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ABSTRACT

Context. The gas distribution and dynamics in the inner Galaxy present many unknowns, such as the origin of the asymmetry of the
lv-diagram of the Central Molecular Zone (CMZ). On the other hand, there is recent evidence in the stellar component of the presence
of a nuclear bar that may be slightly lopsided.
Aims. Our goal is to characterize the nuclear bar observed in 2MASS maps and to study the gas dynamics in the inner Milky Way
taking into account this secondary bar.
Methods. We have derived a realistic mass distribution by fitting the 2MASS star count map with a model including three components
(disk, bulge and nuclear bar) and we have simulated the gas dynamics in the deduced gravitational potential using a sticky-particles
code.
Results. Our simulations of the gas dynamics successfully reproduce the main characteristics of the Milky Way for a bulge orientation
of 20◦–35◦ with respect to the Sun-Galactic Center (GC) line and a pattern speed of 30–40 km s−1 kpc−1. In our models the Galactic
Molecular Ring (GMR) is not an actual ring but the inner parts of the spiral arms, while the 3-kpc arm and its far side counterpart are
lateral arms that extend around the bar. Our simulations reproduce, for the first time, the parallelogram shape of the lv-diagram of the
CMZ as the gas response to the nuclear bar. This bar should be oriented by an angle of ∼60◦–75◦ with respect to the Sun-GC line and
its mass amounts to (2–5.5) 109 M�. We show that the observed asymmetry of the CMZ cannot be due to lopsidedness of the nuclear
bar as suggested by the 2MASS maps.
Conclusions. We do not find clear evidence of lopsidedness in the stellar potential. We propose that the observed asymmetry of the
central gas layer can be due to the infalling of gas into the CMZ in the l = 1.3◦-complex.

Key words. Galaxy: structure – Galaxy: center – Galaxy: kinematics and dynamics – ISM: kinematics and dynamics –
methods: numerical

1. Introduction

Studying the structure and the dynamics of the Milky Way
galaxy is necessary to understand its formation and evolution.
For example, the large scale star formation rate, the gas transfer
to the nucleus and the fueling of the central super-massive black
hole are strongly influenced by the large scale dynamics of the
Galaxy.

At least three components are needed to explain the rotation
curve of the Galaxy: a disc, a bulge and a massive dark halo.
In near-infrared images, the bulge is a triaxial structure difficult
to distinguish from a bar. The first direct evidence of the barred
nature of the Milky Way was found by Blitz & Spergel (1991).
The analysis of COBE/DIRBE data (Dwek et al. 1995; Binney
et al. 1997; Freudenreich 1998) supported Blitz & Spergel re-
sults. Dwek et al. (1995) found that the peanut-shaped bulge
seen in the COBE image is best fitted by boxy Gaussians func-
tions. Since COBE, direct evidence of the bar has increased
based on photometric surveys and star counts in the near-infrared
(see for instance López-Corredoira et al. 2000, 2005; Babusiaux
& Gilmore 2005, and references therein). Although there is a
consensus on the triaxial nature of the bulge, the actual shape
and the inclination is still under debate with currently no clear
agreement among different authors. The inclination angles found

� Tables 3–6 are only available in electronic form at
http://www.aanda.org

range from ∼10◦–15◦ (Binney et al. 1991; Freudenreich 1998;
Lopez-Corredoira et al. 1997) to ∼30◦–45◦ (Weiner & Sellwood
1999; Sevenster 1999; López-Corredoira et al. 2001) with a
number of works giving values in the range 15◦–30◦ (Mulder &
Liem 1986; Binney et al. 1997; Fux 1999; Englmaier & Gerhard
1999; Bissantz & Gerhard 2002; Bissantz et al. 2003; Babusiaux
& Gilmore 2005; López-Corredoira et al. 2005).

In addition to the bar-like boxy-bulge, some recent works
have also proposed the existence of another bar that would be
longer and thinner than the bulge (Picaud et al. 2003; López-
Corredoira et al. 2001, 2007; Benjamin et al. 2005). As with
the bulge, the near side of this long and thin bar would also be
located in the first Galactic quadrant. In contrast, the long bar
would be oriented at an angle of ∼45◦ with respect to the line of
sight towards Galactic center. In the present paper we will not
discuss this component as the mass should be dominated by the
bulge. Hereafter, we will refer to the triaxial boxy bulge as the
“large bar” or simply “bulge”.

Due to the difficulty of measuring stellar velocities, most
of our knowledge of the Galactic dynamics comes from spec-
troscopic observations of the atomic and molecular interstellar
medium (Rougoor & Oort 1960; Scoville 1972; Liszt & Burton
1978; Bally et al. 1987; Dame et al. 2001). The gas exhibit large
non-circular motion in the inner Galaxy. Among the possible
explanations for these kinematics, de Vaucouleurs (1964) pro-
posed a gas response to a bar potential. This explanation has also
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been discussed in other observational works such as those of
Kerr (1967); Bania (1977) or Liszt & Burton (1978).
Nevertheless, it is the comparison of the observations with nu-
merical simulations of the gas dynamics that have allowed us to
better understand the structure of the Galaxy and to derive im-
portant dynamical information, such as the pattern speed of the
bar. The first attempt was that of Mulder & Liem (1986) solving
the gas-dynamical equations to obtain the gas flow in a weak bar
for the whole Galaxy.

A major step in our understanding of the gas kinematics in
the Galactic Center was the paper by Binney et al. (1991). These
authors compared of the CO(1–0) and HI longitude-velocity dia-
grams (hereafter lv-diagram) of Bally et al. (1987) and Burton &
Liszt (1978), with the lv locus of closed stellar orbits in a bar po-
tential (X1 and X2 orbits). The lv-diagram of the molecular gas in
the inner ∼4◦ of the Galaxy shows a parallelogram shape that re-
sembles the lv locus of the cusped X1 orbit for a bar with an incli-
nation of ∼16◦. In spite of the globally successful interpretation
of the CO and HI lv-diagrams, the Binney et al. (1991) model
cannot account for the observed asymmetry of the CO parallel-
ogram, which is lopsided towards positive longitudes while the
modeled parallelograms are centered at longitude 0◦. In addition
the expected upper right vertex of the locus of the cusped X1
orbit has a velocity close to 0, while the upper right vertex of
the observed CO parallelogram shown in Fig. 2 of Binney et al.
(1991) has a velocity of ∼150 km s−1.

The qualitative insight into the gas dynamics that one could
obtain by comparing the lv-diagram of the gas with that of a
few stellar orbits should be tested by performing simulations of
the gas dynamics that take into account the dissipative nature of
the gas clouds. This was done by Jenkins & Binney (1994), who
tried to reproduce the lv-diagram of the CMZ using a sticky-
particles code but with moderate success. Using a combina-
tion of SPH and collisionless particles, Lee et al. (1999) were
able to reproduce an inner ring with the right inclination in the
lv-diagram and also some of the gas clouds with non-circular
velocities in the range |l| < 6◦.

To our knowledge, the works by Binney et al. (1991); Jenkins
& Binney (1994) and Lee et al. (1999) are the only dynamical
models that have tried to interpret the dynamics of the complex
Galactic center region (the central 500 pc). Other Galactic dy-
namics models have been mainly devoted to larger scales, from
the works of Mulder & Liem (1986) and Wada et al. (1994) to the
more recent works by Fux (1999); Englmaier & Gerhard (1999);
Weiner & Sellwood (1999) and Bissantz et al. (2003). The bar
pattern rotation speed for most of those models are in the range
of 40 to 60 km s−1 kpc−1. The corotation radius is estimated to
be in the range 3–4 kpc by some works (Englmaier & Gerhard
1999; Bissantz et al. 2003; Habing et al. 2006) and in the range
4–5 kpc by other works (Combes 1996; Sevenster 1999; Fux
1999). In contrast, Binney et al. (1991) placed the corotation
at 2.4 kpc and found a pattern speed of 80 km s−1 kpc−1. As
pointed out by Combes (1996), the discrepancy between the
Binney et al. estimation and other estimations can be due to the
fact that the molecular gas distribution in the Galactic center re-
gion used by Binney et al. could be the response to a small nu-
clear bar instead of the large bar of the Galaxy.

Indeed, there is recent evidence of the presence of a distinct
structure in the nuclear region of the Galaxy. The star counts
map made by Alard (2001) with 2MASS data shows an excess
of counts in the inner four degrees of the Galaxy that resembles a
small nuclear bar. This bar could be lopsided with the barycenter
displaced to negative longitudes. Nishiyama et al. (2005) have

also found evidence of a structure different to the large bar or
bulge in the inner degrees of the Galaxy.

In the present paper, we investigate the gas response to the
mass distribution inferred from the 2MASS data. In particular,
we model the central mass distribution as a small nuclear bar.
We are interested in the role of this nuclear bar in explaining the
differences between the results of previous works (Binney et al.
1991; Fux 1999; Combes 1996). We also want to study whether
a lopsided nuclear bar could explain the apparent lopsidedness
of the molecular gas distribution in the nuclear region, whose
complex dynamics are far from being understood. Therefore,
we have modeled the 2MASS star counts maps of Alard fitting
different parametric functions using three components: a disc,
bulge/bar and nuclear bar. We use that mass distribution to deter-
mine the galactic stellar potential and to model the gas dynamics
using a N-body code that takes into account cloud collisions.

Nested bars are common in external galaxies. As much as
one third of barred galaxies have a secondary nuclear bar (Laine
et al. 2002). In some cases the secondary bar is coupled with the
primary bar (Shaw et al. 1993) while in other cases the two bars
rotate with different speeds (Wozniak et al. 1995). The present
paper is the first one dealing with the gas flow in the Milky
Way nested bars and we will assume that both bars are dynami-
cally coupled (they rotate with the same speed). As we discuss in
Sect. 8, this seems a good assumption since our simulations ex-
plain for the first time some characteristics of the inner Galaxy.

The paper is organized as follows: in the next section we
summarize our understanding of the distribution and kinematics
of the interstellar gas. In Sects. 3 and 4 we present the 2MASS
star counts model and the fits to the data. The gas dynamics sim-
ulations are described in Sect. 5, and the results are presented in
Sects. 6 and 7. We discuss the nature of the nuclear bar in Sect. 8.
Our conclusions are summarized in Sect. 9.

2. The distribution and kinematics
of the interstellar gas

In this section we summarize visible structures in the longitude-
velocity diagram (hereafter lv-diagram) of the interstellar gas.
The large scale lv-diagram derived from observations of the
CO(1–0) line by Dame et al. (2001) is shown in Fig. 1 while
Fig. 2 shows the lv-diagram of the nuclear region derived also
from CO(1–0) observations by Bally et al. (1987). We also dis-
cuss the plausible face on view of the Galaxy. The different fea-
tures discussed here will be used in the following sections to
compare with our simulations of the gas dynamics.

2.1. The terminal velocity curve

The terminal velocity curve (TVC) is not a kinematic feature
in itself as many independent features contribute to this curve
at different Galactic longitudes. However, we discuss it here
since it has been used to constrain several dynamical models
of the Milky Way (Binney et al. 1991; Weiner & Sellwood
1999; Englmaier & Gerhard 1999; Bissantz et al. 2003). There
have been different determinations of the TVC using CO and
HI data (Fich et al. 1989; Burton & Liszt 1993; Clemens 1985;
Alvarez et al. 1990). The dispersion of the TVC points derived
by different authors is typically 10 km s−1 (see for instance
Fig. 6 of Bissantz et al. 2003). The TVC measurements by Fich
et al. (1989) and Burton & Liszt (1993) are shown in Fig. 1
and in the figures showing the simulation results. In addition,
in Fig. 1 we have indicated with boxes the Sagittarius, Scutum,



N. J. Rodriguez-Fernandez and F. Combes: Gas flow models in the Milky Way embedded bars 117

Fig. 1. Longitude-velocity (lv) diagram of the CO(1–0) emission (Dame et al. 2001). The solid lines trace the position of some remarkable features
such as the locus of the spiral arms, the 3-kpc arm and the Connecting Arm. The black dashed lines indicate the contour of the Galactic Molecular
Ring. The solid circles are the terminal velocities measurements of Fich et al. (1989) using CO while the triangles are the terminal velocities
determined from the HI data of Burton & Liszt (1993). The boxes mark the position of the Sagittarius, Scutum, Norma and Centaurus tangent
points, located respectively at l ∼ 50◦, 30◦, −30◦ and −50◦. The lines concerning the Nuclear Disk or Central Molecular Zone are blue but they
are better shown in the next figure. All these lines can be used to compare with the figures showing the simulations results.

Norma and Centaurus tangent points, located respectively at
l ∼ 50◦, 30◦, −30◦ and −50◦ (see for instance Dame et al. 2001;
Englmaier & Gerhard 1999).

2.2. Spiral arms

Many works have studied the spiral structure of the Galaxy using
different tracers such as HII regions, atomic and molecular gas
or photometric observations in different bands from the near to
the far infrared. The different models of the spiral arms have two
arms (Bash 1981, using HII regions; Drimmel & Spergel 2001,
using K-band observations; Benjamin 2008, using Spitzer), three
(Nakanishi & Sofue 2003; Kulkarni et al. 1982, using HI) or
four arms (Georgelin & Georgelin (1976) using HI regions;
Nakanishi & Sofue (2006) using CO or Drimmel (2000) us-
ing the 240 micron luminosity). Deprojecting a given data set
to find the face on view of the Galaxy is a difficult task in partic-
ular for the inner Galaxy. For instance, the kinematical distances
based in the rotation curve are not accurate due to the presence
of important non-circular motion. Furthermore, after perform-
ing the deprojection there is an uncertainty as to how different
structures are associated with a common arm (see Nakanishi &
Sofue 2006). Different authors have even fitted different spirals
to the same data. A plausible explanation for the discrepancy
between the two arms derived from stellar tracers (K band) and
the four arms that are found in most of the interstellar tracers

is that the Milky Way has two stellar spiral arms but the gas
response is a four-armed spiral (Drimmel 2000). In any case, the
major arms are logarithmic with pitch angles of 10◦–15◦. In ad-
dition, to these grand-design spirals there is a more flocculent
structure giving a number of minor arms like the Local Arm,
which is a small arm linked to the Perseus spiral arm. In order
to compare with our simulations, in Figs. 8, 9 and 10 we have
traced the sketch of the logarithmic spiral arms of Nakanishi &
Sofue (2006), which are very similar to the classical spirals of
Georgelin & Georgelin (1976). The locus of different spiral arms
in the lv-diagram are shown in Fig. 1. The Carina arms deserves
a special mention since the Carina tangent point is clearly seen
at l ∼ −80◦.

The determinations of the speed of the spiral pattern give
values in the range from 13.5 to 59 km s−1 kpc−1 (Lin et al.
1969; Fernández et al. 2001; Bissantz et al. 2003; Martos et al.
2004; Debattista et al. 2002). Thus, the spiral pattern speed could
be lower that the bar one.

2.3. The Galactic Molecular Ring

The so-called Galactic Molecular Ring (GMR) is one of the most
prominent structures in the lv-diagram (Fig. 1). The locus of the
GMR is more or less a diagonal line that passes trough the origin
as a circular ring would do. If the GMR is a real ring, it could
be associated with a resonance. Binney et al. (1991) proposed
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that the GMR could be located at the Outer Linblad Resonance.
Other models that place the corotation farther out have suggested
that the GMR could be better explained by the Ultra Harmonic
Resonance (Combes 1996).

However, the real spatial distribution of the GMR is not
known and it could be composed of imbricated spiral arms in-
stead of being an actual ring. Some authors (see for instance
Englmaier & Gerhard 1999) consider that, if formed by several
arms, the GMR should be located outside of the corotation since
they exhibit almost circular velocities. In their face-on deprojec-
tion of the neutral and molecular gas distribution, Nakanishi &
Sofue (2006) found that the GMR seems to be the inner part of
the Sgr-Carina arm (the far-side of the GMR) and the Scutum-
Crux arm (the near-side of the GMR).

2.4. Inner arms: the 3-kpc arm

The 3-kpc arm is clearly seen in the lv-diagram of Fig. 1 with a
velocity of –53 km s−1 at l = 0◦. The name of this feature comes
from a tangent point at l = −22◦ that corresponds to a distance
of ∼3 kpc. This arm is located in between the Sun and the GC
since the clouds in the arm absorb the radiation from the contin-
uum sources in the GC. The 3-kpc arm cannot be explained with
a combination of rotation and expansion (Burke & Tuve 1964)
and has been interpreted as a stationary density wave in a barred
potential (Mulder & Liem 1986). The simulations of Fux (1999)
suggest that it is a lateral arm that surrounds the bar while, in the
simulations by Englmaier & Gerhard (1999), it would be a small
arm arising from the extremity of the bar.

Sevenster (1999) and Habing et al. (2006) propose a differ-
ent explanation. Sevenster (1999) found old stars associated with
the 3-kpc arm. They interpret the fact that both old stars and gas
follow the same trajectories as the probe as that the arm would
be the locus of closed orbits and not a spiral density wave maxi-
mum. They propose that the 3-kpc arm has its origin near one of
the two points where the bar meets its corotation radius and that
the arm can be a channel to transport gas from the corotation to
the GC and to fuel the star formation in cloud complexes like
Sgr B2.

The recent discovery of the far-side counterpart of the 3-kpc
arm by Dame & Thaddeus (2008) will certainly contribute to
our understanding of the exact nature of these features (see
Sect. 6.3).

2.5. The connecting arm and Bania’s clumps: tracing
the dust lanes?

The “Connecting Arm” is clearly seen in Fig. 1 as a feature with
high inclination with a velocity of ∼100 km s−1 at l = 10◦ and
more than 250 km s−1 at l = 3◦. The name “Connecting Arm”
comes from the fact that it seems to be connected to the nu-
clear ring. This is a very puzzling structure that has not been
discussed much in the literature (see Fux 1999, for a short sum-
mary). On the one hand, Burton & Liszt (1978) and Liszt &
Burton (1980) suggested that the Connecting Arm could be the
edge of the HI ring found at a radius of ∼1 kpc (see below). On
the other hand, in one of his simulations, Fux (1999) obtained
a feature in the lv-diagram that resembles the Connecting Arm.
In that simulation, the Connecting Arm-like feature is the locus
of the off-axis shocks or dustlanes (since in the optical images
of barred galaxies the off-axis shocks are seen as dust lanes).
Marshall et al. (2008) also interpret the Connecting Arm as the
near side dustlane.

Fig. 2. Upper panel: longitude-velocity (lv) diagram of the CO(1–0)
emission in the Central Molecular Zone using data of Bally et al. (1987)
and integrating all negative Galactic latitudes. The solid lines trace the
position of some remarkable features such as Clump 2, or structures K
and J of Rodriguez-Fernandez et al. (2006). The dashed line indicates
the contour of the very crowded central region. Lower panel: integrated
intensity map.

However, in another of the simulations discussed by Fux
(1999) the locus of the dustlane in the lv-diagram is a verti-
cal feature extending approximately from a velocity of 0 km s−1

to 200 km s−1 at an almost constant longitude (see his Figs. 15
and 16). This looks like the “clumps” discussed by Bania (1977).
These clumps are cloud complexes found at l = 5.5◦ and l = 3.1◦
that exhibit a huge velocity dispersion of ∼200 km s−1 in a very
narrow range of longitude. A portion of the clump located at
l = 3.1◦ (known as Clump 2) is shown in Fig. 2. The Clump 2
has been interpreted as a dustlane by Stark & Bania (1986),
while in the Fux (1999) interpretation, Banias’s clumps would be
gas clouds that are about to enter the dustlane shocks, although
the actual dustlane would be the Connecting Arm as mentioned
above. This is also the interpretation of Liszt (2006, 2008), who
have studied in detail the spatial and velocity structure of all
these features.

2.6. The HI ring

The HI emission in the GC region can be modeled as a tilted
circular ring with an inner radius of ∼300 pc and outer radius of
1–1.5 kpc (Burton & Liszt 1978). This first model was improved
by Liszt & Burton (1980), who discussed that an elongated ring
could also explain the observations. The spatial distribution of
the interstellar gas in the innermost 3 kpc of the Galaxy has re-
cently been reviewed by Ferrière et al. (2007). The model that
they consider more plausible, despite its inherent uncertainties,
is that of Liszt & Burton (1980) since an elongated ring seems
to be easier to understand if it is composed of gas clouds moving
in elongated X1 orbits. Therefore, they modeled the HI ring as
an elliptical ring with a semi-major axis of 1.6 kpc, and an axis
ratio of 3.1, with an inner hole with semi-axis of 800 pc × 258 pc
that encloses the Central Molecular Zone (see below).

2.7. The Central Molecular Zone

The Central Molecular Zone (hereafter CMZ) refers to the cen-
tral accumulation of gas in the inner hundreds of parsec of the
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Fig. 3. Sketch of the different coordinates systems and angles used to
define the bars in the Galactic plane. The z and z′ axis are coincident
and the z > 0 semiaxis is in the northern Galactic hemisphere.

Galaxy. This gas is mainly molecular and extends continuously
from approximately −1.5◦ to 2◦ (see Fig. 2). The spatial dis-
tribution is not symmetric due to the prominent cloud complex
located at l = 1.3◦ (hereafter l = 1.3◦-complex) that lacks
a negative longitude counterpart. Figure 2 also shows the lv-
diagram of the CMZ. This plot has been obtained integrating
the CO(1–0) data of Bally et al. (1987) for negative Galactic
longitudes to reveal a number of kinematical component such as
Clump 2 (at l = 3.1◦), and the features K and J discussed by
Rodriguez-Fernandez et al. (2006).

The kinematics of the inner region are very complex with
a high fraction of the gas exhibiting non-circular velocities.
Figure 2 shows with a dashed line the contour of the inner CMZ
that contains the feature M of Rodriguez-Fernandez et al. (2006)
and the inner arms found by Sofue (1995). This contour resem-
bles a parallelogram but it is not the parallelogram that inspired
the Binney et al. (1991) work.

The whole lv-diagram shown in Fig. 2 is very different to
that used by Binney et al. (1991). These authors integrated the
CO data of Bally et al. (1987) over positive and negative latitudes
and studied the region 2.2◦ > l > −2.2◦. In their Fig. 2, the
feature K is not clearly detached from the inner lv parallelogram
and they considered that it is part of a larger lv parallelogram.
However, following the analysis of the Bally et al. (1987) data by
Rodriguez-Fernandez et al. (2006), we conclude that feature K
is a distinct kinematic feature. This conclusion is also supported
by the large scale (13◦ > l > −12◦) CO(1–0) survey by Bitran
et al. (1997), whose lv-diagram shows clearly that the feature K
extends to l ∼ 3◦ where it is connected to the Connecting Arm.

Interestingly, when one compares the lv parallelograms of
the X1 orbits displayed in Fig. 3 of Binney et al. (1991) to the
parallelogram shown in our Fig. 2, the upper right vertex is in
good agreement, showing velocities of ∼0 km s−1. Thus, one
of the apparent discrepancies (see Sect. 1) between the Binney
et al. (1991) model and the CO lv-diagram disappears.

3. Modeling the star count map

3.1. The star count map

We have modeled the 2MASS star count map of Alard (2001) to
determine a realistic stellar potential. In this section we summa-
rize the methods and the main conclusions of Alard’s work.

Using the H and K bands and assuming that we know the
intrinsic color of the sources (H and K), one can correct for
extinction one of the bands as follows:

mcorr
K = mK − [AK/(AH − Ak)][(mH − mK) − (H − K)] (1)

where mK,H are the observed apparent magnitudes in K and
H band (thus suffering extinction), AK,H is the extinction in each
band and mcorr

K is the extinction corrected magnitude in K band.
At the distance of the bulge a cutoff mK = 9 (see below) im-
plies that the sources are early M-giants (see Lopez-Corredoira
et al. 2001). Assuming an intrinsic color H − K for M giants of
∼0.17 (Binney & Merrifield 1998; Wainscoat et al. 1992) and
taking into account the relative extinctions Ak/Av = 0.112 and
Ah/Av = 0.175 (Rieke & Lebofsky 1985), one can write:

mcorr
K = mK − 1.77 (mH − mK) + 0.30. (2)

Alard (2001) defined the extinction corrected magnitude me ≡
mcorr

K − 0.30 as

me ≡ mK − 1.77 (mH − mK) (3)

and constructed his star count map using this magnitude with a
cutoff of 9 mag. In most of this map, the density profile at con-
stant longitude is exponential. This exponential profile is also
present in numerical simulations. Combes et al. (1990) showed
that a disk with a small bulge in its center can evolve into a
peanut shaped bar with a nearly exponential profile perpendic-
ular to the plane of the galaxy. However, Alard (2001) noticed
that the observed density profile in the inner four degrees of the
Galaxy shows an excess of sources in the plane. Subtracting an
exponential profile corresponding to disk and bulge, he found
that the residual seems to be a small, lopsided, nuclear bar in
the galactic center. This structure has not been found in previous
studies since the data lacked both the depth and the resolution.

3.2. The model

In this section we describe how we have modeled the 2MASS
star count map. The number of stars in a volume dV located at x
with a magnitude in the interval M and M + dM is:

dN = Φ(M, x)dMdV. (4)

If the distribution of magnitudes is the same in all the space we
can write Φ as Φ(M, x) = φ(M)ρ(x), where φ(M) is the luminos-
ity function (the fraction of stars with magnitude M) and ρ(x) is
the star density at the point x. Therefore, the total number of
stars with a magnitude M lower than a cutoff Mc is:

N =
∫

M<Mc

∫
v

dN =
∫ Mc

−∞

∫
V
φ(M)dMρ(x, y, z)dV. (5)

As the K band luminosity function φ(M), we have used the func-
tion given by Wainscoat et al. (1992), which is very similar to
that of Eaton et al. (1984). However, we work with extinction-
corrected apparent magnitudes m, which are related to the intrin-
sic magnitudes by:

M = m + 5 − 5 log10 s (6)

where s is the distance in pc. Therefore we actually deal with a
function of the apparent magnitude and the distance φ′(m, s).

Our model of the density distribution is given by three com-
ponents: a triaxial bulge or large bar, an exponential disk and a
small nuclear bar. The exact functional form of each component
is given below.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809644&pdf_id=3
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3.2.1. Disc

We use the exponential disc of Wainscoat et al. (1992), which is
defined as:

ρD(r, z) = ρ0 exp

(
− (r − D)

hr
− |z|

hz

)
(7)

where ρ0 is the star number density in the solar neighborhood,
D is the distance from the sun to Galactic center, hz and hr are
vertical and radial scale parameters, respectively.

3.2.2. Triaxial bulge

From the COBE/DIRBE images we know that the bulge of the
Milky Way is boxy (Dwek et al. 1995). The 2MASS data confirm
this result (López-Corredoira et al. 2005). Therefore, we have
adopted a boxy Gaussian (Dwek et al. function G2) to represent
the bulge:

ρB(x′, y′, z′) = ρ0 exp
(
−0.5r2

s

)
(8)

rs =

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣
(

x′

x0

)2

+

(
y′

y0

)2⎤⎥⎥⎥⎥⎥⎦
2

+

(
z
z′0

)4
⎞⎟⎟⎟⎟⎟⎟⎠

1/4

. (9)

The bulge function is expressed in a coordinate system (x′, y′, z′)
that follows its symmetry axes. Therefore, a rotation is needed
to obtain the expression in the (x, y, z) coordinate system.
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′ = x cos βB + y sin βB

y′ = −x sin βB + y cos βB

z′ = z.
(10)

Figure 3 shows the (x, y) and (x′, y′) axis seen from the z = z′ > 0
hemisphere. The figure also shows the definition of the angle βB,
which is measured counterclockwise from the x > 0 semi-axis.
However, many papers measure the inclination of the bar clock-
wise from the Sun-GC line to the near side of the bar. Therefore,
for an easy comparison with previous results we have defined
the angle αB as shown in the figure.

3.2.3. Triaxial nuclear bar

In contrast to the bulge, the small nuclear bar found by Alard
does not seem to be boxy. Therefore we have taken a triaxial
Gaussian function (Dwek et al. function G1) to represent this
component:

ρb(x′′, y′′, z′′) = ρ0 exp(−0.5r2) (11)

r =

⎡⎢⎢⎢⎢⎢⎣
(

x′′ − x1

x0

)2

+

(
y′′

y0

)2

+

(
z′′

z0

)2⎤⎥⎥⎥⎥⎥⎦
1/2

(12)

where x1 allows us to fit a lopsided bar. To obtain the bar density
in the (x, y, z) coordinate system one should apply the rotation:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′′ = x cos βb + y sin βb

y′′ = −x sin βb + y cos βb

z′′ = z.
(13)

The definition of βb is exactly analogous to that of βB shown in
Fig. 3. Again, in the following, and for coherence with most of
the literature in the subject, we will use an angle αb measured
clockwise from the Sun-GC line to refer to the inclination of the
nuclear bar.

3.2.4. Final star counts equation

Finally, we must also convert ρ(x, y, z) to ρ′(l, b, s) since we want
to model the star counts in Galactic coordinates (l, b) and to in-
tegrate along the line of sight (s). If (x, y, z) is a right-handed
reference frame centered in the galactic center, with the plane of
the sky in the xz-plane with x > 0 for l < 0, and z > 0 towards
the Galactic north pole, and assuming that the sun is located at
(x, y, z) = (0,−D, 0) then:

x = −s cos(b) sin(l)
y = −D + s cos(b) cos(l)
z = s sin(b).

(14)

The star counts equation towards (l0, b0) is then:

N(l0, b0,mc) = ΔlΔb
× ∫ mmax

mmin
dm

∫ smax

0
ds φ′(m, s) ρ′(l0, b0, s) s2 cos b (15)

where s2 cos b is the Jacobian of the coordinate transformation
(Eq. (14)). We have assumed that the density is constant in the
interval from l0 to l0 + Δl and from b0 to b0 + Δb.

We have computed the integral in magnitudes from mmin =
−10.0 mag to mmax = 9.0 mag with Δm = 0.5 mag. The integral
of the distance along the line of sight s has been computed up to
smax = 20 kpc using a variable step Δs:

Δs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.002 kpc s,R < 0.100 kpc
0.008 kpc s,R < 0.300 kpc
0.010 kpc s,R < 0.700 kpc
0.050 kpc s,R < 1.500 kpc
0.100 kpc s,R < 3.100 kpc
0.200 kpc s,R < 6.300 kpc
0.300 kpc s,R > 6.300 kpc.

(16)

4. Fitting the star count map

We have fitted the star count map using the model described
above. This model has 14 free parameters corresponding to the
disc (ρ0, hr, hz), the bulge (ρ0, x0, y0, z0, α) and the nuclear bar
(ρ0, x0, y0, z0, α, x1).

The star count equation is evaluated for an initial guess of
the density function parameters. A χ2 parameter is computed as
the difference of the star count data points (Ndatai) and the model
(Nmodeli ),

χ2 =
1
n

n∑
i=1

(Ndatai − Nmodeli )
2

σ2
i

(17)

where n is the number of points to be fitted and σ is the error of
the data points. We have estimated the σ from Fig. 1 of Alard
(2001) as the dispersion of the star counts with respect to an ex-
ponential vertical profile. Afterwards we used an iterative pro-
cess to minimize χ2 using the Levenberg-Marquardt algorithm
(Press et al. 1992).

4.1. Fitting the disc and the boxy bulge

We have not attempted to fit all the free parameters at once. First,
we fitted a star count model with the disc and the boxy bulge to
a reduced data set consisting of one point every 10 pixels (one
data point every 0.5◦). In the disc region, we took one point every
5 pixels (0.25◦) across the disc. Finally, we neglected the data
points in the inner region (−3 < l(deg) < 3, −2 < b(deg) < 2)
since they are clearly dominated by the nuclear bar. This reduced



N. J. Rodriguez-Fernandez and F. Combes: Gas flow models in the Milky Way embedded bars 121

Fig. 4. Thin solid contours represent the star counts map. Thick dashed
lines are the best fit obtained with a star count model with αB = 20◦ and
hr = 2.5 kpc. The points show the data set used to fit the disc and bulge.

data set contains 1494 points and is shown in Fig. 4. The error of
these data points used to calculate χ2 was estimated to be 15%
as explained above.

We have fitted the data for fixed values of the bulge an-
gle (αB = 60, 45, 35, 20, 10, 0 deg) and the disc radial scale
(hr = 1.5, 2, 2.5, 3.5 kpc). The results obtained for the other
free parameters are shown in Table 1. For all αB, the best
fits are always obtained with hr = 2.5 kpc. This is in agree-
ment with the radial scale length of the disc derived from pre-
vious studies in the infrared, which have values in the range
from 1.9 (2MASS López-Corredoira et al. 2005) to 2.6 (COBE
Freudenreich 1998). Regarding the angle of the bulge, the best
fit is obtained for 10◦, although χ2 is only 2.8% higher for
αB = 20◦ (Fig. 4 shows the best fit with αB = 20◦). This is
also in agreement with other studies of the structure of the in-
ner Galaxy. Dwek et al. (1995) derived angles in the range 16◦–
40◦ depending on the function assumed to represent the bulge
(they found 16◦ with the same boxy Gaussian that we use here),
while Freudenreich (1998) derived angles in the range of 9◦–
15◦ also using COBE/DIRBE data. A high angle of 12◦ has also
been measured from the 2 Micron Galaxy Survey (TMGS) by
López-Corredoira et al. (2000). On the other hand, the work of
López-Corredoira et al. (2005) using 2MASS data found αB =
20◦–35◦.

The shape of the bulge as given by the best fit with αB = 10◦
is x0/x0:y0/x0:z0/x0 = 1:0.5:0.3 while the best fit with αB =
20◦ has axis ratios of 1:0.55:0.4 which are in perfect agree-
ment with those derived by López-Corredoira et al. (2005), also
with 2MASS data or by López-Corredoira et al. (2000) with
TMGS data. In contrast, other studies have favored somewhat
thinner bulges with ratios of 1:0.3–0.4:0.3 (Dwek et al. 1995;
Freudenreich 1998; Bissantz et al. 2003).

4.2. Fitting disc, bulge and nuclear bar

In the second data set we have also included the star counts in
the innermost region of the Galaxy (−3 < l < 3, −2 < b < 2).
We have taken one point every 3 pixels (0.15◦) across the disc.
The data set is shown in Fig. 5. It contains 1734 points. From
Fig. 1 of Alard (2001) it is clear that the dispersion of the star

count map in the nuclear region is narrower than in the bulge.
We have estimated a σ of 5% for these data points.

We have fitted the data using our star count model with three
components: disc, bulge and nuclear bar. We have taken as a
starting point the best fits for αB = 10◦, 20◦, 35◦, 45◦ and 60◦
derived in the previous section (all the parameters of the disc and
the bulge are fixed except the factors ρ0). The best fit results for
the parameters of the nuclear bar are summarized in Table 2. The
full set of results for the nuclear bar fits are listed in Tables 3–6.

The best fits are found with a thick triaxial bar with typical
axis ratios of 1:(0.7−0.8):(0.5−0.6) and αb in the interval 60–120
for all the αB. This implies that the parameters of the nuclear bar
can indeed be constrained independently of the bulge and that
αb � αB. Globally, the best fit is obtained with αB = 10◦ and a
nuclear bar with αb = 90◦–105◦. Some examples of good fits are
shown in Fig. 5.

Finally, we have also performed fits with a lopsided nuclear
bar (x1 � 0). The results are shown in Tables 3–6 and they are
summarized in Table 2. The best fits are still obtained with a nu-
clear bar that is almost perpendicular to the Sun-GC line. The
symmetry center of the bar would be shifted by 22–25 pc to-
wards the third Galactic quadrant if αb = 60◦–90◦ while it would
be shifted by the same quantity but towards the fourth quadrant
if αb = 90◦–120◦.

5. Simulations of the gas dynamics: methods

We have used the code of Combes & Gerin (1985) to simu-
late the motion of gas clouds in the potential obtained from the
mass distribution inferred with the star count model. This code
has already been used successfully to understand the gas dis-
tribution and dynamics of a number of galaxies such as M100
(Garcia-Burillo et al. 1998), or NGC 4736 (Gerin et al. 1991;
Mulder & Combes 1996).

5.1. Stellar potential, rotation curve and masses

The potential is obtained from the mass distribution derived
in the previous section, using standard FFT techniques in a
Cartesian grid of 512 × 512 × 16 cells. The cells are cubic with
a linear size of 58.6 pc, therefore the physical size of the grid is
30×30×0.94 kpc3. This is good compromise to model the large
scale dynamics at least to a radius of 10 kpc and to have a good
enough spatial resolution to study the Galactic center.

As described by Combes & Sanders (1981), the interaction
between periodically reproduced images is avoided following
the scheme of Hohl & Hockney (1969), i.e. the potential com-
putations are done in a grid 8 times bigger, of 1024 × 1024 ×
32 cells. The disk mass is truncated at 15 kpc in radius, and the
mass distribution is assumed spherical outside, so that its influ-
ence in the center is cancelled. This is equivalent to assuming
that a spherical dark halo dominates the mass outside. This as-
sumption should have a negligible influence on the dynamics of
the inner Galaxy, which is the main interest of this paper.

The stellar potential is decomposed into its axisymmetric and
non-axisymmetric parts. The axisymmetric potential is calcu-
lated in radial bins using the averaged mass in the bin. The non-
axisymmetric part of the potential is calculated with a mass dis-
tribution corresponding to the difference between the total mass
and the axisymmetric distribution.

The stellar number density derived in the previous section
should be multiplied by a factor f to obtain the total mass den-
sity. This factor accounts for the mass of the stars detected by

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809644&pdf_id=4


122 N. J. Rodriguez-Fernandez and F. Combes: Gas flow models in the Milky Way embedded bars

Table 1. Results of the fits to the star counts data of Fig. 4 using an exponential disc and a triaxial boxy-Gaussian bulge.

Bulge Disk
x0 y0 z0 ρ0 αB hr hz ρ0 χ2

kpc kpc kpc deg kpc kpc
1.068 0.498 0.346 0.389E-02 0.0 2.500 0.168 0.249E–03 0.412
1.117 0.513 0.362 0.383E-02 10.0 2.500 0.153 0.254E–03 0.259
1.243 0.540 0.383 0.303E-02 10.0 2.000 0.161 0.145E–03 0.264
0.817 0.491 0.349 0.615E-02 20.0 3.500 0.134 0.469E–03 0.336
0.840 0.486 0.359 0.557E-02 20.0 3.000 0.144 0.366E–03 0.288
0.884 0.489 0.375 0.477E-02 20.0 2.500 0.156 0.255E–03 0.266
0.975 0.513 0.400 0.376E-02 20.0 2.000 0.166 0.145E–03 0.284
1.118 0.574 0.432 0.283E-02 20.0 1.500 0.169 0.551E–04 0.325
0.703 0.444 0.355 0.768E-02 35.0 3.500 0.135 0.470E–03 0.335
0.716 0.435 0.366 0.708E-02 35.0 3.000 0.145 0.366E–03 0.291
0.744 0.429 0.382 0.621E-02 35.0 2.500 0.158 0.255E–03 0.274
0.812 0.442 0.408 0.499E-02 35.0 2.000 0.169 0.145E–03 0.301
0.937 0.496 0.445 0.371E-02 35.0 1.500 0.172 0.551E–04 0.350
0.670 0.381 0.369 0.851E-02 45.0 3.000 0.146 0.367E–03 0.293
0.693 0.367 0.385 0.767E-02 45.0 2.500 0.159 0.255E–03 0.278
0.752 0.365 0.412 0.637E-02 45.0 2.000 0.171 0.145E–03 0.309
0.621 0.200 0.373 0.171E-01 60.0 3.000 0.147 0.367E–03 0.297
0.637 0.132 0.389 0.226E-01 60.0 2.500 0.161 0.254E–03 0.286
0.681 0.179 0.416 0.140E-01 60.0 2.000 0.172 0.144E–03 0.327

Fig. 5. Upper panels: thin solid contours represent the star count map. Thick dashed lines are the best fit obtained with a star count model with
αB = 10◦, hr = 2.5 kpc and αb = 75 deg. The panel on the right is a zoom of the nuclear region. The points indicate the data used to do the fit.
Lower panels: same that the upper panels for the best fit with αB = 45◦, and a lopsided bar with αb = 60◦.

2MASS but also for the mass of those stars that are not counted
in the 2MASS maps. In addition, we have to introduce a dark
halo to explain the observed velocities at large radii. The total
density used is then:

ρT = f
(
ρD + ρB + ρb

)
+ ρH (18)

where the halo density is defined by a Plummer law:

ρH(r) =
ρH

0

[1 + (r/rc)2]5/2
· (19)

To determine the scaling factors f and ρH
0 we have compared

the terminal velocities and the rotation curve of the models with
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Table 2. Summary of the parameters of the nuclear bar as derived from the best fits to the 2MASS star count data.

xb
0 yb

0 zb
0 ρb

0 αb x1 χ2

kpc kpc kpc deg kpc
0.141–0.150 0.130–0.138 0.095–0.097 0.141–0.150 60–120 0.0 0.357–0.376
0.158–0.166 0.115–0.133 0.088–0.094 0.151–0.178 60–120 0.022–0.025 0.331–0.346

The first row are fits with x1 fixed to 0 and the second row corresponds to fits with free x1 to allow for lopsidedness. The full set of results as a
function of the orientation of the bulge (αB) are listed in Tables 3 to 6.

Fig. 6. Rotation curve obtained with the halo and the scaling discussed
in Sect. 5.1 for a bulge and nuclear bar orientation of αB = 20◦ and
αb = 75◦, respectively. The different lines show the contribution of the
different mass components to the total rotation curve. The red points
indicate the rotation curve measured from observational data. The mass
of the halo , disc, and bulge are MH = 7×1010 M�, MD = 2.9×1010 M�,
MB = 1.9 × 1010 M�, respectively. The mass of the nuclear bar is Mb =
2.0 × 109 M�.

those derived from spectroscopic observations (Clemens 1985;
Fich et al. 1989; Burton & Liszt 1993). To obtain terminal veloc-
ities of the right magnitude (see Figs. 8 and 9) and a flat rotation
curve at large radii (Fig. 6), one should apply a scaling factor
f = 3.9×108 and a halo with ρH

0 = 1.12×105 and rc = 15.0 kpc.
With these factors and the parameters given in Tables 3–6, the
function ρT gives the total mass density in units of 103 M�/kpc3.
Integrating over the total grid size, the typical masses of the dif-
ferent components are: MH = 7×1010 M�, MD = 2.9×1010 M�,
MB = 1.9× 1010 M� and Mb = 2.0× 109 M�, which are in good
agreement with previous determinations (see for instance Weiner
& Sellwood 1999; Fux 1999).

Figure 6 shows an example of a rotation curve. The mod-
eled curve compares well with the rotation curve derived from
observations of the interstellar gas for radii larger than 2 kpc.
The agreement seems worse for small radii. However the com-
parison in this region is not straightforward. On the one hand,
the measured curve has been derived using the tangent point
method assuming that the clouds move in circular orbits, which
is not true in the innermost region. In addition, this curve de-
pends on the position of the observer in the Galaxy. On the other
hand, the modeled rotation curve has been derived with the ax-
isymmetrical potential and with an azimuthal average of the non-
axisymmetrical potential. This rotation curve is an average curve
independent of the position of the observer.

Figure 7 gives the rotation velocity Ω as a function of galac-
tocentric radius. It also shows the Ω + κ/m curves (where κ is
the epicyclic frequency). For a given bar pattern speed Ωp, these

Fig. 7. Angular frequencies as a function of radius in the epicyclic
approximation for the potential discussed in Sect. 5.1.

curves give the location of the corotation (Ω = Ωp), the Outer
Lindblad resonance (Ω + κ/2 = Ωp), the Inner Lindblad res-
onances (Ω − κ/2 = Ωp) and the Ultra Harmonic Resonance
(Ω − κ/4 = Ωp).

5.2. Gas cloud dynamics

The gas clouds are modeled as particles that are initially
launched in the axisymmetric potential with a velocity corre-
sponding to the circular velocity of the potential at the radius of
the particle. The initial radial distribution is an exponential disk
with a radial scale of 2 kpc. The non-axisymmetric part of the
potential is then introduced gradually multiplying by the factor
1 − exp[−t/τ]2 with a time delay of τ = 100 Myr. The angular
speed of the non-axisymmetrical pattern, Ωp, is constant along
the simulation.

We do not use a mass spectrum for the clouds and we do
not simulate star formation. The simulations typically contain
106 particles. The effects of gas self-gravitation are neglected.
The clouds move as test particles in the stellar potential except
when they collide inelastically. The forces due to the stellar po-
tential are evaluated every 1 Myr and the particles are moved
according to them. The particles are followed in three dimen-
sions but the collisions are computed in a two-dimensional grid
with 480 × 480 cells. Clouds in the same grid cell can collide.
The relative velocity of two collision partners loses 60% of its
absolute value in the collision. A detailed discussion of the col-
lisional schema can be found in Combes & Gerin (1985) and
Casoli & Combes (1982).
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6. Simulation results and discussion: large scale
structure

Figures 8 and 9 show face-on views and the lv-diagram for a
grid of models with αB from 10◦ to 45◦ and pattern speeds from
20 to 50 km s−1 kpc−1. For an easy comparison with observa-
tions, we have overlaid in the lv-diagrams the TVC points, the
boxes indicating the tanget points and the solid and dashed lines
shown in Fig. 1. We have also plotted the four logarithmic spirals
of Nakanishi & Sofue (2006) in the face-on views. The models
shown in Figs. 8 and 9 exhibit a number of common charac-
teristics. The galaxies have two major spiral arms but they also
exhibit a second pair of less prominent spiral arms. In the inner
∼4 kpc, there are arms that extend around the bar forming an
oval (hereafter lateral arms). The density of gas inside this oval
decreases to a radius of ∼1 kpc, where there is a ring. This ring is
connected to the lateral arms by the off-axis arms (or dustlanes).
In the inner hundreds of parsecs there is a nuclear condensation
of gas.

The Milky Way galaxy is a very complex system and up to
now there are no simulations of the gas dynamics that can ex-
plain all the observed features, neither quantitatively nor qualita-
tively. Englmaier & Gerhard (1999) have compared their models
to the terminal velocity curve, they have also compared the posi-
tion the arm tangent points in the CO lv-diagram, at |l| = 30◦ and
50◦. The two lv-diagrams presented by Fux (1999) were selected
by the global resemblance to the lv-diagram s obtained from CO
and HI data. They reproduce qualitatively the 3-kpc arm and the
Connecting Arm. Weiner & Sellwood (1999) constrained their
models by comparing them with the HI terminal velocity curve.
Finally, Bissantz et al. (2003) used mainly the terminal veloc-
ity curve and some voids in the observed lv-diagram to compare
with their simulations. To select the best models, in the present
work we have compared with: i) the terminal velocity curve,
ii) the inclination of the GMR in the lv-diagram, iii) the exis-
tence or not of the 3 kpc arm and when it exists, its inclination
and absolute velocity iv) the arm tangent points v) the shape and
size of the HI 1kpc ring.

6.1. Pattern speed and orientation of the bulge

Figure 8 shows face-on views and lv-diagrams for a grid
of models with αB = 20◦ and pattern speeds from 20 to
50 km s−1 kpc−1. The model with Ωp = 20 km s−1 kpc−1

reproduces some spiral tangent points and has an inner lateral
arm with the inclination of the 3-kpc arm, however it does not
reproduce the terminal velocity curve nor the velocity of the
3-kpc arm, for instance. At the other extreme, the model with
Ωp = 50 km s−1 kpc−1 does not reproduce satisfactorily either
the terminal velocity curve or the GMR or the 3-kpc arm.

In contrast, the models with Ωp = 30 and 40 km s−1 kpc−1

give a very good overall representation of the Galaxy. Both re-
produce satisfactorily the spiral tangent points at |l| = 30, 50◦
within ±5◦ and ±10 km s−1, approximately. In addition, the
model with Ωp = 40 km s−1 kpc−1 reproduces very well the
Carina arm and its tangent point at ≈−80◦. However, the lo-
cus of the inner spiral arms and the 3-kpc arm in the modeled
lv-diagram are too steep in comparison with the observed lv-
diagram. In contrast, the GMR and the the 3-kpc arm is very
well reproduced from |l| = 90◦ to 15◦ by the model with
Ωp = 30 km s−1 kpc−1. In particular the 3-kpc arm is repro-
duced with both the correct inclination and the velocity within
∼10 km s−1. In addition, the terminal velocity curve for l > 5◦
is very well reproduced. Given the difficulty of the task, it will

not be realistic to give a very narrow interval for the bar pattern
speed; from our best models we conclude that the most prob-
able value for Ωp should be in the range 30–40 km s−1 kpc−1.
However, since this work is devoted to the inner Galaxy structure
and kinematics, in the following we will mainly discuss models
with Ωp = 30 km s−1 kpc−1 since they explain the terminal ve-
locity curve, the 3-kpc arm and the GMR better than the model
with Ωp = 40 km s−1 kpc−1.

Figure 9 shows face-on views and lv-diagrams for a grid of
models with constant Ω = 30 km s−1 kpc−1 and αB of 45◦,
35◦, 20◦ and 10◦ (αb is constant to 90◦ for all the models). For
αB = 10◦, the velocity along the line of sight is too low to explain
the high non-circular velocities of the 3 kpc arm (−53 km s−1 at
l = 0◦) and the observed arm is not reproduced in the lv diagram.
In contrast, the 3-kpc arm and the inclination of the GMR is well
reproduced for αB from 20◦ to 45◦. Nevertheless, the model
with αB = 45◦ does not correctly reproduce the positive velocity
terminal curve. In addition, there is no ring at 1 kpc in the face-
on view.

Once again, we cannot give a very narrow interval of angles
for the inclination angle of the bar since the analysis, as in other
published works, is still rather qualitative. We reckon that the
inclination of the bar should be in the range of 20◦ to 35◦, with
some preference for 20◦ since the quantitative agreement of the
3-kpc arm and the terminal velocity curve is better. Therefore,
the model with Ωp = 30 km s−1 kpc−1 and αB = 20◦ will be
considered as our standard model in the rest of the paper.

6.1.1. Comparison with previous works

The inclination of the bar derived from our models is in good
agreement with previous determinations (Binney et al. 1997; Fux
1999; López-Corredoira et al. 2005, see also Sect. 1). Regarding
the bar pattern speed, our simulations give results that are lower
than those of Englmaier & Gerhard (1999) or Bissantz et al.
(2003), which suggest Ωp = 50–60 km s−1 kpc−1, but in
good agreement with the results of Weiner & Sellwood (1999),
Ωp = 42 km s−1 kpc−1, or Fux (1999). In his self-consistent gas
and star simulations, Fux found that the pattern speed evolves
from 50 to 30 km s−1 kpc−1. Taking into account our poten-
tial, a pattern speed of 30 or 40 km s−1 kpc−1 gives a corotation
radius of 7 and 5 kpc, respectively (see Fig. 7). Therefore, the
corotation radius is well beyond the bar extremity, which is the
characteristic of a slow bar (see for instance Sellwood & Sparke
1988).

To explain the fact that the dustlanes in the inner spiral arms
of some galaxies are located in the concave section of the arms,
and assuming that the bars are fast (i.e., they extend to the coro-
tation), Sellwood & Sparke (1988) proposed the existence of
different speeds for the bar and the spiral patterns. Indeed, for
the Milky Way some works have derived low rotations speeds
of 13–20 km s−1 kpc−1 for the spiral pattern (Lin et al. 1969;
Morgan 1990; Amaral & Lepine 1997). Gas flow models with
independent speeds for the bar and the spiral patterns have been
presented by Bissantz et al. (2003), who discussed that differ-
ent speeds for the spiral and the bar patterns could explain some
regions devoid of gas in the lv-diagram. However, the overall
agreement of their lv-diagrams with observations is not better
than other models like that of Fux (1999) or our models, which
are able to reproduce quantitatively features as the 3-kpc arm.

It is interesting to remark that our simulations favor a rel-
atively slow bar and not a fast bar as assumed by Sellwood
& Sparke (1988). Furthermore, the pattern speed of the
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Fig. 8. Simulations for αB = 20◦. The different rows represent the face-on view and the longitude velocity diagram for different pattern speeds of
20, 30, 40 and 50 km s−1 kpc−1 (from upper to lower rows). The solid lines represent the spiral arms as defined by Nakanishi & Sofue (2006). The
line Sun-GC first crosses the Sgr-Carina arm and the Scutum-Crux arm. In the other direction, the line of sight to the Galactic anticenter crosses
the Perseus arm. The fourth arm is the Norma-Outer arm.
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Fig. 9. Simulations for Ωp = 30◦. The different rows represent the face-on view and the longitude velocity diagram for different orientations of the
bulge αB of 45, 35, 20 and 10 deg from the upper to the lower row.
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relatively slow bar models (30–40 km s−1 kpc−1, Weiner &
Sellwood 1999; Fux 1999, this work) is comparable to sev-
eral determinations of the spiral pattern speed that give values
of 30–35 km s−1 kpc−1 (Mishurov & Zenina 1999; Fernández
et al. 2001; Lépine et al. 2001). On the other hand, Ibata
& Gilmore (1995) have measured a rotation speed of 25 ±
4 km s−1 kpc−1 for the bulge in the 0.7 < R < 3.5 kpc region.
Therefore, at present there are still many uncertainties regarding
the speeds of the different patterns and it is not clear whether
the spirals and the bar are decoupled or they turn at the same
speeds. Simulations with an independent pattern speed for the
spirals would be needed to study this question in detail but this is
beyond the scope of the current paper, which is mainly devoted
to the inner Galaxy.

6.2. The GMR

To obtain further insight into the structure and the dynamics of
the Galaxy, we present below a more detailed analysis of the
model with Ωp = 30 km s−1 kpc−1 and αB = 20◦. We have
selected different structures in the face-on view and we show the
locus of the different structures in the lv-diagram (Fig. 10).

As already mentioned in Sect. 2.2, it is uncertain whether
the GMR is an actual ring or it is composed by imbricated spi-
ral arms. In our models the radius of the GMR (4–5 kpc) cor-
responds exactly with the position of the Ultra-Harmonic reso-
nance for Ω ∼ 30 km s−1 kpc−1 (Fig. 7). However, we do not
support the idea that the GMR is a resonant ring.

As shown in the upper panels of Fig. 10, in our models the
GMR is composed of the inner parts of the spiral arms, which
at those radii show almost circular motion. This is in agreement
with the face-on views of the CO and HI data of Nakanishi &
Sofue (2006), who have proposed that the GMR is formed by
the Scutum-Crux arm (near side of the GMR) and the inner part
of the Sgr-Carina (far side of the GMR). Englmaier & Gerhard
(1999) discussed that if formed by imbricated arms, the GMR
should be outside the corotation, assuming that there cannot ex-
ist significant circular orbits inside the corotation to produce a
feature resembling a circular ring. However, this statement only
holds for fast bars, for which all the region inside the corotation
is dominated by the bar. In contrast, in our models with a rel-
atively slow bar, the inner part of the spiral arms is inside the
corotation radius and exhibits almost circular motion.

6.3. The 3-kpc arm and its far side counterpart

The lower panels of Fig. 10 show the locus of the lateral arms
that surround the bar. The two dot-dashed lines in the lv-diagram
are the fit to the 3-kpc arm and to its far-side counterpart as
given by Dame & Thaddeus (2008). As already mentioned, the
locus of the lateral arms in the lv-diagram reproduce quite well
the structure of the 3-kpc arm. This is in agreement with Fux
(1999), who has already proposed that the 3-kpc arm could be
a lateral arm. On the other hand, Fux (1999) proposed that the
“135 km s−1 arm” is the far side counterpart of the 3-kpc arm.
However, our models predict a far side counterpart of the 3-kpc
arm whose locus in the lv-diagram is almost symmetrical to the
3-kpc arm. This is in perfect agreement with the recently found
far 3-kpc arm (Dame & Thaddeus 2008). The full implications of
the new finding by Dame & Thaddeus (2008) will be presented
elsewhere.

The fact that the 3-kpc arms are lateral arms imply that they
cannot be a channel to transport gas from the corotation to the
CMZ as suggested by Habing et al. (2006), at least not directly.

6.4. The off-axis arms or dustlanes

In contrast to the 3-kpc arms, the dustlanes do contribute to the
transport of gas to the inner regions. In our models the locus of
the dustlanes in the lv-diagram are vertical structures with veloc-
ities from ∼0 km s−1 to more than 100 km s−1. The maximum
velocity increases as l decreases. These vertical structures in the
lv-diagram resemble the Clumps found by Bania (1977) and dis-
cussed recently by Liszt (2006, 2008). Nevertheless, our models
do not reproduce the Galactic longitude of the observed Clumps
(5.5◦ and 3.1◦). We confirm that Banias’s Clumps are probably
shocked gas in the dustlanes, which was the original interpreta-
tion of Stark & Bania (1986) for the “Clump 2”. The fact that
the Clumps are composed of gas undergoing the dustlane shocks
is also suggested by observational evidences, both kinematical
(linewidths, velocity gradients, Stark & Bania 1986; Liszt 2006)
and chemical (Rodriguez-Fernandez et al. 2006). Taking into ac-
count the discrete appearance of Bania’s clumps at two Galactic
longitudes, it is likely that the dust lanes of the Milky Way are
patchy, as is commonly observed in external galaxies.

Fux (1999) and Marshall et al. (2008) have proposed
a slightly different interpretation. They propose that the
Connecting Arm is the locus of the near side dustlane in the lv-
diagram. However, the linewidths of the gas in the Connecting
Arm do not show the velocity dispersion expected in the dust-
lane shocks (see for instance Reynaud & Downes 1998). Indeed
probably both Bania’s clumps and the Connecting Arm are re-
lated to the dustlane. We reckon that Bania’s Clumps are clouds
that are undergoing the strong shocks expected in the dustlanes
while the Connecting Arm is most likely the post-shocked and
accelerated gas (see also the discussion in Liszt 2006). Indeed, in
our simulations the maximum velocity of the gas in the dustlanes
increases as l decreases with the same steep of the Connecting
Arm. Observationally, this interpretation is supported by the
fact that the Clump at l = 5.5◦ seems to be connected to to
Connecting Arm at a negative latitude (see Bitran et al. 1997).
The situation was less clear for “Clump 2” at l = 3.1◦ since it
is found at positive latitudes. However, this apparent problem
has been solved with the recent discovery by Liszt (2008) of an
emission feature with the same inclination in the lv-diagram as
the Connecting Arm but at positive latitude. In addition it seems
connected to Clump 2. In any case, the Clump 2 exhibits a
rich shock chemistry as expected for gas in the dustlane shocks
(Rodriguez-Fernandez et al. 2006)

7. Simulation results and discussion: nuclear bar,
HI ring and CMZ

Figure 11 shows the face-on view of the inner 2 kpc of the mod-
eled galaxies and the lv-diagrams for different orientations of the
nuclear bar. All the other parameters are the same as those dis-
cussed in the previous section and the large scale face on views
and lv-diagram s are the same, independent of the orientation of
the nuclear bar.

The dustlanes end in a ring and inside this ring there is a
small bar-like structure that is connected to the ring by two small
spiral arms. The HI ring has an inner and outer radius of 300 pc
and 800 pc, respectively, in excellent agreement with the HI ob-
servations of Liszt & Burton (1980) (see their Fig. 3). The ring
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Fig. 10. Simulations for αB = 20◦ and Ωp = 30. We have selected different regions in the face on views to identify the locus of the different
structures in the lv-diagram (using the same color code in the face on view and the lv-diagram). Solid and dashed lines, circles and triangles are
the same as in the previous figures. The dot-dashed lines in the lower lv-diagram are the fits to the near and far 3-kpc arms as given by Dame &
Thaddeus (2008).

is almost circular. In some simulations we have also found el-
liptical rings with the major axis approximately perpendicular to
the large bar. Therefore, the ring is not supported by X1 orbits
elongated in the direction of the large bar (see a review of the
different proposed models in Ferrière et al. 2007).

7.1. The orientation of the nuclear bar

In the central hundreds of parsecs there is an elongated structure
that corresponds to the gas response to the nuclear bar and that
resembles the observed CMZ.

We have analyzed the shape of the lv-diagram as a function
of the nuclear bar orientation. Figure 11 shows the lv-diagram
obtained for nuclear bar orientations from 0◦, to 15◦, 30◦ and
45◦. Our modeled lv-diagrams do not reproduce the compo-
nents K and J of Rodriguez-Fernandez et al. (2006). In contrast,
the lv-diagram of the CMZ is a parallelogram that resembles the
observed one (Fig. 2). The inclination of the observed parallel-
ogram is very well reproduced for an angle of 15◦. After the
Binney et al. (1991) paper, Jenkins & Binney (1994) tried to re-
produce the parallelogram discussed by Binney et al. (1991) us-
ing n-body simulations but with little success. To our knowledge,
this is the first time that numerical simulations of the gas dynam-
ics of the Milky Way naturally reproduce the parallelogram of
the lv-diagram of the CMZ. This is probably due to the accurate
potential that we have determined with the deep 2MASS data.

The orientation angle of the small bar inferred from our sim-
ulations is in excellent agreement with our models of the 2MASS
star counts and with the face on view of the CMZ inferred from
CO and OH data by Sawada et al. (2004). We conclude that the
observed CMZ is most likely the gas response to the nuclear bar
and that the orientation of the nuclear bar is αb ∼ 75◦.

7.2. The mass of the nuclear bar

In the simulations discussed above, the velocity dispersion of
the CMZ is well reproduced for a mass of the nuclear bar of
2.0 × 109 M� (Sect. 5.1). However, the terminal velocities of
the HI ring do not match the observed ones. For further insight
into the nuclear bar mass we have increased its value in order to
reproduce the terminal velocities of the HI ring. In these models,
the shape of the different mass components is still given by the
fits to the 2MASS star counts map (Tables 3–6). However, we
have considered different scaling factors for the nuclear bar and
for the bulge and disc. Thus, instead of Eq. (18), the total density
is given by:

ρT = f (ρD + ρB) + f b ρb + ρH (20)

where ρH is given by Eq. (19). Therefore, the only parameter
that we change with respect to previous models is f b. Figure
12 shows the rotation curve for f b = 1.1 × 109, which gives
a nuclear bar mass of 5.5 × 109 M�. All the other parameters
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Fig. 11. Simulations for αB = 20◦, Ωp = 30 and αb = 90◦, 75◦, 60◦, and 45◦ (from top to bottom).
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Fig. 12. Same as Fig. 6 but with a nuclear bar mass of Mb = 5.5 ×
109 M�.

and masses are the same as those mentioned in Sect. 5.1. The
simulation results for the inner 2 kpc of the Galaxy are shown in
Fig. 13. The face on view is characterized by a large ring with
an inner and outer radius of 200 and 1200 pc, respectively. The
lv-diagram of this ring reproduces the terminal velocity of the
HI observations, which at positive longitude coincides with the
Connecting Arm. Indeed, Liszt & Burton (1980) proposed that
the Connecting Arm could be the edge of the HI ring.

It is difficult to reproduce both the terminal velocities of the
CMZ and HI ring, however from the previous considerations we
conclude that the mass of the nuclear bar should be in the range
(2–5.5) × 109 M�.

7.3. Is the nuclear bar lopsided?

The nuclear bar in the star count map of Alard (2001) seems
to be shifted towards negative longitudes (in contrast to the gas
distribution that seems to be shifted towards positive longitudes).
Our star count model shows that fits with a lopsided nuclear bar
have a χ2 that is 9% lower than the χ2 for models that do not
allow a lopsided bar. The symmetry center of the bar could be
shifted by 22–25 pc with respect to the dynamical center of the
Galaxy.

We have studied the gas response to a lopsided nuclear bar in
order to investigate whether the observed asymmetry of the CMZ
could be explained by a lopsided nuclear bar as inferred from
the 2MASS data. As discussed by Morris & Serabyn (1996) the
signature of a m = 1 mode in the Galactic center would be a shift
of the gas distribution in l but also a shift of the velocity centroid
of the lv-diagram.

Figure 14 shows a simulation of the gas flow in the poten-
tial computed from the fit to the 2MASS star counts map with
αb = 75◦ (for which x1 = 0.023 kpc). The lv-diagram of the gas
shows a parallelogram whose sides show the good inclination.
The simulated parallelogram is only slightly asymmetric in l and
v. To better understand the effect of a lopsided nuclear bar, we
have also computed a simulation with the same nuclear bar but
artificially shifted by 90 pc along its major axis towards the third
Galactic quadrant (x1 = 0.090 kpc). The results are also shown
in Fig. 14. The lv-diagram is still only slightly asymmetric in v
but now it is clearly asymmetric in l. The gas response to the lop-
sided stellar bar follows the star distribution and it is lopsided to-
wards negative longitudes as well. To obtain an lv-diagram with
a parallelogram similar to that of the CO data shown in Fig. 2, the

nuclear bar should be lopsided towards the first quadrant. This is
shown in Fig. 14, where x1 = −0.090 kpc. However, such a bar
is not compatible with the 2MASS star counts.

We conclude that, both from the fits to the 2MASS data and
from the numerical simulations of the gas dynamics, there is no
clear evidence of an intrinsic lopsidedness in the stellar poten-
tial. The observed asymmetry of the gas distribution in the CMZ
cannot be explained as the gas response to a lopsided nuclear bar
in the way suggested by Alard’s map.

8. Discussion

8.1. The origin of the asymmetry of the CMZ

Although the origin of the asymmetry of the CMZ is a long-
standing problem, it has not been discussed much in the lit-
erature. Two exceptions are the papers by Combes (1996) and
Morris & Serabyn (1996). The first paper proposed that the ob-
served asymmetry could be due to a m = 1 mode of the potential
since lopsidedness is commonly observed in the central regions
of external galaxies. The second paper discusses how the effect
of the presence of a m = 1 mode in the Galactic center would
be an asymmetry of the CMZ both in longitude and in veloc-
ity. However, we have shown in the previous section that the
possible lopsidedness of the stellar distribution cannot explain
the observed asymmetry of the CMZ. Furthermore, there is no
clear evidence of an intrinsic asymmetry of the stellar potential.
Regarding the gas, the distribution is clearly asymmetric in l but
the parallelogram of Fig. 2 is rather symmetric in v. In addition,
the structures found by Sofue (1995) that seem to be the signa-
ture of a quasi-circular ring inside the CMZ and that could be the
nuclear bar equivalent to the HI ring, do not show an asymmetry
in v.

Indeed our simulations propose an alternative explanation
for the asymmetric distribution of the CMZ in which the stellar
potential in the GC is strictly symmetric. The simulations show
that the HI ring can be connected to the CMZ by a pair of small
spiral arms. For instance, the simulation with αb = 75 (second
row of Fig. 11) shows that the clouds in the arm seen at negative
longitudes will be seen in the lv-diagram outside of the observed
parallelogram while the clouds in the arm seen at positive lon-
gitudes “fill” the observed parallelogram at the position of the
l = 1.3◦-complex. Observations of the molecular gas in external
galaxies show that, in contrast to most numerical simulations, the
gas distribution in real galaxies is rarely symmetric. This could
also be the case in the Milky Way. The apparent asymmetry of
the CMZ can be due to material falling into the CMZ from the
HI ring through only one of the inner spiral arms. In this con-
text, strong shocks are expected in the interaction region: the
l = 1.3◦-complex.

Observationally, the l = 1.3◦-complex looks very different to
the Sgr’s cloud complexes. For instance, in the lb map of Fig. 2,
it is clear that the gas distribution from Sgr C to Sgr B is rather
symmetric and thin. The asymmetry in l is indeed exclusively
due to the l = 1.3◦-complex. Furthermore, the l = 1.3◦-complex
shows an unusual latitude extension, much higher that the rest of
the CMZ. The velocity structure of this cloud complex is also un-
usual, showing a wide velocity dispersion (the l = 1.3◦-complex
is indeed the most prominent feature in the lv-diagram). The
chemistry also gives us interesting hints as to the nature of this
cloud complex. On the one hand, Hüttemeister et al. (1998) have
found that the highest abundances of the shock tracer molecule
SiO are found at one of the extremities of the CMZ: in the
l = 1.3◦-complex. They have already proposed that this cloud

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809644&pdf_id=12


N. J. Rodriguez-Fernandez and F. Combes: Gas flow models in the Milky Way embedded bars 131

Fig. 13. Simulations results for αB = 20◦, Ωp = 30 and αb = 75◦ (with nuclear bar mass of 25% of bulge mass).

Fig. 14. Simulations for αB = 20◦, Ωp = 30 and αb = 75◦. The upper panel corresponds to the best fit to the 2MASS data with a lopsided bar
(x1 = 23 pc). The middle panel is a simulation with the same nuclear bar but x1 = 90 pc and the lower panel is a simulation with the same nuclear
bar but x1 = −9.
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complex represents the scenario of strong shocks due to gas
falling into the CMZ. On the other hand, Rodriguez-Fernandez
et al. (2006) have presented a more complete study of the SiO
emission in all the kinematical structures of the GC. They have
detected SiO in at least one cloud of each kinematical structure.
However, the only feature where they detected high abundances
of SiO in every observed cloud is the l = 1.3◦-complex. In agree-
ment with Hüttemeister et al. (1998); Rodriguez-Fernandez et al.
(2006) have measured the highest SiO abundances in this re-
gion. Therefore, the lb distribution, the velocity structure, and
the chemistry imply that the cloud complex giving rise to the
observed asymmetry of the CMZ (the l = 1.3◦-complex) shows
significant differences to other CMZ complexes. In particular, it
shows the signature of strong shocks. Therefore, we suggest that
the observed asymmetry of the CMZ can be the result of gas
falling into the CMZ and not due to an intrinsic asymmetry of
the stellar potential. This explanation is also supported by our
detailed simulations of the stellar structure and the gas dynam-
ics.

8.2. The nature of the nuclear bar

Double bars are commonly observed in external galaxies (Shaw
et al. 1993; Wozniak et al. 1995; Elmegreen et al. 1996). Around
28% of barred galaxies have a secondary bar (Erwin & Sparke
2002; Laine et al. 2002). Nuclear or secondary bars are objects
of prime interest to explain the gas inflow towards the center of
a galaxy and the fueling of Active Galactic Nuclei (Shlosman
et al. 1989).

Several works have studied the stellar orbits that support
nested bars (Maciejewski & Sparke 1997, 2000) and their sta-
bility (El-Zant & Shlosman 2003). In addition, double barred
galaxies have been the subject of a number of numerical simu-
lations of star and gas dynamics that have shown a plethora of
phenomena, such as: i) secondary bars forming in purely stel-
lar discs (Rautiainen et al. 2002) or only in the presence of gas
(Combes 1994); ii) secondary bars forming before (Rautiainen &
Salo 1999) or after the primary bars (Combes 1994; Englmaier
& Shlosman 2004; Heller et al. 2007); iii) decoupled secondary
bars rotating slower (Heller et al. 2001) or faster (Friedli &
Martinet 1993; Combes 1994; Rautiainen et al. 2002; Englmaier
& Shlosman 2004) than the primary bar; iv) two misaligned bars
rotating at the same speed (Shaw et al. 1993; Combes 1994).

The secondary bars rotating at the same speed as the primary
bars have been explained by Shaw et al. (1993) and Combes
(1994) as follows: the gas clouds tend to shift from the closed X1
orbits to the perpendicular X2 orbits of the primary bar. However,
dissipative collisions between the gas clouds reduce the orthog-
onality of this phase shift and the gas settles in a leading phase-
shifted bar. If the gas fraction is high, its gravitational influence
is then sufficient to modify the stellar component and to form
a secondary bar that is still coupled to the primary bar. If the
secondary and primary bars remain coupled and they continue
rotating with the same speed, the bars will align or form an an-
gle of 90◦ since the primary bar exerts a gravitational torque
on the secondary bar and vice-versa (Friedli & Martinet 1993).
Alternatively, the secondary bar may increase its rotation speed.
Thus, the coupled phase can be a precursor of a future decou-
pled phase. The dynamical process from coupled to decoupled
gaseous nuclear bars has been studied by Heller et al. (2001);
Englmaier & Shlosman (2004) and, more recently, by Heller
et al. (2007), who have carried out the first simulations of the
formation of nested bars from cosmological initial conditions.
In these simulations a secondary bar forms in response to the

gas inflow along the stellar primary bar. This gaseous bar is
initially corotating with the primary bar. Subsequent mass in-
flow strengthens the bar giving rise to even more rapid gas in-
flow. During this process the secondary bar shrinks in size and
the pattern speed increases at a rate inversely proportional to
the bar size. The pattern speeds of the two bars are such that
the secondary bar corotation coincides with the primary bar in-
ner Lindblad resonance, suggesting that non-linear interactions
between the two bars are at play (Tagger et al. 1987).

Our simulations are the very first attempt to model the Milky
Way with two nested bars and have been performed assuming
a common pattern speed for both bars. Therefore, we cannot
study in detail the coupling and the evolution of the nuclear bar.
Nevertheless, these simulations explain many characteristics of
the Galaxy at scales from the disk to the nuclear region, some for
the first time, such as the parallelogram of the CMZ. Therefore,
the observational data are compatible with a scenario of coupled
bars rotating with the same speed. Our results imply that the nu-
clear bar is leading the large primary bar by ∼55◦, as expected in
this context (Combes 1994). Thus, the decoupling of the nuclear
bar can still not be effective in the Milky Way. The dynamical
decoupling of the two bars will be the subject of a forthcoming
paper.

9. Conclusions

We have presented gas flow models in the mass distribution de-
rived from 2MASS star counts using a model with three com-
ponents (disk, bulge and nuclear bar). Our dynamical models
are the first ones that include a central mass cusp (the nuclear
bar) constrained by observations. For the first time, we have ob-
tained good models of the Milky Way from the scales of the spi-
ral arms to the Central Molecular Zone (CMZ) in the Galactic
center (GC). The best models are found for a bulge orientation
of 20–35◦ with respect to the Sun-GC line and a pattern speed
of 30–40 km s−1 kpc−1. This places the corotation radius at
5–7 kpc. The simulations reproduce:

– The spiral arms, giving in particular a good tangent point for
the Carina arm.

– The Galactic Molecular Ring (GMR), which is not an actual
ring but the inner parts of the spiral arms and it is found ap-
proximately at the position of the ultra-harmonic resonance.

– The 3-kpc arm and its far-side counterpart, which are the
lateral arms that surround the bar.

– The HI ring, with a very similar size to that derived from the
observations.

– The Central Molecular Zone (CMZ).

In addition, we postulate the existence of small spiral arms aris-
ing from the extremities of the CMZ and linking the HI ring.

In our simulations, the CMZ is the gas response to the nu-
clear bar. These simulations reproduce, for the first time, the
parallelogram shape of the lv-diagram of the CMZ. Using this
shape we have been able to constrain the nuclear bar orientation,
which is of ∼60◦–75◦ with respect to the Sun-GC line, in excel-
lent agreement with the 2MASS fits and the results of Sawada
et al. (2004). We have also studied the observed asymmetry of
the CMZ and conclude that it cannot be due to the lopsidedness
of the nuclear bar as suggested by the 2MASS maps. Gas dy-
namical simulations in a lopsided potential cannot reproduce the
observations, and we do not see strong direct evidence in the
2MASS data of an intrinsic lopsidedness of the stellar potential.

We propose an alternative scenario to explain the observed
asymmetry of the CMZ. The asymmetry can be due to gas
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falling into the CMZ through the inner spiral arm in the
l = 1.3◦-complex region. We have also discussed that the l =
1.3◦-complex shows significant differences with the, otherwise
symmetric, CMZ that extends from Sgr C to Sgr B. In particular,
the l = 1.3◦-complex shows all the signatures of the shocks ex-
pected if it is an interaction region where new material is falling
into the CMZ.

In our models both bars rotate with the same pattern speed.
The success of these models in explaining many characteristics
of the Milky Way, such as the Central Molecular Zone (CMZ)
imply that the observations are compatible with that assumption.
Furthermore, in our models the nuclear bar leads the large bar
by ∼55◦ as expected for coupled nested bars (Combes 1994).
Therefore, in spite of the high mass of the nuclear bar (10–25%
of the mass of the bulge) the dynamical decoupling my still not
be effective. However, this question requires further studies and
gas flow models with two pattern speeds or self-consistent gas
and star dynamics simulations.
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Table 3. Results of the fits to the star count data of Fig. 5 using a disc, bulge and nuclear bar. The following parameters have been taken from
Table 1 and kept fixed: αB = 10, xB

0 = 1.117, yB
0 = 0.513, zB

0 = 0.362 hr = 2.5, hz = 0.153. The bar angle αb is also fixed, the other parameters
are free and used to obtain the best fit to the data. The first set of results have been obtained with x1 fixed to 0. In the second set of results x1 is a
free parameter.

Bulge Disk Bar
ρB

0 ρD
0 xb

0 yb
0 zb

0 ρb
0 αb x1 χ2

kpc kpc kpc deg kpc
0.379E–02 0.257E–03 0.195 0.146 0.103 0.103 165.0 0.0 0.374
0.380E–02 0.256E–03 0.189 0.144 0.102 0.113 150.0 0.0 0.367
0.381E–02 0.256E–03 0.175 0.138 0.100 0.129 135.0 0.0 0.362
0.381E–02 0.256E–03 0.164 0.131 0.098 0.146 120.0 0.0 0.358
0.381E–02 0.255E–03 0.161 0.130 0.097 0.151 105.0 0.0 0.357
0.381E–02 0.255E–03 0.161 0.130 0.097 0.153 90.0 0.0 0.357
0.381E–02 0.256E–03 0.161 0.130 0.097 0.151 75.0 0.0 0.358
0.381E–02 0.256E–03 0.163 0.131 0.098 0.146 60.0 0.0 0.359
0.380E–02 0.256E–03 0.175 0.137 0.100 0.129 45.0 0.0 0.363
0.380E–02 0.256E–03 0.189 0.144 0.102 0.113 30.0 0.0 0.369
0.380E–02 0.257E–03 0.192 0.145 0.103 0.106 15.0 0.0 0.375
0.380E–02 0.257E–03 0.184 0.141 0.101 0.110 0.0 0.0 0.379
0.381E–02 0.256E–03 0.267 0.141 0.099 0.081 165.0 0.080 0.331
0.381E–02 0.256E–03 0.209 0.130 0.096 0.115 150.0 0.042 0.327
0.382E–02 0.255E–03 0.180 0.129 0.092 0.141 135.0 0.030 0.324
0.384E–02 0.255E–03 0.163 0.128 0.090 0.155 120.0 0.025 0.321
0.383E–02 0.255E–03 0.155 0.127 0.093 0.160 105.0 0.023 0.322
0.382E–02 0.256E–03 0.154 0.116 0.094 0.177 90.0 0.022 0.323
0.383E–02 0.255E–03 0.158 0.115 0.093 0.175 75.0 0.023 0.322
0.383E–02 0.255E–03 0.162 0.129 0.092 0.153 60.0 0.025 0.321
0.383E–02 0.255E–03 0.177 0.128 0.091 0.142 45.0 0.031 0.321
0.383E–02 0.255E–03 0.208 0.133 0.093 0.116 30.0 0.045 0.322
0.382E–02 0.256E–03 0.274 0.146 0.097 0.080 15.0 0.090 0.326

Table 4. Same as Table 3 but with αB = 20, xB
0 = 0.884, yB

0 = 0.489, zB
0 = 0.375 hr = 2.5, hz = 0.156. The first set of results have been obtained

with x1 fixed to 0. In the second set of results x1 is a free parameter.

Bulge Disk Bar
ρB

0 ρD
0 xb

0 yb
0 zb

0 ρb
0 αb x1 χ2

kpc kpc kpc deg kpc
0.474E–02 0.256E–03 0.201 0.151 0.102 0.101 165.0 0.0 0.374
0.475E–02 0.256E–03 0.195 0.148 0.101 0.110 150.0 0.0 0.370
0.475E–02 0.256E–03 0.180 0.141 0.099 0.127 135.0 0.0 0.366
0.476E–02 0.255E–03 0.171 0.137 0.097 0.140 120.0 0.0 0.364
0.476E–02 0.255E–03 0.168 0.135 0.096 0.147 105.0 0.0 0.364
0.476E–02 0.255E–03 0.166 0.134 0.096 0.150 90.0 0.0 0.364
0.476E–02 0.255E–03 0.168 0.135 0.096 0.147 75.0 0.0 0.364
0.476E–02 0.255E–03 0.171 0.137 0.097 0.140 60.0 0.0 0.365
0.476E–02 0.256E–03 0.179 0.141 0.098 0.128 45.0 0.0 0.367
0.475E–02 0.256E–03 0.193 0.148 0.101 0.112 30.0 0.0 0.371
0.474E–02 0.256E–03 0.198 0.150 0.101 0.104 15.0 0.0 0.375
0.475E–02 0.257E–03 0.196 0.149 0.101 0.104 0.0 0.0 0.379
0.474E–02 0.256E–03 0.283 0.141 0.100 0.778 165.0 0.080 0.341
0.477E–02 0.256E–03 0.213 0.134 0.095 0.115 150.0 0.042 0.333
0.477E–02 0.255E–03 0.189 0.123 0.094 0.142 135.0 0.030 0.333
0.480E–02 0.255E–03 0.166 0.131 0.088 0.155 120.0 0.025 0.332
0.478E–02 0.256E–03 0.158 0.126 0.092 0.164 105.0 0.022 0.332
0.478E–02 0.255E–03 0.159 0.129 0.092 0.161 90.0 0.022 0.332
0.479E–02 0.255E–03 0.162 0.118 0.090 0.175 75.0 0.023 0.332
0.478E–02 0.256E–03 0.164 0.133 0.092 0.151 60.0 0.025 0.331
0.477E–02 0.256E–03 0.187 0.121 0.095 0.144 45.0 0.032 0.333
0.477E–02 0.256E–03 0.221 0.132 0.095 0.113 30.0 0.045 0.333
0.475E–02 0.256E–03 0.283 0.147 0.099 0.780 15.0 0.089 0.337
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Table 5. Same as Table 3 but with αB = 35, xB
0 = 0.774, yB

0 = 0.429, zB
0 = 0.382 hr = 2.5, hz = 0.158. The first set of results have been obtained

with x1 fixed to 0. In the second set of results x1 is a free parameter.

Bulge Disk Bar
ρB

0 ρD
0 xb

0 yb
0 zb

0 ρb
0 αb x1 χ2

kpc kpc kpc deg kpc
0.619E–02 0.256E–03 0.205 0.153 0.102 0.100 165.0 0.0 0.382
0.619E–02 0.256E–03 0.197 0.150 0.101 0.110 150.0 0.0 0.377
0.620E–02 0.256E–03 0.182 0.143 0.099 0.126 135.0 0.0 0.374
0.621E–02 0.256E–03 0.172 0.138 0.097 0.141 120.0 0.0 0.371
0.621E–02 0.255E–03 0.169 0.136 0.097 0.147 105.0 0.0 0.371
0.621E–02 0.255E–03 0.168 0.136 0.096 0.149 90.0 0.0 0.371
0.621E–02 0.255E–03 0.169 0.136 0.097 0.147 75.0 0.0 0.372
0.621E–02 0.256E–03 0.172 0.137 0.097 0.141 60.0 0.0 0.373
0.620E–02 0.256E–03 0.182 0.142 0.099 0.126 45.0 0.0 0.375
0.619E–02 0.256E–03 0.196 0.149 0.101 0.110 30.0 0.0 0.379
0.619E–02 0.257E–03 0.202 0.151 0.102 0.102 15.0 0.0 0.383
0.619E–02 0.257E–03 0.201 0.151 0.102 0.101 0.0 0.0 0.386
0.605E–02 0.252E–03 0.305 0.144 0.100 0.073 165.0 0.079 0.353
0.608E–02 0.252E–03 0.218 0.135 0.097 0.111 150.0 0.042 0.350
0.608E–02 0.252E–03 0.188 0.126 0.095 0.141 135.0 0.030 0.348
0.609E–02 0.252E–03 0.170 0.126 0.094 0.157 120.0 0.025 0.348
0.610E–02 0.252E–03 0.162 0.122 0.093 0.171 105.0 0.022 0.348
0.610E–02 0.252E–03 0.163 0.119 0.091 0.178 90.0 0.022 0.348
0.611E–02 0.252E–03 0.164 0.124 0.089 0.171 75.0 0.022 0.349
0.611E–02 0.252E–03 0.173 0.127 0.091 0.158 60.0 0.025 0.349
0.609E–02 0.252E–03 0.193 0.126 0.095 0.140 45.0 0.031 0.348
0.609E–02 0.252E–03 0.222 0.137 0.095 0.112 30.0 0.044 0.348
0.606E–02 0.252E–03 0.308 0.149 0.100 0.073 15.0 0.089 0.351

Table 6. Same as Table 3 but with αB = 45, xB
0 = 0.693, yB

0 = 0.367, zB
0 = 0.385 hr = 2.5, hz = 0.159. The first set of results have been obtained

with x1 fixed to 0. In the second set of results x1 is a free parameter.

Bulge Disk Bar
ρB

0 ρD
0 xb

0 yb
0 zb

0 ρb
0 αb x1 χ2

kpc kpc kpc deg kpc
0.761E–02 0.255E–03 0.211 0.167 0.105 0.095 165.0 0.0 0.389
0.763E–02 0.255E–03 0.204 0.154 0.103 0.106 150.0 0.0 0.382
0.766E–02 0.255E–03 0.184 0.143 0.099 0.126 135.0 0.0 0.378
0.767E–02 0.256E–03 0.173 0.138 0.097 0.141 120.0 0.0 0.376
0.767E–02 0.255E–03 0.170 0.136 0.097 0.147 105.0 0.0 0.375
0.767E–02 0.255E–03 0.168 0.136 0.096 0.149 90.0 0.0 0.376
0.767E–02 0.255E–03 0.170 0.136 0.097 0.147 75.0 0.0 0.376
0.767E–02 0.256E–03 0.172 0.138 0.097 0.141 60.0 0.0 0.377
0.766E–02 0.255E–03 0.183 0.143 0.099 0.126 45.0 0.0 0.379
0.763E–02 0.256E–03 0.204 0.151 0.102 0.107 30.0 0.0 0.384
0.761E–02 0.256E–03 0.217 0.161 0.106 0.092 15.0 0.0 0.391
0.764E–02 0.257E–03 0.204 0.153 0.102 0.099 0.0 0.0 0.390
0.766E–02 0.255E–03 0.288 0.150 0.098 0.076 165.0 0.079 0.350
0.767E–02 0.255E–03 0.220 0.134 0.096 0.112 150.0 0.042 0.347
0.768E–02 0.255E–03 0.186 0.126 0.096 0.141 135.0 0.030 0.347
0.770E–02 0.255E–03 0.166 0.134 0.092 0.151 120.0 0.025 0.345
0.771E–02 0.255E–03 0.163 0.122 0.090 0.171 105.0 0.022 0.346
0.771E–02 0.255E–03 0.160 0.119 0.090 0.178 90.0 0.022 0.346
0.771E–02 0.255E–03 0.165 0.122 0.090 0.170 75.0 0.022 0.346
0.770E–02 0.255E–03 0.171 0.122 0.092 0.162 60.0 0.025 0.346
0.769E–02 0.255E–03 0.193 0.126 0.094 0.140 45.0 0.031 0.346
0.768E–02 0.255E–03 0.227 0.133 0.095 0.112 30.0 0.045 0.347
0.765E–02 0.256E–03 0.308 0.146 0.100 0.073 15.0 0.090 0.350
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