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Guilhem Saurel a, Olivier Stasse a, Michel Taı̈x a, Nicolas Mansard a,b

Abstract— In this paper, we present a whole-body Model Pre-
dictive Control framework for locomotion and validate it on the
humanoid robot Talos. Using a time horizon of 1.5 second and
a 20 Degree of Freedom model, the proposed controller outputs
the optimal feedforward torque and Riccati-based feedback
policy at a frequency of 100 Hz and the optimal feedback torque
at 2 kHz. Contact constraints are handled through wrench
regularization following a normal force reference in order to
hint smooth force transitions to the solver. Contact locations and
timings are user-defined, and Bezier curves are implemented
as reference feet trajectories. Experimental validation includes
dynamic locomotion at different gaits as well as 10 cm height
stairstep crossing. To the best of the authors’ knowledge, this
experimental result marks the first achievement of locomotion
on non-flat terrain for an electric torque-controlled humanoid
robot using a full-dynamics Model Predictive Control scheme.

I. INTRODUCTION

A. Context

Generalized locomotion for legged robot is a complex
problem that requires predicting the future in order to cope
with the effects of inertia. Consider the prediction of the
motion of a 36 Degree of Freedom (DoF) humanoid robot
along its next walking cycles, ie 1.6s, corresponding to 160
integration nodes: this corresponds to solving a problem with
about 108000 decision variables at a control frequency of 2
kHz for a humanoid like Talos.

The first approach consists in decoupling the centroidal
part of the dynamics and the whole-body control [1], [2]. In
practice it boils down to predict the future with a reduced
model around the center of mass and then using an instanta-
neous controller to produce a whole-body trajectory follow-
ing the desired centroidal dynamics. Early works assumed
that robots were controlled in position and therefore used in-
verse kinematics to compute the whole-body control [3], [4],
[5]. However, this approach is limited as inverse kinematics
does not account for the inertia of the limbs which matters
for robots with heavy arms and legs (e.g. Talos [6], [7]);
moreover, the compliance is not intrinsic to the controller
and needs to be actively designed. As a consequence, using
torque control offers the best solution to produce compliant
behaviour for heavy robots. Researchers started to use inverse
dynamics as a whole-body instantaneous controller [8], [9],
[10] despite its lack of kinematic precision. In order to
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Fig. 1. Snapshots of the stairstep crossing experiment.

tackle this issue, combinations between inverse kinematics
and inverse dynamics were also studied [11], [12].

The second approach involves coupling the centroidal
dynamics over a preview horizon while only using the whole-
body dynamics for the first timesteps [13]. This has the
advantage to propagate the terminal cost or constraint of the
dynamics into the whole-body motion.

Recent efficient solvers [14], [15] allow for a third ap-
proach which consists in implementing complete whole-
body Model Predictive Control (MPC). Particular implemen-
tations involve solving iteratively the centroidal dynamics
and whole-body kinematics over a preview horizon until
both solutions are consistent [16], [17], [18]. The other
possibility is to optimize the full motion directly [14] through
a direct shooting approach [19], either by using iterative
Linear Quadratic Regulator (iLQR) [20], [21] methods or
Differential Dynamics Programming (DDP) [22], [23]. These
algorithms feature a linear complexity in the time horizon,
which make them especially efficient for large horizon
and complex models; moreover, they produce a reliable
state-feedback policy at no extra cost through the Riccati
gains [23], [24].
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B. Contributions

In this work, a DDP-based MPC scheme taking into
account the whole-body model of the robot is used to achieve
dynamic locomotion and stairstep crossing. Given the current
state of the robot measured at 2 kHz, the control block
directly computes the optimal torque and feedback policy
to be played on the robot, without any other refinement
or estimation needed. The details of the formulation of the
resulting MPC are given in Sec. III. We demonstrate the
validity of the framework on the torque-controlled humanoid
robot Talos [25] through a series of locomotion experiments,
presented in Sec. IV. The method is fully generic, open-
source and can be applied to any legged robots on various
terrains. It corresponds to the first demonstration of the capa-
bilities of whole-body MPC for the locomotion of a torque-
controlled humanoid robot on flat and non-flat environments.

II. WHOLE BODY TRAJECTORY OPTIMISATION PROBLEM

A. Problem formulation

Given a floating-base robot with nj actuated joints and
np contacts with the environment, we consider the usual
formulation where the robot state is described by x =
(q, q̇) ∈ Rnx , ẋ = (q̇, q̈) ∈ Rndx , with q ∈ SE(3) × Rnj

the configuration vector composed of the free-flyer joint
position and the actuated joint positions. In this context, we
consider u = τ ∈ Rnj to be the vector of joint torques, and
λ = (λ1 · · ·λnp

) ∈ R6×np to be the concatenation of spatial
forces for every end effector in contact.

Using a multiple-shooting formulation, we describe our
problem as a discretized Optimal Control Problem (OCP)
which optimizes the state and control trajectories over a given
time horizon T:

min
x,u

T−1∑
t=0

ℓ(xt,ut, t) + ℓT (xT )

s.t. x0 = f0

∀t = 0..T, xt+1 = f(xt,ut)

(1)

where x = (xt)t=0..T and u = (ut)t=0..T−1 are the state
and control trajectories, T is the number of knots, ℓ and ℓT
are the running and terminal cost functions which will define
the locomotion tasks, and f0 is the initial state. In order to
be able to solve this problem in real time, we don’t consider
any other state and control constraints, but instead choose to
use penalty costs.

B. Whole-body dynamics modelling

Similarly to [26], we consider a rigid body system with nj

joints and np rigid contacts with the environment and model
the dynamics of this constrained multi-body system through
the following equation [27]:[

M J⊤
c

Jc 0

] [
q̈
−λ

]
=

[
S⊤τ − b

−J̇cq̇

]
(2)

where M is the inertia matrix, b the generalized Coriolis,
centripetal and gravity terms, S a selection matrix mapping

over the actuated joints, Jc = (J1 · · ·Jnp
) the concatenation

of contact Jacobian matrices. In [28], it has been shown
that the contact-constrained rigid body dynamics of the robot
can be expressed through an equation where contact forces
directly depend on the state x. This leads to a simple,
explicit next-state integration scheme written as a dynamics
constraint at time t: xt+1 = f(xt,ut).

C. Solving the OCP with DDP

DDP is a very efficient tool to solve (1) based on Bell-
man’s principle [29]. The algorithm leverages the sparsity of
the Markovian nature of the dynamics constraints and pro-
vides a descent step ((∆xt,∆ut)t=0..T through a backward-
forward pass formulation followed by a line search heuristics.
Moreover, it naturally computes the optimal state feedback
gains Kt, also known as Riccati gains, such that ∆ut =
Kt∆xt + kt. We demonstrated before that these gains can
be used to produce a first order approximation of the optimal
torque at the frequency of the low-level control [24]. In
classical DDP scheme [30], [31], the second-order term of
the Taylor approximation of the quality function is taken into
account; here we neglect this term to keep the computation
load of the backward pass low, and to be able to solve the
OCP in real time. Such an approach is classically called
iLQR [32]. Note that this approximation does not affect the
computation of the optimal feedback gains.

D. Formulation of the costs

The walking task is described in our OCP through 6
different costs:

• a state regularization cost:
ℓ1(x) = (x − xd)

TRx(x − xd) with Rx a positive
definite weight matrix and xd the initial state of the
robot, usually half-sitting position with null velocity.
This cost prevents the optimized state trajectory from
being too far away from the default position of the robot.

• a control regularization cost:
ℓ2(u) = (u − ud)

TRu(u − ud) with Ru a positive
definite weight matrix and ud the gravity-compensating
torque in default state. This cost prevents the solver
to cross torque limits, although it does only act as a
penalization.

• a goal-tracking cost:
ℓ3(x, t) = a(p(x)−pd(t)) with a : r 7→ log(1+ ||r||

α ) a
logarithmic activation function, p(x) and pd(t) current
and desired foot placement in SE(3), and α = 0.2.
This cost, associated with an user-tuned desired foot
trajectory pd(t)t=0..T , ensures that the foot in swing
phase goes to the next pre-defined contact. It is only
active during swing phases.

• a kinematic limit cost:
ℓ4(x) = ||max(x−xu,0)+min(x−xl,0)||2 with xu

the upper bound and xl the lower bound of the joints
positions and velocities. This cost prevents the solver
from crossing the kinematics bounds of the robot, and
although it takes the form of a penalization associated



with a high weight, it efficiently rejects unfeasible
trajectories.

The two last costs are a local Center of Pressure (CoP)
regularization and a wrench tracking cost. They ensure that
the contact forces remain dynamically consistent during the
motion, and that the robot weight efficiently switches from
one contact to the next. In the following, we only consider
contacts between two rigid bodies. Given a foot in contact,
the 6-dimension wrench it applies on its environment can
be written w = (f , τ ) = (fx, fy, fz, τx, τy, τz), being
respectively the linear and angular part of the wrench. Let us
note L,W the half-length and half-width of the foot, and µ a
friction coefficient. Ideally, we want w to remain inside the
wrench cone [33], [34] defined by the following inequalities:

fz > 0 (3a)
|fx| ≤ µfz (3b)
|fy| ≤ µfz (3c)
|τx| ≤ Wfz (3d)
|τy| ≤ Lfz (3e)

τmin ≤τz ≤ τmax (3f)

with

τmin = −µ(W + L)fz + |Wfx − µτx|+ |Lfy − µτy|
τmax = µ(W + L)fz − |Wfx + µτx| − |Lfy + µτy|

These inequalities describe a linearized wrench cone with
4 facets. While one can opt for a better approximation of
the true wrench cone by adding more facets, we choose to
use a simple model for the sake of time computation. As
already mentioned, DDP does not allow yet to take into
account such inequality constraints, although some recent
works may solve this issue in the near future [35], [36].
Interestingly, using penalization costs to approximate those
constraints make the problem too hard to solve in real
time, as the solver struggles to discover the optimal contact
forces in just one iteration. For this reason, we introduce
a reference wrench trajectory wd(t) = (0, 0, fd(t), 0, 0, 0)
where fd(t) is a simple normal force reference equal to
Mrg, the weight of the robot during single support phase,
and switching continuously from Mrg − fmin to fmin

during double support phase. Here, fmin = 150 N is a
security margin and should be read as the minimum force
reference at contact just before take-off. This margin should
be implemented because the DDP solver doesn’t handle
well near-zero predicted forces.

The contact wrench constraints are summarized in the
matrix A ∈ R17×6 such that Awc < 0 is an exact rewriting
of (3). The final wrench tracking cost is then defined by:

ℓ5(x,u, t) = ||A(w −wd(t))||2 (4)

with every wrench expressed in the local frame of the
contact foot.

Fig. 2. Left foot CoP constraint |τy | ≤ Lfz for simulated walk with
and without CoP regularization. Blue plain line is |τy |, red dotted line is
Lfz . Bottom plot shows violations of the constraint during contact switch,
which translate into oscillating ankles in simulation. On the real robot, those
constraints violations lead to falling.

Unfortunately, this formulation alone does not prevent
occasional breaking of the wrench constraints during contact
transition. Practically speaking, it has been observed in
simulation and on the robot that the local CoP constraints
described by inequalities 3d and 3e are violated during
contact switches, although the wrench tracking cost ℓ5 should
regularize the contact torque to zero. To address this be-
haviour, a local CoP regularization cost has been added to
the formulation:

ℓ6(x,u) =
1

2W 2

(
| τy
fz

|2 + |τx
fz

|2
)

(5)

The idea behind this cost is to force the inequalities | τy
Lfz

| <
| τy
Wfz

| < 1 and | τx
Wfz

| < 1 by penalizing the corresponding
quantities. In order to be more conservative, W can be set
smaller than the half-width of the foot, which is equivalent
to increasing the CoP cost weight.

The effect of this cost is illustrated in Fig. 2, where
a walking motion was performed in simulation with and
without the CoP regularization.

III. MODEL PREDICTIVE CONTROL SCHEME

A. Timings and model

In order to cut the computation load as much as possible, a
reduced robot model including a total of 14 torque-controlled
joints is used: 6 for each leg and 2 for torso. The arm
joints are controlled in position and remain fixed during
the walking motion. It has been demonstrated that including
the arms in the model allows for a better control of the
centroidal angular momentum of the robot [11]; using only
a half-body model is thus penalizing to the walking motion.
Nevertheless, our scheme is able to handle this issue. As for
the contact phases and timings, they are decided offline by
the user, which could be replaced in the future by a high-level
pattern generator in order to perform step adaptation. The
DDP problem is formulated using the open-source Crocoddyl
library [15], which is based on Pinocchio [37], a state-of-the-
art rigid body algorithms library.



The horizon of our OCP has 150 knots separated by a
10ms time step, allowing the solver to predict the behaviour
of the robot 1.5s into the future. Before starting the motion,
the OCP is first solved until convergence with a horizon only
composed of double support models; then, at each control
cycle, the previous optimal trajectory is used as a warm-start
to bootstrap the problem and one DDP iteration is performed.
As the time goes by, contact switches and desired wrench
trajectory are gradually inserted at the end of the horizon.
This scheme allows us to solve the whole-body problem
online in about 10ms.

B. Reference foot trajectory

During double support phase, at each control cycle, the
desired swing foot trajectories are updated over the entire
horizon using a minimum jerk Bezier curve, as in [38]. The
final placement of the swing foot is set to be the placement
of the support foot, plus a desired 2D translation (δx, δy).
These curves are tuned so that during landing and take-off,
foot velocity and acceleration are colinear to the normal of
the contact surface; as a consequence, the entire foot area is
making contact with the ground at the same time.

C. Cost parametrization

The following weight distribution has been used on the
robot to make it walk.

State Control Foot pose Limits Wrench CoP

1 0.005 1000 1000 0.001 10

Additionally, the weight matrix Rx in the state regular-
ization cost has been carefully tuned to penalize critical
behaviors like tilting torso or swinging base. Here are the
weights used on the robot.

Base pose Base angle Leg Torso

Position 0 10000 10 100
Velocity 10 10 10 10

D. Robotic Operating System (ROS) architecture

Our MPC is embedded inside a ROS node which sub-
scribes to the actual state of the robot measured at 2 kHz, and
which publishes a feedforward optimal torque u0, Riccati
gains K0 and last computed initial state x0 at 100 Hz
(see Fig. ??). The final torque sent to the low-level control
combines the feedforward control with a state feedback based
on the Riccati gains (see [24] for more details):

u = u0 +K0(x0 − xm) (6)

At last, the desired motor current for each controlled joint is
computed through a proportional-derivative feedback on the
joint torque measurement. Because the actuator dynamics
(motor inertia, frictions, flexibility...) are not considered in
the whole-body model, a feedforward term on the current
is added to compensate for the model discrepancy. As a
consequence, from the point of view of the high-level MPC,
every joint is behaving as an ideal joint. The architecture
is separated in two parallel processes running on different

Fig. 3. Measured and desired feet position during locomotion on flat floor.

CPUs. This publisher-subscriber architecture has been suc-
cessfully tested in previous works [24], [39].

IV. EXPERIMENTAL RESULTS

In this section are presented the experimental results
obtained with our whole-body MPC framework applied to
the humanoid robot Talos [25]. Due to the critical problem
of computation time, the MPC runs on a powerful external
computer (AMD Ryzen 5950X, 32 cores and 4.9GHz with
64 Go of RAM), whereas the low-level control runs on the
embedded CPU of the robot.

The proposed control scheme has been evaluated in two
locomotion scenarios: in the first one, the robot performed a
straight walk on flat floor with two sets of gait timings; in
the second one, the robot successfully climbed up and down
a 10cm-high step. In both experiments, the exact same cost
weights have been used on the robot, and the only varying
parameters were the feet trajectory and gait timings. This
demonstrates the adaptability of the MPC framework which
can produce relevant stable trajectories over a wide range
of dynamic motions. The videos of the experiments, as well
as the associated raw data are available at https://ge
pettoweb.laas.fr/articles/dantechumanoid
22.html. The following table presents the different gait
parameters used during experimental validation.

Gait 1 Gait 2 Stairstep

Forward step length δx 10cm 20cm 30cm
Width btw. feet δy 20cm 20cm 20cm
Single support time 1.1s 1.5s 3s
Double support time 0.3s 0.75s 2s

A. Walking on flat floor

For the sake of conciseness, only the first gait tested on
the robot will be discussed in this paper. Both gaits are
nonetheless displayed in the attached video.

The results of the walking experiment are presented in
figures 3 to 7. Fig. 3 shows the tracking of the desired feet
trajectories over time. The Bezier curves used to generate the
reference in position are only followed during swing phases,

https://gepettoweb.laas.fr/articles/dantechumanoid22.html
https://gepettoweb.laas.fr/articles/dantechumanoid22.html
https://gepettoweb.laas.fr/articles/dantechumanoid22.html


Fig. 4. CoP trajectory in X axis compared to actual feet position during
locomotion on flat floor. The foot of the robot is 10 cm long.

Fig. 5. CoP trajectory in Y axis compared to actual feet position during
locomotion on flat floor. The foot of the robot is 5 cm wide.

hence are not relevant during support phases. Although the
reference in X-axis is precisely tracked, the actual foot roll
and position in Y-axis suffer from noisy oscillations at take-
off and landing. Empirically, we found out that the walking
motion improves when the contact switch happens while the
foot reference is 1cm above ground. Doing this makes the
robot force the contact into the ground with non-zero forces
, creating a stable contact and an impact. Because the control
scheme is intrinsically compliant, it damps the impact and
limits the resulting forces, preventing hardware damage.

Additionally, Fig. 6 shows that a normal force is mea-
sured just before contact switch, which means that the foot
impacted the ground before the solver predicted it. As no step
or timing adaptation has been introduced in our framework
yet, such behaviour is for now unavoidable; nevertheless, the
MPC is able to cope with such unknown disturbances and
produce a stable walking trajectory.

Figures 4 and 5 shows that the predicted CoP, computed
from the forces computed by the solver, matches the CoP
based on the sensor’s forces. During the motion, the solver
defines its own CoP trajectory so as to minimize the user-
tuned cost function. It is interesting to notice that when the

Fig. 6. Predicted vs measured normal forces in left and right feet during
locomotion on flat floor. The foot is touching the ground before landing as
can be seen in the zoomed window.

Fig. 7. Time computation of one DDP iteration during locomotion on flat
floor.

foot lands, the predicted CoP in Y axis may sometimes go
outside the feet support area, although the real CoP remains
inside. In this case, the low-level torque feedback loop is
acting as a low-pass filter which smooths the control’s sharp
edges.

Finally, Fig. 7 indicates that the MPC is computed in
a little bit less than 15ms, but features brutal peaks of
50ms mainly due to random processing delay inside the
CPU. Despite these unexpected time overflows, the motions
produced by our framework remain stable because the
approximated Riccati policy takes over while the high-level
control is computing.

B. Stair up and down

The main objective of the stair experiment is to demon-
strate the versatility of the proposed framework. Compared to
the walking experiment, only the feet trajectories and contact
timings have been modified, while the wrench trajectory
remains the same. Figures 8 to 11 illustrate the results of
this experiment.

Fig. 8 highlights an essential issue caused by a bad
estimation of the base of the robot: during the last 5 seconds
of the motion, whereas the right foot is in support phase



Fig. 8. Measured and desired feet position during stairstep crossing. Bad
pose estimation is highlighted at the end of the right foot trajectory.

Fig. 9. CoP trajectory in X axis compared to actual feet position during
stairstep crossing. The foot of the robot is 10 cm long.

and not moving, the actual foot position in Y shows brutal
discontinuities of 1cm when the left foot is creating and
breaking contact. The estimated base of the robot shows the
exact same discontinuities at the same time. Fortunately, the
solver is robust enough to handle such disturbances.

Similarly to the flat floor experiment, the predicted CoP
trajectory briefly goes outside of the foot area when landing
occurs, as seen in Fig. 10. This issue is also noticeable
in Fig. 11 where the lateral forces during contact switches
feature several peaks corresponding to contact mismatches
caused by blind time-scheduled transitions and model uncer-
tainties.

V. CONCLUSION

This paper shows the first application of whole-body MPC
applied to the locomotion of an industrial biped robot. The
proposed framework can be adapted to cross obstacles like
stairstep by simply adjusting the feet reference trajectories
and locomotion gaits. It has proven to be robust against
model uncertainties, imprecise state estimation and unex-
pected latency in data transmission. The key to implementing
this MPC on a real platform lies in the approximation of the
wrench cone constraints treated as regularization costs and

Fig. 10. CoP trajectory in Y axis compared to actual feet position during
stairstep crossing. The foot of the robot is 5 cm wide.

Fig. 11. Predicted vs measured normal forces in left and right feet during
stairstep crossing.

the use of Riccati-based feedback policy inside the low-level
control of the robot. The latter improvement allows us to
increase the frequency of the control scheme to 2 kHz. Our
single-block framework can be extended to any given task
at the (small) price of designing and tuning specific costs
adapted to the goal.

Although this whole-body MPC architecture produces
promising results, we still need to prove that it can out-
perform state-of-the-art centroidal walking controllers. The
proposed method used to cope with wrench cone constraints
resulting in dynamically unfeasible predicted CoP trajecto-
ries, even if the filtering effect of the low-level control allows
for such solutions to be executed on the robot. The behaviour
of the robot at contact transitions needs to be studied more
thoroughly, so as to eliminate those brutal discontinuities in
torques and forces. Our main perspective of work is to get
rid of the feet reference trajectories in order to make the
solver able to perform push recovery. Following this logic,
we plan to introduce step adaptation and online optimization
of the contact timings, with the goal of increasing control
smoothness, walk speed and step length.
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