
HAL Id: hal-03724027
https://hal.science/hal-03724027

Submitted on 15 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Quick Resource Estimators in Hardware
Construction Framework for Design Space Exploration

Bruno Ferres, Olivier Muller, Frédéric Rousseau

To cite this version:
Bruno Ferres, Olivier Muller, Frédéric Rousseau. Integrating Quick Resource Estimators in Hardware
Construction Framework for Design Space Exploration. 2021 IEEE International Workshop on Rapid
System Prototyping (RSP), Oct 2021, Paris, France. pp.64-70, �10.1109/RSP53691.2021.9806276�.
�hal-03724027�

https://hal.science/hal-03724027
https://hal.archives-ouvertes.fr

1

Integrating Quick Resource Estimators in
Hardware Construction Framework for

Design Space Exploration
Bruno Ferres, Olivier Muller and Frédéric Rousseau

Univ. Grenoble Alpes, CNRS
Grenoble INP†, TIMA,

F-38000 Grenoble, France
Email: {name.surname}@univ-grenoble-alpes.fr

Abstract—Hardware design processes often come with time-
consuming iteration loops, as feedbacks generally result of long
synthesis runs. It is even more true when multiple different
implementations need to be compared to perform Design Space
Exploration (DSE). In order to accelerate such flows and increase
agility of developers — closing the gap with software development
methodologies — we propose to use quick feedback generating
transforms based on RTL circuit analysis for quicker convergence
of exploration. We also introduce an Hardware Construction
Language (HCL) based methodology to build explorable circuit
generators, and demonstrate such usage over a General Matrix
Multiply (GEMM) Chisel implementation. We demonstrates that
using RTL estimation early in the exploration process results
in ×7 less synthesis runs and ×4.1 faster convergence than an
exhaustive synthesis process, and still achieves state of the art
performances when targetting a Xilinx VC709 FPGA.

Keywords: HCL - Chisel - FPGA - DSE - estimation - GEMM

I. INTRODUCTION

To build a digital design for a particular use case, hardware
developers have multiple options for implementing function-
alities, and it relies on their expertise to select and implement
optimal choices in the process. To ease their work and reduce
potential errors, Design Space Exploration (DSE) is commonly
used to find a best fit among equivalent implementations,
with respect to situation specific constraints and objectives.
Automatic DSE tools often rely on design space partitioning
between two sub spaces: potentially optimal solution — with
respect to problem objectives — and sub optimal solutions.
This first partition is composed of solutions which are esti-
mated to be optimal, meaning that selecting another solution
in their neighbourhood will either result in cost increase or
performance decrease: this is known as the Pareto curve [1].
Such partitioning may not require to individually evaluate each
solution, as exploration strategies can approximate this Pareto
frontier without exhaustive space evaluation, resulting in faster
completion of the exploration process. With respect to this
statement, we highlight two parameters that can be leveraged
for quicker exploration convergence: speed of the evaluation
process, and space traversal strategy.

†Institute of Engineering Univ. Grenoble Alpes

However, many DSE tools rely on automatic inferences
to generate different implementations, which can result in
a lack of controllability over generated designs. To address
this problem, one can use Hardware Construction Languages
(HCL) — an emerging paradigm allowing users to control
generated hardware by defining hardware generators instead
of hardware circuits. Such feature eases code re-usability
by providing higher level of programmability over circuits,
while maintaining sufficient control over generated designs.
As an implementation candidate, Chisel is an emerging HCL
accepted by both industrial and academic world [2], and this
work is based on it. For better apprehension of the hardware
generator concept, a code snippet is introduced in Figure
1, where a type parametric adder generator is described,
allowing instantiation of different adder modules. As we can
see, HCLs enable to define generic data types — here we
define a type T which inherits from Data and implements
Num [T] (line 3), meaning it is an arithmetic type defining
multiplications, additions, ... — and to instantiate it with
different types — either 32 bit wide unsigned integers (line
14) or 8 bit wide fixed points type with 3 bits of precision (line
15), both types being defined in Chisel library (lines 0-1).

Nonetheless, DSE support for HCL initiatives are still to
be proposed, and we present a Chisel based methodology as
a proof-of-concept. We aim to speed-up exploration processes
using two levers: we introduce quick resource usage estimators
based on high level abstractions in Section III, and instrument
a Chisel-based General Matrix Multiply (GEMM) module
generator in Section IV, in order to compare two exploration
strategies to find the "best" GEMM implementation for a given
set of constraints. Section V then exposes experiments and
results used to exhibit usability of such methodology, and
Section VI presents conclusions and future works.

II. RELATED WORK

In order to perform efficient design space exploration, one
needs to use performant estimators, i.e. estimators with an
acceptable trade-off between speed and accuracy.

Methodologies to generate fast Register-Transfer Level
(RTL) estimators for FPGA — such as resource usage,
timing or even power consumption — have emerged this

2

0 import chisel3._
1 import chisel3.experimental.FixedPoint
2
3 class Adder[T <: Data with Num[T]](tpe: T)
4 extends Module {
5 val io = IO(new Bundle({
6 val op1 = Input(tpe)
7 val op2 = Input(tpe)
8 val res = Output(tpe)
9 })

10
11 io.res := io.op1 + io.op2
12 }
13
14 val uintAdder = new Adder(UInt(32.W))
15 val fpAdder = new Adder(FixedPoint(8.W, 3.BP))

Fig. 1: Type parametric adder generator in Chisel

past decades, using algorithmic descriptions as entry points,
like Matlab [3][4][5], or C-based High-Level Synthesis (HLS)
approaches. Such techniques recently grew in maturity, and
need for performant estimators resulted in various techniques
operating on Intermediate Representations (IR) — typically,
Directed Dataflow Graph or other algorithmic IR — to quickly
estimate both circuit performance and cost, allowing efficient
exploration processes to be designed. Moreover, as no generic
exploration strategy can be defined [1], different metrics need
to be considered to perform circuit generation, varying from
"classic" ones — i.e. area, latency, frequency, power consump-
tion, ... — to more specific ones, such as quality-of-result
[6], global throughput [7] or even multiplication mapping
to Digital Signal Processors (DSP) for efficient primitive
usage [8], resulting in sometimes use case specific estimation
frameworks. In addition to that, resource usage does not
grow linearly with circuit complexity, meaning that estimation
methodologies may not scale, and some initiatives hence
use statistical and/or machine learning approaches to build
efficient estimators for HLS [9][10][11] or Domain-Specific
Languages (DSL) [12] based explorations. HLS frameworks
then uses high level transforms based on those quick feedbacks
to perform efficient exploration [13], and try to approximate
Pareto frontier to keep the number of estimated designs low
[12][14]. However, all those approaches aim at reproducing
synthesis tool behaviour while reducing flow duration, and are
thus based on target specific characterization and optimization
which may not be easily configurable by users — and entry
point (HLS/DSL) may not fit every usage. HCL based ini-
tiatives are still to be proposed, even if some work already
explored the opportunity they can bring for DSE — Schmidt
et al. [15] proposed JackHammer to explore Secure Hashing
Algorithm (SHA3) implementations, however they claim that
the tool is too application-specific to be used as a generic
solution, and it has not been made available yet.

On the other hand, initiatives for Hardware Description Lan-
guage (HDL) based estimation have been explored to provide
quick feedbacks for hardware developers. One of the main
challenge when building such estimators is to cope with target
specific optimizations in circuit generation, as different FPGA
will not use the same resources for kernel implementation. To
address this, two approaches can be considered: either allow

user to define target specific optimization before estimation
[16], or build estimators for a given board/family [17]. This
last work aims to be integrated in any RTL based flow —
as it is integrated in Xilinx PlanAhead tool — and relies on
modelling synthesis steps instead of actually performing it. It
identifies operation primitives and more complex macros using
pattern recognition, performs target specific and non-specific
optimization (e.g. operation merging or memory management)
and then uses prior characterization results to generate accurate
estimation.

As for the use case, General Matrix Multiply (GEMM)
algorithm is a standard BLAS (Basic Linear Algebra Sub-
programs) routine, considered representative of algebra com-
putations [18]. Implementation heavily relies on architecture
choices — e.g. computation architecture, memory partition-
ing, communication protocol, ... — and can be used for
more complex usages, such as Convolutional Neural Network
(CNN) implementation[19][20][21] with heavy design space
to explore [12][19].

In the context of our work, we aim at providing an HCL
based design space exploration example, as an alternative to
HLS based techniques — which result in less controllable
hardware and widest design spaces. We chose to implement
a generic estimation technique with principle similar to Schu-
macher et al. [17] and integrate it in standard Chisel flow as a
proof-of-concept. We then used a Chisel based GEMM circuit
generator to demonstrate our novel exploration methodology,
based on previous work from Ferres et al. [22].

III. FIRRTL BASED RESOURCE ESTIMATION

Chisel flow is based on a generic Intermediate Represen-
tation named FIRRTL (Flexible Intermediate Representation
for RTL) [23][24], which is used to perform compilation
optimization and verification — such as combinatorial loop
checking, type inference, width reduction or dead code elim-
ination — and Verilog generation. In order to integrate quick
resource estimators in the flow, we thus chose to integrate
in FIRRTL transform system — used for compilation passes
— and define our estimators as simple transforms over the
intermediate representation of the circuit.

As resource estimation aims to approach vendors synthesis
tools results, it is obviously target specific, and we will only
consider target boards belonging to Xilinx Virtex 7 family in
this work. However, estimation methodology is thought to be
generic and one can easily build new estimators for a given
target board.

A. Basic operator composition

In order to accurately estimate the resource usage of a given
design, our first approach was to individually estimate resource
usage of each operator of the circuit, and add every individual
estimation to obtain the global resource usage. Using FIRRTL
hierarchy system, each submodule can be estimated only once,
and global estimation is then performed using submodule
instantiation amount.

As for the operator resource usage, we chose to only
consider eight operator kinds as consuming resources: ADD,

3

MULT, BINOP, MUX, COMPARE, DSHIFT1, REGISTER and
MEMORY. Every other operator — e.g. static shift, static
padding, sub-word assignment — are considered to consume
zero resource as a first approximation, as they are basically
only wires in data paths. For every operator consuming re-
sources, we defined a simple Chisel Module, using input
bitwidth as the only module parameter2, and performed syn-
thesis runs for every bitwidth in a given bitwidth set, and
for a given target board. We then performed synthesis result
analysis to extract resource usage for every implementation
— considering 4 different resources: LUTs, Flip Flops, DSPs
and BRAM — in order to build target specific libraries of
characterized operators, then using linear interpolation to esti-
mate resource usage for a given bitwidth. For REGISTER and
MEMORY primitives, we do not need to perform preliminary
syntheses, as we can count every FIRRTL register and memory
instances instead. Of course, library building need to be done
only once for a given target board — assuming we do not
want to add an operator — and are stored in JSON files.
They can then be used in the formerly described process
to naively estimate circuit resource usage in a hierarchical
manner, without performing synthesis over the whole circuit.

B. Macro block replacement

Even though this first approach is quite simple and straight-
forward, it cannot be applied directly for FPGA estimation.

As a matter of fact, FPGA inherent heterogeneous composi-
tion needs to be considered at synthesis time, when translating
data paths to actual components: for example, adding a given
signal with the result of a multiplication might be mapped to
DSP instead of LUT for a simple addition, and such hetero-
geneity should also be considered when estimating resource
usage, in order to approach a realistic estimation.

To do so, we provide a mechanism to describe and char-
acterize macro blocks in way similar to the one described
in Section III-A, along with a pattern recognition helper to
find and replace given patterns in the FIRRTL representa-
tion. Figure 2 exhibits two different macro blocks that are
being searched for when performing estimation: Multiply-and-
Accumulate (MAC) units and multiplexers.

As stated earlier, MAC units should be considered as single
blocks to approach synthesis results. Given Xilinx Virtex 7
specification, we know that DSPs can absorb up to 4 registers
[25], and thus define replacement pattern of Figure 2a. This
means that we will search through FIRRTL representation to
find any data path where at least one multiplier is followed by
0 to 3 registers, 0 or 1 adder and 0 or 1 register, and replace
it by a Mac Unit macro block parametrized by both input
bitwidth and pattern parameters.

Another limitation is that FIRRTL representation only con-
siders binary multiplexers — meaning that more complex
multiplexers will be considered as a succession of 2-to-1
multiplexers, instead of n-to-1. As Xilinx Virtex 7 FPGA slices

1Dynamic Shift.
2In this work, we only considered unsigned integers, but characterization

can be done on any Chisel arithmetic data type — even custom ones.

(a) Example of MAC unit found with
[×{Reg}0..3{+}0..1{Reg}0..1] pattern

(b) n-to-1 multiplexers are estimated using
f(max(widthinput),#cond)

Fig. 2: Macro block replacement

include 8-to-1 multiplexers — and allow more complex com-
bination between slices — multiplexer resources can not be
estimated accurately if n-to-1 multiplexers are not considered
in resource estimators, and we thus defined MuxBlock macro
block (Fig. 2b).

It is important to remark that for multiplexers, we can not
only consider macro block input bitwidth for parametrization,
as the actual implementation also depends on the amount of
conditions used for selection. We thus need to use multi-
dimensional linear interpolation for estimation, using the 4
nearest synthesized mux blocks in the library to extrapolate
resource usage of a given pattern.

Finally — and for the same reasons — memory primitives
should be characterized using two factors: depth and width —
as considering only total bit count in memory can not express
the distributed aspect of embedded memories. We hence define
a third macro block, Memory macro block, to address this.

Using basic operator characterization and macro block re-
placement, we hence build FIRRTL based resource estimators
that are fully integrated in the Chisel standard flow.

IV. EXPLORING GEMM IMPLEMENTATIONS

As a way to demonstrate the usage of such estimators for
DSE processes, we chose to explore a General Matrix Multiply
(GEMM) circuit generator already introduced in previous
work [22]. This GEMM generator aims at maximizing I/O
throughput by consuming input data only once, and we hence
aim at exploring implementations on such criterion.

A. Defining design space

The first thing to do when building a DSE process is to
define the explored design space.

In HLS — and some DSL [12] — processes, exploration
spaces are defined using knobs [1], which can be seen as

4

exploration parameters that will each define an exploration
dimension. With this definition, the actual exploration space
is built as the Cartesian product of the knobs value sets, and
can result in very wide design spaces [12], highlighting the
need for efficient exploration strategies.

In a similar way, we exposed high level parameters at
top level in our Chisel Module to build our exploration
space. As Chisel is based on scala, we used Scala’s annotation
system to embed parameters value sets directly in Module
constructor, instead of using external configuration file to
define exploration space. We defined 3 annotation kinds, which
defines value sets for an integer parameter p:

• @ linear (x, y) ⇔ p ∈ [[x, y]]
• @ enum (x0 , ..., xn) ⇔

p ∈ {x0, ..., xn} ∧ ∀i ∈ [[0, n]], xi ∈ N
• @ pow2 (x, y) ⇔ p ∈ N/p = 2z ∧ z ∈ [[x, y]]

We also defined an Explorable trait based on scala
reflective programming features, to build each different imple-
mentation in the Cartesian product of defined parameters by
analysing Module constructor to retrieve exploration space.

class GemmRole(
@pow2(5, 10) bandWidth: Int,
@enum(32) elemWidth: Int,
@pow2(4, 10) dimension: Int

) extends Module with Explorable

Fig. 3: Exposing GEMM design space

For GEMM exploration, we defined design space (Fig. 3)
using only 2 parameters — I/O bandwidth, and matrix dimen-
sion — while fixing element bitwidth to 32 bits, as it will not
only impact architecture generation, but also algorithm quality
of result. Varying I/O bandwidth over @ pow2 (5, 10) —
i.e. between 25 = 32 and 210 = 1024 (6 values) — and
dimension over @ pow2 (4, 10) — i.e. between 24 = 16
and 210 = 1024 (7 values) — we create a 6 × 7 = 42 wide
exploration space to iterate over.

It is important to note that not every implementation in
this design space is possible, since some combination of
parameters may not be compatible for design generation —
e.g. for Figure 3, one implementation among 42 is unfeasible:
if bandWidth = 1024, elemWidth = 32 and dimension = 16, we
got 32 elements sent each cycle (102432), but only 16 elements
by line/column. As kernel design does not allow more than
one line/column to be sent at once, this design will fail Chisel
elaboration and will not be considered further in the flow.

B. Exploration strategy

After defining exploration space, one needs to define space
traversal order, also known as exploration strategy — and it
is even more important to define a clever strategy when the
design space is too wide to be explored exhaustively, as it is
the case in standard HLS flows.

First of all, we define the pruning of a design space as
the exhaustive application of both an estimator and a pruning

function over the given set of points — i.e. it consists in
evaluating every point in the input design space, and accept or
reject each of them, whether they fit or not the pruning func-
tion. Figure 4 shows an example of 2-Dimensional pruning,
where the pruning function may be defined using the following
equation, given impi an implementation in the input design
space:

P (impi) = (MetricA(impi) > 80) ∨ (MetricB(impi) > 50) (1)

In this example, design space resulting from pruning will only
include implementations for which MetricA < 80 Ua AND
MetricB < 50 Ub.

Fig. 4: Example of 2-Dimensional space pruning

We then propose to compare two ad-hoc strategies to
demonstrate the usability of fast FIRRTL based resource
estimation for faster DSE convergence:

• exhaustive synthesis strategy, where every possible im-
plementation is synthesized and compared (Fig. 5a)

• gradient based strategy, based on three consecutive steps
(Fig. 5b):

– estimate resource usage and prune implementations
that consume too many resources3

– sort design space to select widest implementation
that still fits the target board, after this first pruning

– use this candidate as the starting point of a gradient
descent algorithm based on synthesis runs, aiming
to find local optimum in an already pruned space

Both strategies are manually defined using scala to iter-
ate and find best fits over every possible implementations,
using defined estimators for fast resource estimation, and
synthesis result parsing for more accurate ones. Users (here,
the developer) define both the Chisel implementation of
the computation kernel and the design space to be explored
— exposed as parameters — using the annotation system
introduced in Section IV-A, and define all the transforms —
e.g. estimation or synthesis — to be runned in order to expose
best fit at the end of the process.

3Thresholds are arbitrary and shall depend on estimators accuracy.

5

(a) Exhaustive synthesis strategy (used as baseline)

(b) Gradient strategy

Fig. 5: Compared exploration strategies

V. EXPERIMENTS AND RESULTS

For our experiments, we targeted a Xilinx VC709 board
using vivado 2017.3 for synthesis, on a 12 core server running
at 3.47 GHz with 80 GB of RAM. We used 4 parallel threads
and define a 2 hours timeout for synthesis processes, in order
to keep memory usage under resource constraints.

A. Estimators accuracy

In order to quantify accuracy and fidelity of our FIRRTL
based estimators, we aimed to compare resource usage es-
timation and synthesis results — considered as theoretical
values — for the 4 considered resources metrics (LUTs,
Flip Flops, DSPs and BRAMs) over 168 different GEMM
implementations — varying also element bitwidth over
@ pow (4, 7) in contrast to Figure 3. Among those 168
implementations, 82 were dropped, either due to incompatible
parameters combinations as mentioned in Section IV-A, or to
synthesis timeouts, resulting in a combination of 86 different
implementations in Figure 6. For coherent comparisons, we
define relative difference between a theoretical value y and its
estimated counterpart ŷ as the result of ŷ−y

y .
Using 2 hours timeouts, it took 52:47:02 hours to synthe-

size the whole space, while it took 01:37:59 hours for exhaus-
tive FIRRTL estimations without macro block replacement

(Fig. 6a) and 06:37:28 hours with macro block replacement
(Fig. 6b). As macro replacement is a complex transform need-
ing to traverse and modify FIRRTL representation of circuits,
we remark it is a time-consuming operation, but results in
more accurate estimations as demonstrated in this section.
Thence, macro replacement process might be optimized in
order to both restrain computing resource usage and increase
estimation speed, and it is considered as future work.

Considering no macro block replacement, Figure 6a can be
decomposed in 4 parts — one for each considered resource
— where each bar of the histograms represents the percent-
age of implementations with similar relative differences. For
example, we observe that more than 70% of implementations
are overestimating LUT usage of a factor varying in [[0, 100%]]
of real usage. Flip Flops are over estimated of almost 400%
for more than 20% of implementations — which might result
in erroneous choices for exploration — and DSP usage is
perfectly estimated for more than 60% of implementations.
By comparing Figure 6a and 6b, we observe that using macro
replacement decreases LUT estimation accuracy — while
maintaining more than 60% of implementation estimated in
[[0,+200%]] of real usage — but increases accuracy of the
three other estimators. We can also observe that, even with
macro replacement, LUTs and Flip Flops are estimated with
significant errors, resulting in non accurate estimations.

6

(a) Relative difference (in %) without macro block replacement

(b) Relative difference (in %) when using macro block replacement

Fig. 6: Accuracy of FIRRTL based estimators, with respect
to synthesis results — using 86 GEMM implementations

However, we can highlight three remarkable tendencies
when using macro block replacement:

• DSPs and BRAMs are almost perfectly estimated
• LUTs are always overestimated, in an interval of

[[0,+200%]] for more than 70% of implementations
• Flip Flops are estimated within ±50% of theoretical value

This way, even if FIRRTL based estimations are not accurate
enough to be considered as a contribution on their own, we aim
at demonstrating that they can be used for efficient exploration
nonetheless.

For the next section, we use macro block replacement before
resource estimation, based on observed results.

B. Design Space Exploration

As stated in Section IV-B, we aim at comparing two explo-
ration strategies to demonstrate the usability of rapid FIRRTL

estimators for exploration convergence. As shown in Section
V-A, when using macro replacement, DSP amount is always
estimated accurately, and LUT amount is mainly overestimated
of a factor varying between 0% and 200%. Moreover, GEMM
kernels are computation intensive, meaning that computation
resources — i.e. LUTs and DSPs — are often critical for
implementations. Thereupon, for the gradient strategy (Fig.
5b), we define the pruning criterion as done in Section IV-B
— this time with resource usage considerations:

P (impi) = (%DSP (impi) > 100%) ∨ (%LUT (impi) > 200%) (2)

where %DSP (impi) and %LUT (impi) respectively represent
estimated consumption of DSP and LUT for an implementa-
tion impi.

For this exploration process, we chose to maximize design
theoretical throughput (in GOp/s), using a simple analytical
formula to derive it from both generation parameters and
operating frequency as given by the result of synthesis pro-
cesses. As Ferres et al. [22] showed that experimental latency
obtained in simulation only differed from theoretical latency
by few cycles, which is negligible with respect to the order of
magnitude of the problem, we use theoretical throughput as a
performance metric for such exploration. Based on the same
work, we used the maximum percentage of resource usage
for the 4 resource considered — LUTs, Flip Flops, DSPs and
BRAMs — as cost metric, as saturating one resource will
result in non placeable designs.

Figure 7 shows synthesized implementations that did not
timeout for both strategies, representing the evolution of
theoretical throughput of designs with respect to occupied area.
We can remark that the gradient based strategy requires much
less synthesis processes (represented as red triangles) than
the exhaustive strategies (represented as blue dots), but still
considers the best design — as of the meaning of throughput
— that fits on the target board (i.e. with area ≤ 1.0).
Indeed, all implementations synthesized during the gradient
based exploration were also synthesized during the exhaustive
process.

Table I compares the temporal behaviour of each strategy.
Both strategies find the same best fit with an achieved through-
put of 231.334 GOp/s, but the gradient strategy requires ×7
less synthesis than the exhaustive strategy, resulting in a ×4.1
faster convergence. This is mainly due to a reduction of
synthesis timeouts, as synthesis runs which does not converge
in the exhaustive strategy are estimated at RTL level as
consuming too many resources, and are not even considered
as candidates for synthesis in the gradient based strategy.

Strategy Best throughput #(space) #synth Time Speed-up(#timeout)
Exhaustive 231.334 GOp/s 41 41 (19) 13h51m56s -
Gradient 231.334 GOp/s 6 (1) 03h21m06s ×4.1

TABLE I: Comparing exploration strategies.

Achieved optimal implementation reaches a theoretical per-
formance of 231.334 GOp/s on target board, which is coherent
with the original solution [22] — and is comparable to state of
the art solutions — showing that process did not alter design
performances.

7

Fig. 7: Synthesized design spaces for both strategies.

VI. CONCLUSION

Hardware Construction Language is a novel paradigm en-
abling hardware reusability while maintaining control over
generated designs, and HCL-based initiatives are currently
being proposed in order to increase developers productivity.

In this work, we demonstrate that Intermediate Represen-
tation based resource estimators can be built using FIRRTL
representation, and can be used to build ad-hoc strategies for
efficient design space exploration. Over a GEMM use case, we
achieve state of the art performances — 231.334 GOp/s for 32
wide unsigned integers — while increasing convergence speed
by a ×4.1 factor and limiting synthesis runs by a ×7 factor.

We now aim at proposing a generic methodology for
hardware generator design and exploration, as well as proof-
of-concept framework to enable user-defined efficient design
space explorations over Chisel based kernels. We claim that
scala high level features can bring a lot to hardware developers
productivity, and aim at leveraging such features in a compre-
hensive manner. We also aim at allowing users to explore on
non architectural features — e.g. quality of result — to provide
a more generic exploration framework.

REFERENCES

[1] B. C. Schafer and Z. Wang, “High-Level Synthesis Design Space Explo-
ration: Past, Present, and Future,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, Oct. 2020.

[2] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012,
June 2012.

[3] C. Shi, J. Hwang, S. McMillan, A. Root, and V. Singh, “A System
Level Resource Estimation Tool for FPGAs,” in Field Programmable
Logic and Application, Berlin, Heidelberg: Springer Berlin Heidelberg,
2004. Series Title: Lecture Notes in Computer Science.

[4] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Accurate area and
delay estimators for FPGAs,” in Proceedings 2002 Design, Automation
and Test in Europe Conference and Exhibition, vol. 1, (Paris, France),
IEEE Comput. Soc, 2002.

[5] P. Bjureus, S. Avionics, M. Millberg, and A. Jantsch, “FPGA Resource
and Timing Estimation from Matlab Execution Traces,” 2002.

[6] X. Gao, J. Wickerson, and G. A. Constantinides, “Automatically Op-
timizing the Latency, Area, and Accuracy of C Programs for High-
Level Synthesis,” in Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, (Monterey California
USA), ACM, Feb. 2016.

[7] P. Li, P. Zhang, L.-N. Pouchet, and J. Cong, “Resource-Aware Through-
put Optimization for High-Level Synthesis,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, (Monterey California USA), ACM, Feb. 2015.

[8] Y. L. Aung, S.-K. Lam, and T. Srikanthan, “Rapid estimation of DSPs
utilization for efficient high-level synthesis,” in 2015 IEEE International
Conference on Digital Signal Processing (DSP), (Singapore, Singapore),
IEEE, July 2015.

[9] R. Meeuws, S. A. Ostadzadeh, C. Galuzzi, V. M. Sima, R. Nane, and
K. Bertels, “Quipu: A Statistical Model for Predicting Hardware Re-
sources,” ACM Transactions on Reconfigurable Technology and Systems,
vol. 6, May 2013.

[10] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer: a
high-level performance analysis tool for FPGA-based accelerators,” in
Proceedings of the 53rd Annual Design Automation Conference, (Austin
Texas), ACM, June 2016.

[11] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar,
“Design Space exploration of FPGA-based accelerators with multi-level
parallelism,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, (Lausanne, Switzerland), IEEE, Mar. 2017.

[12] L. Nardi, D. Koeplinger, and K. Olukotun, “Practical Design Space
Exploration,” in 2019 IEEE 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), vol. 1, (Rennes, FR), IEEE, Oct. 2019.

[13] T. Todman and W. Luk, “Reconfigurable Design Automation by High-
Level Exploration,” in 2012 IEEE 23rd International Conference on
Application-Specific Systems, Architectures and Processors, vol. 1,
(Delft, Netherlands), IEEE, July 2012.

[14] Dong Liu and B. C. Schafer, “Efficient and reliable High-Level Synthesis
Design Space Explorer for FPGAs,” in 2016 26th International Con-
ference on Field Programmable Logic and Applications (FPL), vol. 1,
(Lausanne, Switzerland), IEEE, Aug. 2016.

[15] C. Schmidt and A. Izraelevitz, “A Fast Parameterized SHA3 Accelera-
tor,” vol. 1, 2015.

[16] L. Deng, K. Sobti, and C. Chakrabarti, “Accurate models for estimating
area and power of FPGA implementations,” in 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing, (Las Vegas,
NV, USA), IEEE, Mar. 2008. ISSN: 1520-6149.

[17] P. Schumacher and P. Jha, “Fast and accurate resource estimation of
RTL-based designs targeting FPGAS,” in 2008 International Conference
on Field Programmable Logic and Applications, (Heidelberg, Germany),
IEEE, 2008.

[18] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
Linear Algebra Subprograms for Fortran Usage,” ACM Transactions on
Mathematical Software, vol. 5, Sept. 1979.

[19] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space
exploration of FPGA-based Deep Convolutional Neural Networks,” in
2016 21st Asia and South Pacific Design Automation Conference (ASP-
DAC), (Macao, Macao), IEEE, Jan. 2016.

[20] J. Shen, Y. Qiao, Y. Huang, M. Wen, and C. Zhang, “Towards a Multi-
array Architecture for Accelerating Large-scale Matrix Multiplication
on FPGAs,” Mar. 2018. arXiv: 1803.03790.

[21] K. S, J. Mathew, B. R. Jose, and N. S, “UniWiG: Unified Winograd-
GEMM Architecture for Accelerating CNN on FPGAs,” in 2019 32nd
International Conference on VLSI Design and 2019 18th International
Conference on Embedded Systems (VLSID), (Delhi, NCR, India), IEEE,
Jan. 2019.

[22] B. Ferres, O. Muller, and F. Rousseau, “Chisel Usecase: Designing
General Matrix Multiply for FPGA,” in International Symposium on
Applied Reconfigurable Computing, Springer, 2020.

[23] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
FIRRTL ground: Hardware construction languages, compiler frame-
works, and transformations,” in 2017 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), Nov 2017.

[24] P. S. Li, A. M. Izraelevitz, and J. Bachrach, “Specification for the
firrtl language,” Tech. Rep. UCB/EECS-2016-9, EECS Department,
University of California, Berkeley, Feb 2016.

[25] Xilinx, “7 series dsp48e1 slice user guide.” https://www.xilinx.com/
support/documentation/user_guides/ug479_7Series_DSP48E1.pdf,
2018.

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

	Introduction
	Related work
	FIRRTL Based Resource Estimation
	Basic operator composition
	Macro block replacement

	Exploring GEMM implementations
	Defining design space
	Exploration strategy

	Experiments and Results
	Estimators accuracy
	Design Space Exploration

	Conclusion
	References

