, above ν � 2.5 mHz, differences be-
tween Pobs and PKCGM (or PECGM) remain important. The ori-
gin of this discrepancy is discussed in Sect. 5.

For the KCGM and ECGM models, we have so far assumed
Φ̄ = 3. According to Eq. (A.6), assuming Φ̄ = 2 – a value
which is consistent with results from the 3D solar simulation
– results in a driving by the entropy source smaller by a fac-
tor ∼2/3 compared to the case Φ̄ = 3. This decrease, however,
remains small compared to the difference in P between the dif-
ferent models and hence does not influence our main results.

We present in Fig. 5 the integrand dP/dm (Eq. (2) of
Paper II) corresponding to the excitation rate P of a mode of
order n = 20. The plot is done for the four solar models. For
three of the four models the extent of the region where most
of the excitation takes place is very thin (less than 50 km).
Obviously, this is the consequence of the very shallow extent
of the superadiabatic region (see Fig. 2). This tiny extent of the

excitation region strongly contrasts with the one found in Stein
& Nordlund (2001) and in Paper III. For instance, those authors
found a size of the order of ∼500 km for a mode of the same or-
der. This discrepancy is attributed to the local nature of the con-
vective treatments investigated in this work (see Sect. 5). Note
that in Fig. 5 the EMLT model, with its large value of α for
the entire superadiabatic region, predicts a broader excitation
region than the other models. This is due to a smaller superadi-
abatic peak. However, in this model the transport of convective
heat occurs with a smaller convective velocity and hence, as ex-
pected, the excitation is smaller than for the other models. We
note here that despite the EMLT model results in a temperature
structure closer to the numerical simulations (smaller supera-
diabatic peak), the predicted excitation amplitudes are smaller
than for the other models investigated here and are the most
discrepant in comparison with the data. This confirms that ex-
citation rates provide a decisive additional test for convection
models.

5. Conclusions

We have computed the rates P at which acoustic energy is in-
jected into the solar radial p modes for several solar models.
The solar models are computed with two different local treat-
ments of convection: MLT and CGM.

For one set of solar models (EMLT and ECGM models), the
atmosphere is gray and assumes Eddington’s approximation.
The models assume only one mixing-length parameter value
and reproduce the solar radius at solar age but not the Balmer
line profiles. For a second set of models (KMLT and KCGM
models), the atmosphere is built using a T (τ) law which was
obtained from a Kurucz’s model atmosphere computed with the
same local treatment of convection. The mixing-length param-
eter in the model atmosphere is chosen so as to provide good
agreement between synthetic and observed Balmer line pro-
files, while the mixing-length parameter in the interior model
is calibrated so that the model reproduces the solar radius at
solar age.

Both the KMLT and the KCGM models reproduce the
Balmer line profile and the solar radius and luminosity but – as
shown in Figs. 2–4 – the CGM models model the transition be-
tween the region of high convective efficiency (the interior) and
the region of low efficiency (the atmosphere) in a more realistic
way than do the MLT models, as they reproduce the observed
excitation rate P more closely and predict a smoother transition
region. Furthermore, the KMLT model requires a change of the
mixing-length by a factor of five in a layer of ∼20 km thick-
ness, which is significantly less than a pressure scale height
(∼300 km). Given the meaning of alpha, this means that the
mixing-length varies from about 150 km to 750 km in a layer
of ∼20 km thickness (!), which does not make much sense from
a physical point of view. On the other hand, the KCGM model
does not require such large change in α.

For the MLT treatment, the oscillation excitation rates, P,
do significantly depend on the properties of the atmospheres
investigated here. Indeed, differences in P between the EMLT
model and the KMLT model are found to be very large. On the
other hand, for the CGM treatment, differences in P between
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the ECGM and the KCGM models are very small compared to
the error bars attached to the seismic measurements. This result
shows that an Eddington gray atmosphere can be assumed for
the calculation of P when the CGM formulation is adopted.
This would be particulary convenient in the case of massive
computations of P for a large set of stellar models.

For the EMLT and KMLT models, P is significantly under-
estimated compared to the solar seismic constraints obtained
from the Chaplin et al. (1998) measurements. KCGM and
ECGM models yield values for P closer to the seismic data than
the EMLT and KMLT models. Contraints on the Hβ Balmer line
profile and on the solar radius can be satisfied by the two for-
mulations (MLT and CGM), provided that the mixing-length
parameters αi and αa are suitably adjusted. Once the above
constraints are satisfied, the solar seismic data provide addi-
tional valuable constraints and, according to the present inves-
tigation (focussed on local approaches), they cleary favor the
CGM treatment.

Our calculations are based here on Grevesse & Noels
(1993)’s solar abundances. There was recently a change in
these values (see Asplund et al. 2004, 2005) with quite some
implications for the internal structure of the Sun (see Basu &
Antia 2004; Montalbán et al. 2004; Bahcall et al. 2005; Antia
& Basu 2005). Then the implication for the calculation of the
excitation rates (P) must in principle be tested consistently by
changing the solar mixture both in the interior and the atmo-
sphere (work in progress). However, we expect small changes
in P. Indeed, as a first step we calculated a solar model hav-
ing the low metallicity Z/X = 0.0171 inferred from the new
Asplund et al. (2004)’s revised solar abundances, in which the
interior calculation is based on the detailed Asplund et al. mix-
ture and associated opacities, while the atmosphere considers
the low metallicity but keeps the Grevesse & Noels (1993)’s so-
lar abundances and associated opacities. Changes in P smaller
than ∼10% – much smaller than the errors bars (∼20%) associ-
ated with the current measurements – were obtained.

The remaining discrepancy above ν � 2.5 mHz between
computed and observed P (Fig. 4) is attributed to the assump-
tion of locality in the present treatment of convection. As a
matter of fact, Samadi et al. (2003b, Paper III) have succeeded
in reproducing the seismic constraints much better using con-
straints from a 3D solar granulation simulation. One reason
for this improvement is that convection is intrinsically a non-
local phenomenon. In the terminology of classical turbulence
modelling, the eddies located at different layers contribute to
the convective flux of a given layer (cf. also the discussion
in Houdek 1996). Hence, a non-local description of convec-
tion is expected to predict a more extended superadiabatic re-
gion. This is suggested, for instance, by the comparison of
our present results with that of Paper II. Non-local theories –
such as those by Gough (1977) and by Canuto & Dubovikov
(1998) – also support this explanation by typically predicting a
smaller temperature gradient in the superadiabatic region than
the local theories do (see Houdek 1996; Kupka & Montgomery
2002), and thus a more extended superadiabatic region as well.
Another property of solar granulation caused by non-locality
is the observed asymmetry between the areas covered by up-
and downflows. This allows for a lower root mean square

velocity while larger velocities (and thus more effective mode
driving) can be reached in the downflows with their much
higher velocities (note that such an asymmetry can be ac-
counted for through non-local models as proposed by Canuto
& Dubovikov (1998, see also Kupka & Montgomery 2002),
although in a more simplified manner). On the other hand, the
local models studied here cannot account for the different prop-
erties of up- and downflow areas at all. Hence, the superadia-
batic region in these models is physically different from the one
expected from non-local models and found in numerical simu-
lations. Solar modes above ν � 2 mHz, however, are predomi-
nantly excited in the superadiabatic region (Paper III). A larger
amount of acoustic energy is then injected into those modes
when convection is treated – as is in the 3D simulation or on
the base of a non-local theory – in a more realistic manner than
through local theories.

The results presented here so far only concern our Sun.
Samadi et al. (2003a) found that P scales as (L/M)s where s
is the slope of the power law and L and M are the mass and lu-
minosity of their computed 1D stellar models. By building a set
of stellar models with the MLT and another one with Gough’s
(1977) non-local formulation of convection, the authors found
that the slope s is quite sensitive to the 1D treatment of con-
vection. In this respect, it would be interesting to compare the
influence of the CGM formulation or of Canuto & Dubovikov’s
(1998) non-local convection treatment on the value of s and to
test whether or not measurements of P can – for stars other than
the Sun – distinguish the best 1D treatment of convection.
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Appendix A: Relation between the entropy
fluctuations and the convective flux

As in Paper I, we relate the entropy fluctuations, st, to temper-
ature fluctuations, θ, as follows:

st =
cp

T0
θ, (A.1)

where T0 is the mean temperature and cp = (∂s/∂ ln T )p.
Hence, the mean square of the entropy fluctuations, 〈s2

t 〉, can
be expressed as

〈
s2

t

〉
≈

(
cp

T0

)2 〈
θ2

〉
. (A.2)

The convective flux is related to θ and uz, the vertical compo-
nent of convective velocity, as

Fc ≈ ρ0 cp 〈uz θ〉, (A.3)
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where ρ0 is the mean density. We furthermore assume, consis-
tently with the adopted quasi-normal approximation in Paper I,
that 〈uz st〉2 can be decomposed as

〈uz st〉2 = 〈u2
z 〉 〈s2

t 〉 = w2 〈s2
t 〉. (A.4)

Finally, one can show that

αs ≡
(
∂p
∂s

)
ρ

= ρ0T0Γ1∇ad, (A.5)

where s is the entropy and p the pressure, T0 is the mean
temperature, Γ1 = (∂ ln p/∂ ln ρ)s is the adiabatic exponent, and
∇ad = (∂ ln T/∂ ln p)s is the adiabatic temperature gradient.

The mean square of the entropy fluctuations can then be
deduced from the set of Eqs. (A.1)–(A.5) and (2):

〈
s2

t

〉
≈ Φ̄

3

(
Fc

ρ0T0u0

)2

, (A.6)

where Φ̄ is the spatially averaged anisotropy factor, which is
defined in Eq. (2). Driving by the entropy source term is then
proportional to (αs/ρ0T0)2

(
Φ̄/3

)
F2

c – see Paper I – and thus
scales like the square of Fc.
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