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Whole-Body Model Predictive Control for Biped Locomotion on a
Torque-Controlled Humanoid Robot

Ewen Dantec a,b,*, Maximilien Naveau a, Pierre Fernbach c, Nahuel Villa a,
Guilhem Saurel a, Olivier Stasse a, Michel Taı̈x a, Nicolas Mansard a,b

Abstract— Locomotion of biped robots requires predictive
controllers due to its unstable dynamics and physical limitations
of contact forces. A real-time controller designed to perform
complex motions while maintaining balance over feet must
generate whole-body trajectories, predicting a few seconds in
the future with a high enough updating rate to reduce model
errors. Due to the huge computational power demanded by
such solvers, future trajectories are usually generated using
a reduced order model that contains the unstable dynamics.
However, this simplification introduces feasibility problems on
many edge cases. Considering the permanent improvement
of computers and algorithms, whole-body locomotion in real-
time is becoming a viable option for humanoids, and this
article aims at illustrating this point. We propose a whole-body
model predictive control scheme based on differential dynamic
programming that takes into account the full dynamics of the
system and decides the optimal actuation for the robot’s lower
body (20 degrees of freedom) along a preview horizon of 1.5 s.
Our experimental validation on the torque-controlled robot
Talos shows good and promising results for dynamic locomotion
at different gaits as well as 10 cm height stairstep crossing.

I. INTRODUCTION

Generalized locomotion for legged robots is a complex
problem that requires predicting the future in order to main-
tain balance over feet while coping with the inertial effects.
Model Predictive Control (MPC) schemes have thus become
a popular tool to perform locomotion as they consider future
trajectory predictions to generate optimal controls. However,
deciding optimal torques for every motor of the robot along
a preview horizon of up to two steps in the future [1] makes
the whole-body locomotion control quite computationally
expensive.

Locomotion strategies can roughly be divided into three
approaches. The first one aims at decoupling the centroidal
part of the dynamics and the whole-body control [2], so
that future trajectories are predicted using only the cen-
troidal dynamics to reduce the computational burden; then an
instantaneous controller produces the whole-body actuation
required to follow the desired centroidal motion. Early works
on this approach proposed position control, based on inverse
kinematics, to generate the whole-body motion [3], [4], [5].
However, this approach is limited as position control does not
account for the inertia of the limbs, which matters for robots
with heavy arms and legs (e.g. Talos [6]). Additionally, the
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Fig. 1. Snapshots of the stairstep crossing experiment.

compliance, i.e. the ability to smoothly handle impacts and
external disturbances, is not intrinsic to the controller [7] and
needs to be explicitly designed. On the other hand, torque
control allows to directly optimize contact forces and is more
suited for heavy robots dealing with multi-contact scenarios.
In order to fully exploit the potential of torque control,
researchers started to use inverse dynamics as a whole-body
instantaneous controller [8], [9], [10] despite the need for a
very precise dynamic model, often difficult to estimate [11].
To mitigate this issue, combinations between inverse kine-
matics and inverse dynamics were also studied [12], [13].

Another approach involves decoupling the centroidal dy-
namics over the end of the preview horizon while only using
the whole-body dynamics for the first time-steps [14], [15].
This has the advantage to propagate the terminal cost or
constraint of the dynamics into the whole-body motion, while
keeping low the overall computational load.

Recent efficient solvers [16], [17] allow for a third ap-
proach which consists in a complete whole-body MPC.
Particular implementations involve solving iteratively the
centroidal dynamics and whole-body kinematics over a pre-
view horizon until both solutions are consistent [18], [19],
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[20]. The other possibility is to directly optimize the full mo-
tion [16] through a direct shooting approach [21], either by
using iterative Linear Quadratic Regulator (iLQR) [22], [23]
methods or Differential Dynamics Programming (DDP) [24],
[25]. These algorithms feature a linear complexity in the
time horizon, which make them especially efficient for large
horizon and complex models; moreover, they produce a
reliable state-feedback policy at no extra cost through the
Riccati gains [25], [26].

In this work, a DDP-based MPC scheme taking into
account the whole-body model of the robot is used to achieve
dynamic locomotion and stairstep crossing. Given the current
state of the robot measured at 2 kHz, the control block
directly computes the optimal torque and feedback policy
to be played on the robot, without any other refinement or
estimation needed. The method is fully generic, open-source
and can be applied to any legged robots on various terrains.
It corresponds to the first demonstration of the capabilities of
whole-body MPC for the locomotion of a torque-controlled
humanoid robot on flat and non-flat terrains.

The optimization problem is presented in Sec. II, while the
formulation of the resulting MPC is given in Sec. III. We
demonstrate the validity of the framework on the torque-
controlled humanoid robot Talos [27] through a series of
locomotion experiments, presented in Sec. IV.

II. WHOLE BODY TRAJECTORY OPTIMIZATION PROBLEM

A. Whole-body dynamics modelling

We consider a floating-base rigid-body system with nj

joints, in contact with the environment at np places. The
configuration space of such a system can be described by a
vector q ∈ SE(3) × Rnj composed by its global position,
orientation and the angle of each joint. When we command
torques τ ∈ Rnj on the joint motors, the robot configuration
evolves as [28]:[

M J⊤
c

Jc 0

] [
q̈
−λ

]
=

[
S⊤τ − b

−J̇cq̇

]
, (1)

where M is the inertia matrix, b the generalized Coriolis,
centripetal and gravity effects, S a selection matrix mapping
over the actuated joints, Jc = (J1 · · ·Jnp

) the concatenation
of contact Jacobian matrices and λ= (λ1 · · ·λnp

)∈R6×np

represents all contact wrenches.

B. Problem formulation

We choose the state to contain the robot configuration and
its rate of change x = (q, q̇), ẋ = (q̇, q̈), and we use the
vector of joint torques as our control signal u = τ .

The control problem is formulated in discrete time by
rewriting the dynamics (1) as a constraint in our next-state
integration scheme according to [29]. At time t, we have

xt+1 = f(xt,ut). (2)

We then obtain the optimal state and control trajectories
along a preview horizon of T knots by solving the control

problem:

min
x,u

T−1∑
t=0

ℓ(xt,ut, t) + ℓT (xT )

s.t. x0 = f0

∀t ∈ [0 . . T − 1], xt+1 = f(xt,ut),

(3)

where x = (xt)t=0..T and u = (ut)t=0..T−1 are the state
and control trajectories, ℓ and ℓT are the running and terminal
cost functions which define the locomotion task, and f0 is
the initial state. In order to be able to solve this problem
in real time, we do not consider any other state and control
constraints, but instead choose to use penalty costs.

C. Solving the OCP with DDP

DDP is a very efficient tool to solve (3) based on Bell-
man’s optimality principle [30]. The algorithm leverages the
sparsity of the Markovian nature of the dynamics constraints
and provides a descent step (∆xt,∆ut)t=0..T through a
backward-forward pass formulation followed by a line search
heuristics. Moreover, it naturally computes the optimal state
feedback gains Kt, also known as Riccati gains, such that
∆ut = Kt∆xt + kt. We demonstrated before that these
gains can be used to produce a first order approximation
of the optimal torque at the frequency of the low-level
control [26]. In classical DDP scheme [31], [32], the second-
order term of the Taylor approximation of the quality func-
tion is taken into account; here we neglect this term to lower
the computational load of the backward pass, making us able
to solve the OCP in real time. Such an approach is classically
called iLQR [33]. Note that this approximation does not
affect the computation of the optimal feedback gains.

D. Formulation of the costs

The walking task is described in our OCP by a running
cost function ℓ consisting of 6 terms, and a terminal cost
function ℓT reduced to only 3 terms ((1), (3) and (4)):
(1) State regularization:

ℓ1(x) = (x − xd)
TRx(x − xd) with Rx a positive

definite weight matrix and xd the initial state of the
robot, usually half-sitting position with null velocity.
This cost prevents the optimized state trajectory from
being too far away from the default position of the robot.

(2) Control regularization:
ℓ2(u) = (u − ud)

TRu(u − ud) with Ru a positive
definite weight matrix and ud the gravity-compensating
torque in default state. This cost prevents the solver
to cross torque limits, although it does only act as a
penalization.

(3) Feet-tracking:
ℓ3(x, t) = a(p(x)−pd(t)) with a : r 7→ log(1+ ||r||

α ) a
logarithmic activation function, p(x) and pd(t) current
and desired foot placement in SE(3), and α = 0.2. This
cost, associated with a user-tuned desired foot trajectory
pd(t)t=0..T , ensures that the foot in swing phase goes
to the next pre-defined contact. It stays inactive for the



supporting foot during swing phases, but is active during
double support phases.

(4) Kinematic limit:
ℓ4(x) =

1
2 ||max(x− xu,0)||2 + 1

2 ||min(x− xl,0)||2
with xu the upper bound and xl the lower bound of
the joint positions and velocities. This cost prevents the
solver from crossing the kinematics bounds of the robot.
Although the kinematics constraint takes the form of a
penalization, it efficiently rejects unfeasible trajectories
when the associated weight is high.

The two last costs terms are (5) wrench tracking and
(6) local Center of Pressure (CoP) regularization costs.
They ensure that the robot weight efficiently switches from
one contact to the next, and that the contact forces remain
dynamically consistent during the motion. In the following,
we only consider contacts between rigid bodies. A foot in
contact with the ground exerts a wrench λ = (f , τ ) =
(fx, fy, fz, τx, τy, τz) composed by linear f and angular τ
parts. Let us denote L, W the half-length and half-width
of the foot, and µ a friction coefficient. Ideally, we want λ
to remain inside the wrench cone [34], [35] defined by the
following inequalities:

fz > 0 (4a)
|fx| ≤ µfz (4b)
|fy| ≤ µfz (4c)
|τx| ≤ Wfz (4d)
|τy| ≤ Lfz (4e)

τmin ≤τz ≤ τmax, (4f)

with

τmin = −µ(W + L)fz + |Wfx − µτx|+ |Lfy − µτy|
τmax = µ(W + L)fz − |Wfx + µτx| − |Lfy + µτy|.

These inequalities describe a linearized wrench cone with
4 facets. While one can opt for a better approximation of the
true wrench cone by adding more facets, we chose to use a
simple model for the sake of time computation. As already
mentioned, DDP does not allow yet to take into account such
inequality constraints, although some recent works may solve
this issue in the near future [36], [37]. Using quadratic barrier
costs to approximate those constraints makes the problem
too hard to solve in real time, as the solver struggles to
discover the optimal contact forces in just one iteration.
For this reason, we introduce a reference wrench trajectory
λd(t) = (0, 0, fd(t), 0, 0, 0) where fd(t) is a normal force
reference equal to Mrg, the weight of the robot during single
support phase, and switching continuously from Mrg−fmin

to fmin during double support phase. Here, fmin = 150 N
is a security margin and should be read as the minimum
force reference at contact just before take-off. This margin is
implemented so that cost (5) doesn’t become ill-conditioned
when fd tends toward 0.

The contact wrench constraints are summarized in a matrix
A such that (4) is equivalent to bl ≤ Aλ ≤ bu, with bl

Fig. 2. Left foot CoP constraint |τy | ≤ Lfz for simulated walk with
and without CoP regularization. Blue plain line is |τy |, red dotted line is
Lfz . Bottom plot shows violations of the constraint during contact switch,
which translate into oscillating ankles in simulation. On the real robot, those
constraints violations lead to falling.

and bu the corresponding lower and upper bounds. The final
wrench tracking cost is then defined by:

ℓ5(x,u, t) = ||A(λ− λd(t))||2, (5)

with every wrench expressed in the local frame of the contact
foot. One alternative formulation of the cost consists in
replacing the matrix A with a diagonal weight matrix to
regularize individually each component of the wrench. This
alternative has been tested on the robot but has not yet
resulted in stable motions.

The wrench tracking cost alone does not prevent occa-
sional breaking of the non-tipping constraints during contact
transition. Practically speaking, it has been observed in
simulation and on the robot that the local CoP constraints
described by inequalities 4d and 4e are violated during
contact switches, although the wrench tracking cost (5)
should regularize the contact torque to zero. To address this
behavior, a local CoP regularization cost has been added to
the formulation:

ℓ6(x,u) =
1

2W 2

(
| τy
fz

|2 + |τx
fz

|2
)
. (6)

The idea behind this cost is to force the inequalities
| τy
Lfz

| < | τy
Wfz

| ≤ 1 and | τx
Wfz

| ≤ 1 by penalizing the
corresponding quantities. In order to be more conservative,
W can be set smaller than the half-width of the foot, which
is equivalent to increasing the CoP cost weight.

The effect of this cost is illustrated in Fig. 2, where
a walking motion was performed in simulation with and
without the CoP regularization.

III. MODEL PREDICTIVE CONTROL SCHEME

A. Timing and model

The complexity of the DDP increases as the cube of the
state dimension. In order to cut the computation load as much
as possible, it is interesting to use a reduced robot model
including a total of 14 torque-controlled joints: 6 for each
leg and 2 for the torso. The arm joints are controlled in



position and remain fixed during the walking motion. From
the viewpoint of the high-level MPC, the arm joints do not
exist. It has been demonstrated that including the arms in the
model allows for a better control of the centroidal angular
momentum of the robot [12]; using only a half-body model
is thus penalizing to the walking motion. Nevertheless, our
scheme is able to handle this issue. As for the contact phases
and timings, they are decided offline by the user, which could
be replaced in the future by a high-level pattern generator
in order to perform step adaptation. The DDP problem is
formulated using the open-source Crocoddyl library [17],
which is based on Pinocchio [38], a state-of-the-art library of
rigid body algorithms. Although the derivatives evaluation is
parallelized, the backward pass is not particularly optimized
and we observed computational burden (likely in the cache
flow) that we don’t understand properly yet. It is likely
that optimizing our implementation could lead to 30-50%
discount to the current version.

The horizon of our OCP has 150 knots separated by
a time-step of 10 ms, allowing the solver to predict the
behavior of the robot 1.5 s into the future. Before starting
the motion, the OCP is first solved until convergence with a
horizon only composed of double support models; then, at
each control cycle, the previous optimal trajectory is used as
a warm-start to bootstrap the problem and one DDP iteration
is performed. As the time goes by, contact switches and
desired wrench trajectory are gradually inserted at the end of
the horizon. This scheme allows us to solve the whole-body
problem online in about 15 ms.

B. Reference foot trajectory

During double support phase, at each control cycle, the
desired swing foot trajectories are updated over the entire
horizon using a minimum jerk Bezier curve, as in [39]. The
final placement of the swing foot is set to be the placement
of the support foot, plus a desired 2D translation (δx, δy).
These curves are tuned so that during landing and take-off,
foot velocity and acceleration are colinear to the normal of
the contact surface; as a consequence, the entire foot area is
making contact with the ground at the same time.

C. Cost parametrization

The following weight distribution has been used on the
robot to make it walk.

(1) (2) (3) (4) (5) (6)

1 0.005 1000 1000 0.001 10

The weight matrix Ru is the identity matrix, while the
weight matrix Rx has been carefully tuned to penalize
critical behaviors like tilting torso or swinging base. Here
are the weights used on the robot.

Base pose Base angle Leg Torso

Position 0 10000 10 100
Velocity 10 10 10 10

Fig. 3. Measured and desired feet position during locomotion on flat floor.

D. Robotic Operating System (ROS) architecture

Our MPC is embedded inside a ROS node which sub-
scribes to the actual state of the robot measured at 2 kHz, and
which publishes a feedforward optimal torque u0, Riccati
gains K0 and last computed initial state x0 at 70 Hz.
The final torque sent to the low-level control combines
the feedforward control with a state feedback based on the
Riccati gains and last measured state xm (see [26] for more
details):

u = u0 +K0(x0 − xm). (7)

At last, the desired intensity of current at each controlled
joint motor is computed through a proportional-derivative
feedback on the joint torque measurement. Because the ac-
tuator dynamics (motor inertia, frictions, flexibility...) are not
considered in the whole-body model, a feedforward term on
the current is added to compensate for the model discrepancy.
From the point of view of the high-level MPC, every joint
is behaving as an ideal joint. The architecture is separated
between two parallel processes running on different CPUs.
This publisher-subscriber architecture has been successfully
tested in previous works [26], [40].

IV. EXPERIMENTAL RESULTS

We performed experiments with the humanoid robot Ta-
los [27] to test our whole-body MPC framework. Due to the
critical problem of computation time, the MPC runs on a
powerful external computer (AMD Ryzen 5950X, 16 cores
and 4.9GHz with 64 GB of RAM), whereas the low-level
control runs on the embedded CPU of the robot.

The proposed control scheme has been evaluated in two
locomotion scenarios: in the first one, the robot performed
a straight walk on flat floor with two sets of gait timings; in
the second one, the robot successfully climbed up and down
a 10 cm-high step. In both experiments, the exact same
cost weights have been used on the robot, and the only
varying parameters were the feet trajectory and gait timings.
This demonstrates the adaptability of the MPC framework,
which can produce relevant stable trajectories over a wide
range of dynamic motions. The videos of the experiments,
as well as the associated raw data, are available at



Fig. 4. CoP trajectory in X axis compared to actual feet position during
locomotion on flat floor. The foot of the robot is 20 cm long.

Fig. 5. CoP trajectory in Y axis compared to actual feet position during
locomotion on flat floor. The foot of the robot is 10 cm wide.

https://gepettoweb.laas.fr/articles/dantechumanoid22.html.
The following table presents the different gait parameters
used during experimental validation.

Gait 1 Gait 2 Stairstep

Forward step length δx 10 cm 20 cm 30 cm
Width btw. feet δy 20 cm 20 cm 20 cm
Single support time 1.1 s 1.5 s 3 s
Double support time 0.3 s 0.75 s 2 s

A. Walking on flat floor

For the sake of conciseness, only the first gait tested on
the robot will be discussed in this paper. Both gaits are
nonetheless displayed in the attached video.

The results of the walking experiment are presented in
figures 3 to 7. Fig. 3 shows the tracking of the desired feet
trajectories over time. The Bezier curves used to generate the
reference in position are only followed during swing phases,
hence are not relevant during support phases. Although the
reference in X-axis is precisely tracked, the actual foot roll
and position in Y-axis suffer from noisy oscillations at take-
off and landing. Empirically, we found out that the walking
motion improves when the contact switch happens while the

Fig. 6. Predicted vs measured normal forces in left and right feet during
locomotion on flat floor. The foot is touching the ground before landing as
can be seen in the zoomed window.

Fig. 7. Time computation of one DDP iteration during locomotion on flat
floor.

foot reference is 1 cm above ground. Doing this makes the
robot force the contact into the ground with non-zero forces,
creating a stable contact and an impact. Because the control
scheme is intrinsically compliant, it damps the impact and
limits the resulting forces, preventing hardware damage.

Additionally, Fig. 6 shows that a normal force is measured
just before the contact switch, which means that the foot
impacted the ground before the solver predicted it. As no step
or timing adaptation has been introduced in our framework
yet, such behavior is for now unavoidable; nevertheless, the
MPC is able to cope with such unknown disturbances and
produce a stable walking trajectory.

Figures 4 and 5 shows that the predicted CoP, computed
from the forces predicted by the solver, matches the CoP
based on the sensor’s forces. During the motion, the solver
defines its own CoP trajectory to minimize the user-tuned
cost function. It is interesting to notice that when the foot
lands, the predicted CoP in Y axis may sometimes go outside
the feet support area, although the real CoP remains inside.
In this case, the low-level torque feedback loop is acting as
a low-pass filter which smooths the control’s sharp edges.

Finally, Fig. 7 indicates that the MPC is computed in less
than 15ms, but features brutal peaks of 50 ms which happen
around the instants of contact switch, where the structure



Fig. 8. Measured and desired feet position during stairstep crossing. Bad
pose estimation is highlighted at the end of the right foot trajectory.

Fig. 9. CoP trajectory in X axis compared to actual feet position during
stairstep crossing. The foot of the robot is 20 cm long.

of the problem suddenly changes. Despite these unexpected
time overflows, the motions produced by our framework
remain stable because the approximated Riccati policy takes
over while the high-level control is computing.

B. Stair up and down

The main objective of the stair experiment is to demon-
strate the versatility of the proposed framework. Compared to
the walking experiment, only the feet trajectories and contact
timings have been modified, while the wrench trajectory
remains the same. Figures 8 to 11 illustrate the results of
this experiment.

Figure 8 highlights an essential issue caused by a bad
estimation of the base of the robot: during the last 5 seconds
of the motion, whereas the right foot is in support phase
and not moving, the actual foot position in Y shows brutal
discontinuities of 1 cm when the left foot is creating and
breaking contact. The estimated base of the robot shows the
exact same discontinuities at the same time. Fortunately, the
solver is robust enough to handle such disturbances.

Similarly to the flat floor experiment, the predicted CoP
trajectory briefly goes outside the foot area when landing
occurs, as seen in Fig. 10. This issue is also noticeable

Fig. 10. CoP trajectory in Y axis compared to actual feet position during
stairstep crossing. The foot of the robot is 10 cm wide.

Fig. 11. Predicted vs measured normal forces in left and right feet during
stairstep crossing.

in Fig. 11 where the lateral forces during contact switches
feature several peaks corresponding to contact mismatches
caused by blind time-scheduled transitions and model uncer-
tainties.

V. CONCLUSION

This paper shows the first application of whole-body
MPC for the locomotion of an industrial biped robot. The
proposed framework can be adapted to cross obstacles like
stairstep by simply adjusting the feet reference trajectories
and locomotion gaits. It has proven to be robust against
model uncertainties, imprecise state estimation and unex-
pected latency in data transmission. The key to implementing
this MPC on a real platform lies in the approximation of the
wrench cone constraints treated as regularization costs and
the use of Riccati-based feedback policy inside the low-level
control of the robot. The latter improvement allows us to
increase the frequency of the control scheme to 2 kHz. Our
single-block framework can be extended to any given task
at the (small) price of designing and tuning specific costs
adapted to the goal.

Although this whole-body MPC architecture produces
promising results, we still need to prove that it can out-



perform state-of-the-art centroidal walking controllers. The
proposed method used to cope with wrench cone constraints
results in dynamically unfeasible predicted CoP trajectories,
even if the filtering effect of the low-level control allows for
such solutions to be executed on the robot. The behavior
of the robot at contact transitions needs to be studied more
thoroughly, so as to eliminate those brutal discontinuities in
torques and forces. Our main perspective of work is to get
rid of the feet reference trajectories in order to make the
solver able to perform push recovery. Following this logic,
we plan to introduce step adaptation and online optimization
of the contact timings, with the goal of increasing control
smoothness, walk speed and step length.
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