
HAL Id: hal-03723920
https://hal.science/hal-03723920v1

Submitted on 15 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced Testing and Debugging Support for Reactive
Executable DSLs

Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé

To cite this version:
Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé. Advanced Testing and Debug-
ging Support for Reactive Executable DSLs. Software and Systems Modeling, 2023, 22, pp.819-845.
�10.1007/s10270-022-01025-w�. �hal-03723920�

https://hal.science/hal-03723920v1
https://hal.archives-ouvertes.fr

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Advanced Testing and Debugging Support for Reactive Executable DSLs

Faezeh Khorram · Erwan Bousse · Jean-Marie Mottu · Gerson Sunyé

Received: date / Accepted: date

Abstract Executable Domain-Specific Languages (xDSLs)
allow the definition and the execution of behavioral models.
Some behavioral models are reactive, meaning that during
their execution, they accept external events and react by ex-
posing events to the external environment. Since complex
interaction may occur between the reactive model and the
external environment, they should be tested as early as pos-
sible to ensure the correctness of their behavior. In this pa-
per, we propose a set of generic testing facilities for reactive
xDSLs using the standardized Test Description Language
(TDL). Given a reactive xDSL, we generate a TDL library
enabling the domain experts to write and run event-driven
TDL test cases for conforming reactive models. To further
support the domain expert, the approach integrates interac-
tive debugging to help in localizing defects, and mutation
analysis to measure the quality of test cases. We evaluate the
level of genericity of the approach by successfully writing,

Faezeh Khorram
IMT Atlantique, Nantes Université, École Centrale Nantes
CNRS, LS2N, UMR 6004, F-44000 Nantes, France
E-mail: faezeh.khorram@imt.atlantique.fr
https://faezeh-kh.github.io/

Erwan Bousse
IMT Atlantique, Nantes Université, École Centrale Nantes
CNRS, LS2N, UMR 6004, F-44000 Nantes, France
E-mail: erwan.bousse@ls2n.fr
https://bousse-e.univ-nantes.io/

Jean-Marie Mottu
IMT Atlantique, Nantes Université, École Centrale Nantes
CNRS, LS2N, UMR 6004, F-44000 Nantes, France
E-mail: jean-marie.mottu@ls2n.fr

Gerson Sunyé
IMT Atlantique, Nantes Université, École Centrale Nantes
CNRS, LS2N, UMR 6004, F-44000 Nantes, France
E-mail: gerson.sunye@ls2n.fr
https://sunye-g.univ-nantes.io/

executing, and analyzing 247 event-driven TDL test cases
for 70 models conforming to two different reactive xDSLs.

Keywords Reactive Executable DSL · Testing · Test
Description Language · Debugging ·Mutation Analysis

1 Introduction

A wide range of Domain-Specific Languages (DSLs) ex-
ist for describing the expected behavior of systems (e.g.,
[16, 13, 3, 31, 32, 33, 36]). DSLs are used in modeling en-
vironments and when the environment offers dynamic Ver-
ification and Validation (V&V) techniques, the users (i. e.,
the domain experts) can also analyze the behavioral models
as early as possible to ensure the correctness of their behav-
ior. These techniques require the execution of the models,
hence, their application is reserved to DSLs with execution
semantics, such as DSLs with translational semantics (i. e.,
compilation) or operational semantics (i. e., interpretation).
In this paper, we focus on DSLs with operational semantics,
referred to as executable DSLs (xDSLs).

Testing is probably the most prevalent dynamic V&V
technique used for software systems and is commonly en-
riched with two additional families of techniques: 1) debug-
ging, to localize and fix the defect causing a test case to fail;
and 2) test quality measurement, to identify how a test suite
can be improved with new test cases. Accordingly, different
approaches have emerged in recent years to provide testing
support for xDSLs. A first set of approaches aim to provide
testing frameworks that are specific to selected xDSLs, such
as fUML activity diagrams [30, 18] or service-based Busi-
ness Process Model and Notation (BPMN) processes [26], A
second set of approaches aim to provide more generic test-
ing frameworks, i. e. directly compatible with a wide range
of xDSLs. Such approaches are much more versatile and can

https://faezeh-kh.github.io/
https://bousse-e.univ-nantes.io/
https://sunye-g.univ-nantes.io/

2 Khorram et al.

target large categories of DSLs such as grammar-based com-
piled DSLs [41] or interpreted xDSLs [20].

However, no testing approach is able to realistically deal
with all possible categories of xDSLs. In particular, there are
so-called reactive xDSLs whose semantics are event-driven,
meaning that executed models will react to specific occur-
ring events at runtime. At least two main challenges must be
considered to provide testing for reactive xDSLs. First, test
cases for conforming models must be described as a scenario
of exchanging xDSL-specific events. Hence, the considered
testing language for writing test cases must support using
those events as test data types. Second, to run such a test
case, the execution semantics of the testing language must
be somehow connected to the event-driven execution seman-
tics of the reactive xDSL. Thereby, the interaction scenario
specified in the test case can be verified by interacting with
the tested model during its execution.

In addition, to our knowledge, there is currently no test-
ing approach for xDSLs that is properly integrated with de-
bugging and test quality measurement techniques. For ex-
ample, while there are interesting interactive debugging ap-
proaches for models [5, 6], none is able to support the step-
by-step execution of a test case along with the step-by-step
execution of the tested model. This is especially crucial when
testing reactive models that require many interactions, and
thus multiple “back-and-forth” between the test case and the
model. Likewise, regarding test quality measurement, while
a recent approach aims to provide mutation analysis for xD-
SLs [15], this approach is incomplete as it is not yet able to
actually run tests cases on the generated mutants.

Providing such complex facilities—namely testing, de-
bugging, and test quality measurement—for a given new re-
active xDSL is an expensive and error-prone task. A desir-
able solution would be a generic approach applicable to a
wide range of reactive xDSLs. In our previous work [20],
we proposed a first generic testing approach for non-reactive
xDSLs—albeit without any debugging or test quality mea-
surement facilities. Continuing this research direction, the
present paper proposes three new core contributions to sup-
port testing for reactive xDSLs as well as offering interactive
debugging and test quality measurement techniques:

1. Given a reactive xDSL, we enable writing event-driven
test cases using the standardized Test Description Lan-
guage (TDL). We achieve this by automatically gener-
ating an event-compatible TDL library for the xDSL,
based on the xDSL definition. Then, the domain expert
can use xDSL-specific events as test data types—to de-
fine both test input data and expected output—when writ-
ing TDL test cases.

2. To execute the event-driven test cases on the reactive
models, we extend the TDL test execution engine of our
previous work [20] by integration with the reactive model
execution approach proposed in [24].

3. We offer two test analysis techniques: (i) to diagnose
the cause of failure when a test case fails, an interac-
tive debugging facility is provided. It coordinates the
initialization and the online interplay of two debugger
instances, which are initialized for the test case and its
tested xModel from the model debugger proposed in [5];
(ii) to measure the quality of a TDL test suite defined
with the proposed approach, we provide an integration
of our generic testing approach with the mutation test-
ing framework proposed in [15].

The proposed approach is implemented for the GEMOC
Studio, a language and modeling workbench for xDSLs [4].
We applied the approach for two different reactive xDSLs,
‘xArduino’ i. e., used for modeling Arduino boards and their
execution logic, and ‘xPSSM’ i. e., defined for simulating
systems with discrete-event behavior using the Precise Se-
mantics of UML State Machines (PSSM) [36]. Successful
use of the approach for writing, executing, and analyzing
247 event-driven test cases for 70 models conforming to two
very different reactive xDSLs validates its genericity. Also,
to demonstrate the applicability of the test quality measure-
ment feature of the approach, we performed mutation anal-
ysis on 65 TDL test suites. They have run on cumulatively
12674 mutants generated for 65 state machines and a muta-
tion score has been calculated for them with success.

Paper organization. Section 2 provides the background
and a running example. Section 3 describes an overview of
our proposed approach. In Sections 4 and 5, the provided
facilities for writing and executing test cases are presented,
respectively. Section 6 introduces the provided test analysis
techniques. Our tool support is shown in Section 7. In Sec-
tion 8, the evaluation process and results are illustrated. The
related work is presented in Section 9 and the paper con-
cludes in Section 10 with a discussion on future work.

2 Background and Motivation

In this section, we first describe the executable DSLs con-
sidered in the scope of this paper. Afterward, we introduce
an overview of the Test Description Language (TDL) as well
as its adaptation in our previous work for providing testing
support for non-reactive xDSLs [20]. To motivate the pro-
posed approach, we also present a running example.

2.1 Executable DSLs (xDSLs)

This paper targets xDSLs composed of at least two parts:
an abstract syntax determining the concepts of a particular
application domain, and an operational semantics (i. e., the
interpreter) defining how the runtime state of a conforming
model varies during its execution.

Advanced Testing and Debugging Support for Reactive xDSLs 3

Fig. 1 An xDSL for a subset of UML State Machines conforming to the PSSM specification [36] (referred to as xPSSM). Its semantics is provided
in two styles, content-based (b) and event-driven (c).

2.1.1 Running Example: xPSSM

UML State Machines is a well-known subset of the Uni-
fied Modeling Language (UML) standard [35] commonly
used to model systems with discrete event-driven behavior.
The Precise Semantics of UML State Machines (PSSM) is a
standardized extension of UML that defines a complete exe-
cution semantics for UML State Machines [36]. This paper
relies on a simplified version of PSSM as a running exam-
ple, referred to as xPSSM. xPSSM only contains elements
related to the reactive behavior of UML State Machines. Es-
sentially, an xPSSM model is a state machine that can pro-
cess external occurrences of events and perform behaviors
in reaction. Figure 1 shows an overview of different parts of
the xPSSM language definition, and we present each part in
the reminder of this section.

2.1.2 Abstract Syntax

We consider the abstract syntax of an xDSL to be defined
as a metamodel, using a metamodeling language such as
MOF [34] or Ecore [40]. Generally, a metamodel is made
of a set of metaclasses, each containing a set of features. A
feature can be either an attribute typed by a primitive type
or a reference to another metaclass.

Part (a) of Figure 1 briefly shows the abstract syntax
of xPSSM defined as a metamodel. The root element is a
CustomSystem. It contains one StateMachine and can have
several Signals which will be used in its StateMachine. A
StateMachine comprises one or more Region, each repre-
sents a behavior fragment that may execute concurrently
with other regions if they are owned by either the same State
or StateMachine. A Region is a graph comprising a set of

4 Khorram et al.

Fig. 2 A sample xPSSM model for cash withdrawal from an ATM.
It has a defect since it does not validate the entered pin correctly (the
wrong constraint is highlighted in red where >= is used instead of ==)

Vertices interconnected by Transitions, which determines
the behavioral flow within the Region.

Pseudostate and State are two kinds of Vertex. Pseu-
dostates are transitive, meaning that the execution passes
through them without pause. There are different kinds of
Pseudostates such as initial, fork, join, terminate. In con-
trast, State is a stable vertex which means when the execu-
tion enters them, it leaves when either some event occurs
that triggers a Transition moving to another State or the
StateMachine is terminated. A State may have entry, do-
Activity, and exit Behaviors—in our simplified PSSM,
a Behavior is an empty element without any substance. The
entry and exit behaviors are executed when the State is
entered and exited, respectively. Execution of the doActivity
behavior starts after the entry Behavior (if any) has com-
pleted, and finishes when either it is completed or the State
is exited. FinalState is a special kind of State representing
the completion of its Region container.

A Transition connects a source vertex to a target one.
It can contain three main elements: a Constraint, a Behav-
ior, and several Triggers. A Transition is enabled when its
guard Constraint (if any) evaluates to true, and its Behav-
ior (if any) is executed once the transition is traversed. The
traversal of the transitions may depend on the reception of
the event occurrences. This is defined by allocating Trig-
ger elements to them. A Trigger specifies an Event such as
SignalEvent whose occurrence (i. e., SignalOccurrence) en-
ables the traversal of the transition containing the Trigger.
The SignalOccurrence contains values for the attributes of
its associated Signal. When a state machine receives a signal
occurrence, all the enabled transitions that contain a Trigger
pointing to the related Signal will be traversed.

Figure 2 shows an example model conforming to xPSSM.
It describes a StateMachine that models the behavior of
withdrawing cash from an Automated Teller Machine (ATM).
The bank Card, the entered Pin and the Amount of with-
drawal are Signals whose specific occurrences can be given
to the state machine at runtime using SignalOccurrences.
The Card Signal has two attributes for its pin and balance.
This StateMachine has one Region comprising one initial

Pseudostate, one FinalState, seven States that three of them
have entry Behavior (such as the insertCardMsg of the
Wait State) and one of them has a doActivity Behavior (the
updateCardBalance of the MakeWithdrawal State), and
several Transitions which some require signal occurrences
to get enabled. For example, the transition from Wait to
GetPin state will be enabled once the state machine receives
a SignalOccurrence for the Card Signal. Also, the outgo-
ing transition of the MakeWithdrawal state has a behavior,
namely deliverCash.

There are two conditions for a successful withdrawal.
First, the entered Pin must be equals to the Card’s pin.
It is defined as a Constraint for the outgoing transition of
the ValidatePin state, but with a wrong operator (high-
lighted in red in Figure 2). We aim to detect this defect with a
test suite written and executed using our proposed approach.
Second, the entered Amount must be lower than equals to
the Card’s balance (i. e., the Constraint of the outgoing
transition of the CheckBalance state).

2.1.3 Operational Semantics

The operational semantics of an xDSL must comprise two
parts: the definition of the possible runtime states of a model
under execution, and a set of execution rules defining how
such a runtime state changes over time. We consider the run-
time state to be defined in a separate metamodel that intro-
duces new features—later referred to as dynamic features—
for the metaclasses of the abstract syntax. This metamodel
extends the abstract syntax metamodel using a non-intrusive
extension mechanism, such as the UML package merge [35]1.
The execution rules perform an in-place endogenous trans-
formation that defines how the runtime state of a model changes
during the execution of the said model.

In this paper, we only consider xDSLs with discrete-
event operational semantics (i. e., not continuous). Gener-
ally, these semantics can be defined as content-based or event-
driven [24]. The former kind executes a model using an ini-
tial runtime state for the model that must be provided before
the execution starts. The latter kind runs a model through
an environment able to interact with the model execution
through event occurrences. In the following, we clarify their
differences as well as their requirements for testing support.

Content-Based Semantics A content-based semantics de-
fines how to run a model in a closed environment, where
only an initial runtime state is provided to the model before
it is started. The execution rules of a content-based seman-
tics comprise at least one rule acting as a starting point for
the model execution, usually called the main(). This rule
can trigger other execution rules (if any), and each may call

1 There are also other ways to define the runtime state, such as using
imports or inheritance relationships.

Advanced Testing and Debugging Support for Reactive xDSLs 5

other rules and perform observable execution steps in order
to finalize the execution.

For example, we defined a content-based semantics for
xPSSM. First, the runtime state definition is shown in part
(b.1) of Figure 1. The currentVertex is a dynamic feature
of the Region, which is used to remember the last executed
Vertex at each execution step. The signalOccurrences

dynamic feature holds an ordered list of the signal occur-
rences that should be dispatched to a state machine, i. e. the
required input for the state machine execution. The executed-
Behaviors keep track of the Behavior instances of the state
machine that have been executed. It is required for testing
purposes and will be used in Section 2.3. We also defined a
set of content-based execution rules ((b.2) part of Figure 1)
that are explained below using the running example.

In Figure 2, the ATM.WithdrawCash state machine relies
on three different signals for its execution, labeled Card,
Pin, and Amount. The content-based semantics of xPSSM
requires that the sequence of concrete occurrences of said
signals be prepared before the execution and stored all at
once in the signalOccurrences dynamic feature. The main()
rule then starts the execution which results in activating the
Wait state and executing its insertCardMsg entry behav-
ior, hence adding this behavior to the list of executed-

Behaviors. Afterwards, the main() rule calls the signal-
OccurrenceReceived(event) rule on each of the provided
signal occurrences in order. Here, first the Card occurrence
will be dispatched which enables the transition to the Get-

Pin state. Then, the Pin occurrence will be executed, hence
traversing the transition to the ValidatePin state. The exe-
cution continues until either a signal occurrence is required
(e. g., after entering the GetAmount state, an occurrence for
the Amount signal is required to exit) or the execution reaches
a FinalState (e. g., in the ValidatePin state, if the entered
pin is wrong, the transition to the FinalState will be tra-
versed and the execution will be terminated).

Event-Driven Semantics Although it is possible to execute
a model solely based on its content, there are many cases re-
quiring dynamically interacting with a running model, e. g.
for running a co-simulation with other models [6, 24]. This
requires the xDSL’s operational semantics to have a real
event-driven behavior that precisely specifies how one can
interact with a running model, and how the said model should
react. In this paper, we consider that this aspect is handled by
a language component called a behavioral interface, which
we introduce in the next section as the foundation for the
event-driven semantics of an xDSL.

2.1.4 Behavioral Interface

The behavioral interface of an xDSL specifies the types of
events that can be sent to and received from conforming

models during their execution. While different approaches
can be used to define such an interface (e. g., [7], [24]), this
paper uses the metalanguage proposed in [24]. This meta-
language specifies that a behavioral interface comprises a
set of accepted and exposed events, each containing param-
eters. An accepted event specifies what can be accepted by
a running model and an exposed event determines its ob-
servable reactions. While this metalanguage allows events to
be processed asynchronously by the model (i. e. the model
can receive new event occurrences2 while still in the middle
of processing one), in the present paper we only consider
events that are processed synchronously—often referred to
as a run-to-completion semantics.

For example, the (c.3) part of Figure 1 shows a behav-
ioral interface for xPSSM containing three event definitions:

– accepted event run: triggers the initialization of its state
machine parameter.

– accepted event signal occurred : takes a signal occur-
rence as parameter and triggers its corresponding execu-
tion steps in the state machine.

– exposed event behavior executed : notifies the execu-
tion of the Behavior elements.

The behavioral interface of an xDSL must be imple-
mented by the execution rules of its operational semantics.
For instance, the (c.1) and the (c.2) parts of Figure 1 present
an event-driven semantics for xPSSM (the runtime state def-
inition and the execution rules, respectively). The run() ex-
ecution rule implements the accepted event run, the signal-
OccurrenceReceived(event) rule implements the accepted
event signal occurred, and the execute() rule implements
the exposed event behavior executed.

As an example, to execute the ATM.WithdrawCash state
machine (Figure 2), event occurrences conforming to xPSSM’s
behavioral interface should be communicated to the state
machine. One can first send a run event with the ATM.-
WithdrawCash state machine as its parameter. This starts
the execution and resulted in activating the Wait state and
executing its insertCardMsg entry behavior which will be
exposed by the model through a behavior executed event.
It is indeed the state machine reaction to receiving the run
event occurrence. As the currentVertex is the Wait state,
an occurrence for the signal occurred event must be sent to
the state machine with a Card instance to pursue.

Therefore, unlike content-based semantics, event occur-
rences are given to a running model one by one, who then
performs observable reactions at runtime. Consequently, it
is possible to send different event occurrences to a model
based on the responses that it provides, i. e. to dynamically
react to the model’s observable actions. This is especially
useful for techniques that benefit from dynamic interactions

2 Please note that the “occurrence” word is used in the paper in two
ways, for reactive xDSLs in general, and for xPSSM in particular.

6 Khorram et al.

Fig. 3 An Excerpt of the TDL Metamodel [10]

with a model, such as interactive debuggers, testing frame-
works, or co-simulation environments.

In the remainder of the paper, xDSLs with content-based
semantics are called non-reactive xDSL, while xDSLs with
event-driven semantics are called reactive xDSL.

2.2 The Test Description Language (TDL)

The Test Description Language (TDL) was introduced by
the European Telecommunications Standards Institute (ETSI)
as a generic language for describing test cases. TDL sup-
ports describing test objectives derived from system require-
ments and defining test cases that refine those objectives [27].
The standard semantics of TDL provides a loose semantics
written in natural language [10] and a precise translational
semantics using the Testing and Test Control Notation ver-
sion 3 (TTCN-3) as a target language [11]—TTCN-3 is also
standardized by the ETSI. A reference implementation of
TDL is also provided, containing a standard abstract syntax,
textual and graphical concrete syntax, and tools for model
validation, and transformation to TTCN-3, among others.

Figure 3 shows the main elements of the TDL abstract
syntax. A Package is the root element of a TDL model,
hence the container of all other elements. To define a com-
plete test case, three main information are required:
Test Data: The first step in defining test data is to deter-
mine the required data types. TDL does not provide any con-
crete data type since its main objective is to be generic and
platform-independent. So the testers should define their re-
quired types using the DataType element, then instantiating
them to define test data, both the input data that will be sent
to the System Under Test (SUT) during test case execution,
and the expected output data that will be used in assertions
(i. e. to define the oracle of the test case).
Test Configuration: A test configuration specifies a com-
munication protocol between the test suite (later referred to
as the test system) and the SUT. TDL follows a component-
based approach, hence a TestConfiguration comprises two
or more ComponentInstances, one in the role of SUT and
the rest as Tester as well as the Connections between the

components. A ComponentInstance is typed by a Component-
Type, which determines the component communication chan-
nels using the so-called gates. Accordingly, it contains at
least one gate (i. e., GateInstance) that is instantiated from
a GateType. A GateType defines what kind of data can be
exchanged through its instances.
Test Description: To describe the behavior of a test case, the
TestDescription element should be instantiated. It uses one
of the previously defined TestConfiguration instances, and
contains a sequence of Behavior elements. Currently, twenty
types of behavior are defined in the TDL standard, such as
Message, TimeOut, AlternativeBehavior, etc. Examples of
TDL test cases are given shortly after.

2.3 TDL-based Testing Support for Non-Reactive xDSLs

In our previous work [20], we proposed a generic testing ap-
proach for non-reactive xDSLs using TDL. Two roles were
involved in the approach: a language engineer who imple-
ments a non-reactive xDSL according to the definitions given
in Section 2.1, and a domain expert who uses this xDSL to
define behavioral models and wishes to write test cases for
them. Our proposed approach provided all the required ma-
terial for the domain experts to write and execute TDL test
cases for their models. Its main components which are used
and extended in this paper are described in Sections 4 and 5.
For more information, we refer the reader to the paper [20].

For example, this approach can be used to write TDL
test cases for xPSSM models when they are executed by the
xPSSM content-based semantics (part (b) of Figure 1). Fig-
ure 4 depicts an excerpt of a TDL test case for the ATM.-
WithdrawCash State machine. Each arrow corresponds to a
Message TDL Behavior that carries some data and is ex-
changed between the Test Component and the SUT. When
the sender of a Message is the Test Component, the ex-

Fig. 4 A TDL test case for the running example written using our pre-
vious work [20]

Advanced Testing and Debugging Support for Reactive xDSLs 7

changed data is test input data or a request, otherwise, it is
some expected output (i. e. an assertion).

Our approach allows the domain expert to use the do-
main concepts when defining test data. For instance, in the
first Message in Figure 4, two signal occurrences, one for
the Card and one for the Pin are defined and sent to the
state machine. This puts the state machine in an initial run-
time state as this data will be set as the value of its signal-
Occurrences dynamic feature. We intentionally use a wrong
pin number to see whether the test case can detect the defect
of the state machine. Then, the test component requests to
run the model (runModel) and get its runtime state after ex-
ecution (getModelState). These two operations are also pro-
vided by the approach. To define the expected output, the do-
main expert can again use the domain concepts, in this case
the executedBehaviors dynamic feature with its expected
value i. e., three Behavior instances of the state machine in-
cluding insertCardMsg, enterPinMsg, and wrongPin-

Msg. As shown in Figure 4, the assertion is failed (the first
red arrow) because due to the defect of the model, the value
of the executedBehaviors is {insertCardMsg, enterPin-
Msg, enterAmountMsg} It means the test case detects the
defect of the model successfully.

Besides, the approach offers facilities to use Object Con-
straint Language (OCL) queries in the TDL test cases. For
instance, in the test case of Figure 4, the test component
sends an OCL query to the model to retrieve the value of
its currentVertex feature. The expected result is finalState
but it is failed since the model is wrong and at this point, it
is in the GetAmount state.

2.4 Motivation and Requirements

Our previous work [20] provides testing support for an xDSL
under two conditions: (1) it is possible to provide input data
to the model under test when initializing its runtime state, (2)
it is possible to get output data at the end of the execution
by retrieving the final runtime state of the model, which can
then be compared with some expected state. For example,
in the test case shown in Figure4, input data is provided by
giving an initial value to the signalOccurrences dynamic
feature, and the executedBehaviors dynamic feature is
retrieved to be compared with some expected sequence.

However, given a reactive xDSL, a running model should
only communicate data using the behavioral interface of the
xDSL. Accordingly, a prospective test case for a reactive
model should be described as a scenario in which the test
system sends events to the model and checks whether the
model sends back the expected event. For instance, if we
write a test case for the ATM state machine, the test com-
ponent shall send a signal occurred event with a signal oc-
currence for the Card signal to the running state machine,
and check whether it reacts by exposing a behavior executed

event for the enterPinMsg Behavior. Therefore, test cases
of reactive models must be written differently, hence leading
to the following first requirement:

Req.1 The testing language used for writing test cases should
allow the domain expert to use the events specified in the
xDSL’s behavioral interface as test data types.

Then, running tests on a model obviously requires a way to
execute the model, which can be performed differently de-
pending on how the xDSL’s semantics is defined. For non-
reactive xDSLs, the model execution is a one-time opera-
tion, while for reactive xDSLs, it is driven by exchanging
events at runtime. This means for executing a test case on
a reactive model, the model should keep running and inter-
acting with the test case until the test case is terminated; is
passed, failed, or has an inconclusive result. Thus for pro-
viding test execution support, there is a second requirement:

Req.2 The test runner should be able to run event-driven
test cases by online interaction with an event-driven model
execution engine that can run reactive models.

As complex interactions may occur between the test cases
and the models, it is difficult to diagnose the point of failure
when a test case fails. In such cases, a synchronized interac-
tive debugging facility would be greatly helpful and would
allow (1) to execute and observe step-by-step the test case
and its tested model both at the same time; and (2) to jump
from one execution to another when an interaction occurs
between them. Therefore, we consider this third requirement
for the proposed approach:

Req.3 An interactive debugging facility is required for di-
agnosing the cause of failure in the failed test cases.

With these three requirements fulfilled, testers will be able
to run their tests and debug failed ones. However, if test
cases do not find any bug, while it may validate the cor-
rectness of the tested model (in the best case), it may also
highlight weaknesses of the test suite (in the worst case).
To properly measure the quality of a test suite, one well-
known efficient technique is mutation analysis [19], which
can produce a score representing the overall quality of the
test cases. We therefore decided to consider the following
final requirement for the proposed approach:

Req.4 The approach should support test suite quality mea-
surement based on mutation analysis.

8 Khorram et al.

In the next sections, we present our approach providing
testing and debugging facilities for reactive xDSLs on the
basis of our previous work. We fulfill all the aforementioned
requirements with, respectively, generating an event-compatible
TDL library for a given reactive xDSL to fulfill Req.1, in-
tegrating the TDL interpreter with event-driven model exe-
cution tools to fulfill Req.2, adapting interactive debugging
facilities for TDL test failure diagnosis to fulfill Req.3, and
providing a TDL test quality measurement tool based on
mutation analysis to fulfill Req.4.

3 Approach Overview

Figure 5 presents an overview of the proposed approach3. At
the top left corner, we assume that a language engineer has
implemented a reactive xDSL based on the definitions given
in Section 2.1. The domain expert on the right defines a sys-
tem with reactive behavior by instantiating models from the
provided xDSL. She/he wishes to test and debug those mod-
els to ensure they behave as expected.

The TDL Library Generator is the first component of the
approach (at the top center) that was initially introduced in
our previous work [20]. Its first version produced a domain-
specific TDL library for a given non-reactive xDSL, provid-
ing all the data types required for the specification of test
data, a set of default test configurations, and elements for
requesting the execution of the tested models and of OCL
queries [20]. In this paper, we extend this component to sup-
port reactive xDSLs. Through this extension, the generated
library also provides an event-compatible TDL package gen-
erated from the definition of the xDSL’s behavioral inter-
face. This package provides the required elements for writ-
ing and executing event-driven TDL test cases for reactive
models. Details are given in Section 4.

Executing TDL test cases on the models is the role of
the TDL Interpreter component (at the center) that we ini-
tially proposed in [20]. As Figure 5 shows, it has connec-
tions with three external components: the Execution Engine,
the Query Evaluator, and the Event Manager. The first two
connections are from our previous work, enabling perform-
ing operations on the ‘non-reactive’ tested models and run-
ning OCL queries on them, respectively. This paper extends
the interpreter with a new connection to an Event Manager
to provide execution of event-driven TDL test cases on the
‘reactive’ models. We assume that an Event Manager exists
which provides services to interact with a running reactive
model. More precisely, given a reactive xDSL, it enables the
external tools such as testing tools to exchange events con-
forming to the xDSL’s behavioral interface with the models
conforming to the xDSL’s abstract syntax at runtime. In Sec-
tion 5, this component is explained in more detail.

3 Elements of the Figure are written in italic in the text.

Finally, the approach offers two test analysis techniques
for the domain expert. First, Interactive Debugging (at the
top center) to help the domain expert to find out the cause of
a failure in a test case. It can be used to debug interactively
the test case and its model under test at the same time, so the
domain expert can observe gradually the model’s reaction to
the reception of requests from the test case. Second, Muta-
tion Analysis (at the bottom center) to help the domain ex-
perts to measure the quality of their written TDL test cases.
In a nutshell, given a TDL test suite for a model, it performs
mutation analysis on the model and calculates a mutation
score for the test suite which can be used for measuring its
quality. These analysis techniques support both non-reactive
and reactive xDSLs and are presented in Section 6.

4 Support for Writing Event-Driven TDL Test Cases

This section presents how the approach provides facilities
for writing test cases for reactive models using TDL. At first,
we describe what should an event-driven test case look like
through an example. Then we introduce the TDL Library
Generator which enables writing such test cases in TDL by
providing a TDL library specific to a given reactive xDSL.
Finally, we show how the domain expert can use the library
to write executable test cases for reactive models.

4.1 A Sample Event-Driven Test Case

We mentioned in Section 2.4 that an event-driven test case
for a reactive model should be described as a scenario of
exchanging events between the test system and the tested
model. Figure 6 shows such a test case for the ATM.Withdraw-
Cash state machine (previously shown in Figure 2). The test
case aims to check that the ATM does not accept an incor-
rect pin code, so it must be able to uncover the defect of the
model. As can be seen, the events used in the test case con-
form to the xPSSM’s behavioral interface (the (c.3) part of
Figure 1) and their parameters are references to the elements
of the ATM state machine.

First, the test component sends a run event to request
the start of the execution and expects to receive in return
a behavior executed event for the insertCardMsg behav-
ior. This assertion passes (the first green arrow in Figure 6)
because according to Figure 2, when the state machine ini-
tializes, the execution should enter the Wait state, execute
its entry behavior named insertCardMsg, and wait there
until one of its outgoing transitions can be traversed.

Next, the test component sends a signal occurred event
with an occurrence of the Card signal and expects to re-
ceive in return a behavior executed event for the enterPin-
Msg behavior. As the state machine execution is currently in

Advanced Testing and Debugging Support for Reactive xDSLs 9

Fig. 5 Overview of the Proposed Approach

the Wait state, by receiving this event from the test compo-
nent, the transition to the GetPin state will be traversed. So
the execution enters this state and runs its entry behavior
named enterPinMsg. Therefore, the second assertion also
succeeds (the second green arrow in Figure 6).

Afterwards, the test component sends another signal -
occurred event with an occurrence of the Pin signal and
since the value of the entered pin (i. e., 2222) is different
from the the card’s pin (i. e., 1234), it expects to receive
a behavior executed event for the wrongPinMsg behavior.
According to Figure 2, as the state machine execution is
currently in the GetPin state, receiving this event from the
test component resulted in traversing the transition to the
ValidatePin state. At this point, the constraints of its out-

Fig. 6 A potential event-driven TDL test case for the running example,
with two passed and two failed assertions.

going transitions are evaluated to check if they are enabled.
However, as explained earlier, the ATM state machine con-
tains a defect: an equality sign was mistakenly replaced by a
superior-or-equal sign, leading to the wrong constraint “en-
teredPin >= cardPin”. Consequently, instead of enabling
the transition to the finalState, the one to the GetAmount
state is enabled. Therefore, the wrongPinMsg event is never
observed, meaning that the third assertion of the test case
fails (the first red arrow in Figure 6).

Finally, the test component sends an OCL query to check
whether the currentVertex is the finalState. As de-
scribed above, due to the defect of the model, the execution
is currently in the GetAmount state, so the assertion fails
(the second red arrow in Figure 6). In the remainder of the
section, we explain how our proposed approach provides fa-
cilities for the domain expert to write such event-driven test
cases for any reactive model.

4.2 TDL Library Generator for Reactive xDSLs

The main objective of the TDL Library Generator compo-
nent is to provide a domain-specific TDL library for a given
xDSL. Such a library aims to provide a set of TDL elements
for the domain experts, allowing them to write TDL test
cases for the models conforming to the considered xDSL.
As shown in Figure 5, the generator reads the definition of
an xDSL—in particular, the abstract syntax, the parts of the
operational semantics defining the possible runtime states of
the conforming models, and the behavioral interface—and
produces a TDL library specific to the xDSL which contains
four TDL packages:

10 Khorram et al.

1. xDSL-Specific Types Package, containing all the TDL
data types required for the specification of test data.

2. Common Package, providing TDL elements common
to any given xDSL, including a set of elements for per-
forming operations on the model under test and elements
for enabling the use of OCL queries in the test cases.

3. xDSL-Specific Events Package, with the TDL defini-
tion of the events of the xDSL’s behavioral interface.

4. Test Configuration Package, providing a default test
configuration to be used by the TDL test cases written
for executable models.

Packages 1,2,4 are generated for any xDSL (i. e., either
non-reactive or reactive) and their generation is already mostly
explained in our previous work [20]. However, Package 3
(the xDSL-Specific Events Package) is a new package gener-
ated solely for reactive xDSLs. In what follows, we present
in order how each package is generated. For Packages 1
and 2, we summarize how they can be generated using our
previous work [20]. For Package 3, we describe our novel
generation process based on the events defined in a given
behavioral interface. For Package 4, we explain how we up-
graded the generator of our previous work [20] to obtain
test configurations adapted for reactive xDSLs. Afterwards,
we present how these packages can be used for writing test
cases for reactive models.

4.2.1 Generation of the xDSL-Specific Types Package

As discussed in Section 2.2, test data is composed of
instances of TDL data types. Therefore, to use TDL for a
specific domain, all the required data types must be defined
beforehand. To avoid having the tester manually creating
these types, we automated this task in our previous work
by proposing a model transformation from Ecore to TDL.
This transformation generates TDL data types for a given
xDSL from its definition, mainly the abstract syntax and the

1 Package xPSSMTypes {

2 Type CustomSystem (

3 statemachine of type StateMachine,

4 signals of type Signal);

5 Type Signal (attributes of type Attribute) ;

6 Type SignalOccurrence (

7 signal of type Signal,

8 attributeValues of type AttributeValue);

9 Type StateMachine (

10 _name of type EString, regions of type Region);

11 Type Behavior(_name of type EString);

12 ...

13 }

Listing 1 Some of the TDL Data Types generated for the xPSSM DSL

definition of the runtime state. Listing 1 shows some of the
generated TDL data types for the xPSSM Ecore metamodel
(the (a) part of Figure 1), including CustomSystem, Sig-
nal, SignaOccurrence, StateMachine, and Behavior. Using
this generated package, the domain expert can easily define
model elements in TDL and use them as test data.

4.2.2 Generation of the Common Package

The common package comprises a set of elements referred
to as model execution commands for performing several op-
erations on the model under test, such as runModel for re-
questing its content-based execution, resetModel for reset-
ting its state to the default, and getModelState for getting
its current state, i. e., the content of its dynamic features. In
addition, it provides a TDL element as oclQuery (query

= ?) that lets the test component to send OCL queries to
the tested model by setting the value of its query argument.
Accordingly, the result of the query evaluation can be used
when defining a test oracle.

4.2.3 Generation of the xDSL-Specific Events Package

As discussed in Section 2.4, the first requirement for a generic
testing approach for reactive xDSLs is to allow the domain
expert to use events as test data types when writing test
cases. This means for a given reactive xDSL, the testing
language of the approach should support using the events
of the xDSL’s behavioral interface in the test cases. Since
our approach uses the TDL testing language, we need the
definition of the events in TDL, which we provide by the
xDSL-Specific Events package.

This package is automatically generated by a transfor-
mation from the behavioral interface metalanguage [24] to
TDL. Table 1 shows the outline of the transformation rules.
In a nutshell, a BehavioralInterface is transformed to a
TDL Package that is the container of other elements. Each
Event is transformed to a StructuredDataType which is
annotated according to the EventType and comprises Members
generated for the EventParameters. To assign the type
of Members, the content of the previously generated xDSL-
Specific Types Package is used.

BI element Generated TDL element
Behavioral-

Interface

Package containing all the other generated
elements

- Import the xDSL-Specific Types Package
EventType Annotation

Event
StructuredDataType containing one Member
per Parameter and annotated based on it type

Event-

Parameter

Member. Its type is set using the TDL
DataTypes provided by the imported Package

Table 1 Behavioral Interface to TDL Transformation Rules

Advanced Testing and Debugging Support for Reactive xDSLs 11

1 Package xPSSMEvents {

2 Import all from xPSSMTypes;

3

4 Annotation AcceptedEvent;

5 Annotation ExposedEvent;

6

7 Type run (state_machine of type StateMachine) with

8 {AcceptedEvent;};

9 Type signal_occurred (

10 state_machine of type StateMachine,

11 signal_occurrence of type SignalOccurrence

12) with {AcceptedEvent;};

13 Type behavior_executed (behavior of type Behavior) with

14 {ExposedEvent;};

15 }

Listing 2 TDL elements generated for the xPSSM behavioral interface

Listing 2 shows the xDSL-Specific Events Package gen-
erated for the xPSSM’s behavioral interface. To distinguish
accepted events from exposed events, two Annotation ele-
ments are generated (lines 4-5). For each event of the xPSSM’s
behavioral interface (part (c.3) in Figure 1), a TDL Type is
produced (lines 7-14) and is annotated with one of the An-
notation elements according to the type of the event. For
example, the TDL Type generated for the run event is anno-
tated as AcceptedEvent (line 8), and the one for behavior-
executed event is annotated as ExposedEvent (line 14).

The parameters of the events are transformed in Mem-
bers of the TDL Types. For example, line 7 shows the Mem-
ber generated for the state machine parameter of the run
event. Since the parameters are references to the model el-
ements, their type conforms to the xDSL’s abstract syntax.
Thanks to the generated xDSL Specific types package, we
have the definition of all the required data types in TDL.
Therefore, we can use them to assign the type of the Mem-
bers. For instance in Listing 2, the xPSSMTypes package is
imported (line 2) and its content i. e., the TDL Types gener-
ated for the xPSSM metamodel is used several times (e. g.,
the StateMachine in line 7 or the Behavior in line 13).

4.2.4 Generation of the Test Configuration Package

Although the xDSL-Specific Events Package provides the
required elements for writing event-driven TDL test cases,
we need to define how the test system can get connected
to the reactive model under test to run such test cases. This
information can be expressed using TDL Test Configura-
tion elements. In particular, a TDL test configuration de-
fines what are the available communication gates, each gate
allowing specific types of requests. In our previous work
for non-reactive xDSLs, we considered that a test case ex-
changes only two kinds of messages with the model under

1 Package testConfiguration {

2 Import all from common;

3 Import all from xPSSMEvents;

4

5 Gate Type genericGateType accepts modelExecutionCommand;

6 Gate Type oclGateType accepts OCL;

7 Gate Type reactiveGateType accepts run , signal_occurred ,

behavior_executed;

8 Component Type component having {

9 gate genericGate of type genericGateType;

10 gate oclGate of type oclGateType;

11 gate reactiveGate of type reactiveGateType;

12 }

13 Annotation MUTPath;

14 Annotation DSLName;

15

16 Test Configuration xPSSMConfiguration {

17 create Tester tester of type component;

18 create SUT statemachine of type component with {

19 MUTPath: ’TODO : Put the path to the MUT’;

20 DSLName: ’org.imt.pssm.reactive.ReactivePSSM’;

21 };

22 connect tester.genericGate to statemachine.genericGate;

23 connect tester.oclGate to statemachine.oclGate;

24 connect tester.reactiveGate to statemachine.reactiveGate;

25 }

26 }

Listing 3 TDL test configuration package generated for the xPSSM
DSL

test: either model execution commands or OCL queries. In
the present work, we add a new kind of requests which cor-
respond to all events of the behavioral interface of the con-
sidered xDSL.

Listing 3 shows an example of Test Configuration Pack-
age generated for the xPSSM DSL. It has three Gate Types:
the first two are defined for exchanging modelExecution-

Commands (line 5) and OCL queries (line 6) provided by the
common Package (imported in line 2), and the third is added
in this paper to communicate events (line 7) provided by
the xPSSMEvents Package (imported in line 3). There is
also a Component Type comprising one gate instance for
each Gate Type (lines 8-12). Finally, a Test Configuration
is defined containing two Component Instances, one of the
Tester kind (line 17) and one of the SUT kind (lines 18-21).
The SUT requires information about the model under test,
including the path to the model (the MUTPath annotation in
line 19) that should be set by the domain expert, and the
name of the DSL that the model conforms to (the DSLName

annotation in line 20) which is automatically set by the TDL
Library Generator. The test configuration also specifies how

12 Khorram et al.

1 Package reactiveATM_testSuite {

2 Import all from common;

3 Import all from xPSSMTypes;

4 Import all from xPSSMEvents;

5 Import all from testConfiguration;

6

7 StateMachine ATM (_name = "withdrawCash");

8 Behavior insertCardMsg (_name = "insertCardMsg");

9

10 Test Description test_wrongPin uses configuration xPSSMConfiguration{

11 tester.reactiveGate sends run (state_machine = ATM) to statemachine.reactiveGate;

12 statemachine.reactiveGate sends behavior_executed (behavior = insertCardMsg) to tester.reactiveGate;

13 tester.reactiveGate sends signal_occurred (state_machine = ATM,

14 signal_occurrence = card_occurrence (signal = Card,

15 attributeValues = {cardPinValue (value = "1234"), cardBalanceValue (value = "1000")})

16) to statemachine.reactiveGate;

17 statemachine.reactiveGate sends behavior_executed (behavior = enterPinMsg) to tester.reactiveGate;

18 tester.reactiveGate sends signal_occurred (state_machine = ATM,

19 signal_occurrence = pin_occurrence (signal = Pin, attributeValues = {enteredPinValue (value = "2222")})

20) to statemachine.reactiveGate;

21 statemachine.reactiveGate sends behavior_executed (behavior = wrongPinMsg) to tester.reactiveGate;

22 tester.oclGate sends oclQuery (query = "self.statemachine.regions->first().currentVertex") to statemachine.oclGate;

23 statemachine.oclGate sends finalState to tester.oclGate;

24 }

25 }

Listing 4 An event-driven TDL test case for testing the running example

the test system connects to the SUT through the definition of
the Connections between their Gate instances (lines 22-24).

4.3 Using the TDL Library to write Event-Driven Tests

In Section 4.1, we described an overview of an event-driven
test case (Figure 6) for the running example (Figure 2). By
using the TDL Library generated for the xPSSM DSL, the
domain expert can write such a test case in TDL that will
be executable. It is presented in lines 10-24 of Listing 4.
Using the data types provided by the xPSSMTypes package
(imported in line 3), the domain expert can define model el-
ements to use them as test data, such as using StateMachine
and Behavior data types to define the ATM and the inser-

CardMsg elements, respectively. Note that, we do not present
all the defined test data in Listing 4, but the complete TDL
code is accessible on a public GitLab server.

The test case uses the xPSSMConfiguration (line 10)
provided by the testConfiguration package (imported
in line 5) and is defined as a sequence of exchanging data
and/or requests between the gates of the Tester and SUT

component instances. When the data is an event, it should be
exchanged through the reactiveGate of the components
(lines 11-21), and when the data is either an OCL query or

an expected output related to the query evaluation result, the
oclGate should be used (lines 22-23).

By importing the generated xPSSMEvents package (line 4),
the domain expert defines event instances and then uses them
as test data. For example, in line 11, the tester sends a run
event for the ATM state machine to the model under test, so
the event is used as test input data. Afterwards, an asser-
tion is defined where the expected output is a behavior -

executed event for the insertCardMsg behavior (line 12),
so the event is used as expected output.

5 Support for Executing Event-Driven TDL Test Cases

In this section, we present the TDL Interpreter component
which is responsible for executing TDL test cases on mod-
els. First, we describe its required external components and
then we explain its test execution algorithm.

5.1 Required External Components

As illustrated in Figure 5, the TDL Interpreter needs con-
nections with three external components. We assume they
already exist and provide services as follows:

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/blob/SoSym2021/Modeling_Workbench/ATM.WithdrawCash_Test/testData.tdlan2

Advanced Testing and Debugging Support for Reactive xDSLs 13

– Execution Engine: provides services to manage the ex-
ecution of the models such as running the model, reset-
ting its state to default, and getting its current state. This
component uses the operational semantics of an xDSL
to execute its conforming models.

– Query Evaluator: can trigger the evaluation of an OCL
query on a model and retrieves the result.

– Event Manager: provides services to send event occur-
rences to a running reactive model and to receive event
occurrences exposed by the model. As running the model
is performed by an execution engine, this component is
also connected to the execution engine to communicate
event occurrences with running models.

The first two connections were presented in detail in our
previous work. The TDL Interpreter is connected to the ex-
ecution engine to interpret the model execution commands
used in a TDL test case, and is connected to the query eval-
uator to interpret the OCL queries written in a TDL test case
and to use the query evaluation result when required by a
test oracle. These two connections enabled our approach to
run TDL test cases on ‘non-reactive’ models [20]. In this
paper, we add the third connection which is necessary for
executing event-driven TDL test cases on ‘reactive’ models.

5.1.1 Connection to Event Manager

As already explained in Section 4, the TDL Library Gener-
ator provides the TDL definition for the events of an xDSL’s
behavioral interface (i. e., the generated xDSL-Specific Events
Package) along with the required TDL gates for exchang-
ing them between the test system and the model under test
(i. e., the reactiveGate in the Test Configuration Package).
Accordingly, we extended the TDL Interpreter to be able
to interpret these new elements, hence executing the event-
driven TDL test cases. To this end, we introduce a new inte-
gration for the TDL Interpreter with an external component
called Event Manager. The Event Manager must be config-
urable for a given reactive xDSL and allow external tools
(e. g., testing tools) to interact with the xDSL’s conforming
models based on the xDSL’s behavioral interface using two
services: sending accepted event occurrences to a running
model, and receiving its observable reactions as occurrences
of the exposed events.

5.1.2 Overall Architecture

The UML class diagram presented in Figure 7 shows the
overall architecture of the TDL interpreter. As we mentioned
earlier, an execution engine uses the operational semantics
of an xDSL to execute its conforming models and an event
manager uses the behavioral interface of an xDSL and is
connected to an execution engine. To implement the op-
erational semantics and the behavioral interface, different

Fig. 7 Class diagram showing the associations of the TDL Interpreter

metaprogramming approaches—i. e. one or several metalan-
guages used in a particular fashion— can be used. Conse-
quently, various execution engines and event managers may
exist, each supporting a specific metaprogramming approach.
To make the TDL Interpreter agnostic to this heterogeneity,
we defined its required interfaces.

The ExecutionEngine interface is mostly similar to the
one from our previous work [20]. It can be used for set-
ting up the execution engine based on the model under test
and its conforming xDSL, for executing the model, for set-
ting the model in a specific runtime state, and for getting its
current state. As this paper proposes interactive debugging
facilities, we added a new method to this interface to launch
a debugger instance for the model under test. More details
on these debugging facilities are provided in Section 6.

This paper introduces an interface for the EventManager,
comprising methods for setting up for a specific model and
its conforming reactive xDSL, accepting an event to process
on the model, retrieving an expected exposed event from the
events exposed by the model, and stopping the communi-
cation with the model and releasing the resources. For the
OCL Query Evaluator, we also rely on a specific interface
named OCLInterpreter from our previous work [20].

5.2 Test Execution Algorithm of the TDL Interpreter

In this section, we provide the details of the TDL Interpreter
definition, mainly its test execution algorithm. Please note
that all algorithms presented here are upgraded versions of
the algorithms originally presented as part of our previous
work [20] and are extended here to support running tests
on reactive models using an Event Manager. Algorithm 1
shows the main loop, which requires as input a TDL pack-
age containing the set of TDL test cases to execute. For each
test case, its test configuration must be activated first (line 3)
using Algorithm 2. As can be seen, the path to the model
under test and the name of the DSL are first retrieved from
the annotations of the SUT component. Then, based on the
connections between the gates, the required external com-

14 Khorram et al.

Algorithm 1: The TDL Interpreter main loop
Input:
package: the TDL package containing the TDL test cases to
be executed

1 begin
2 foreach testcase ∈ package.testCases do
3 testcase.con f iguration.activate()
4 foreach behavior ∈ testcase.behaviors do
5 if behavior is Message then
6 sourceGate← behavior.source
7 targetGate← behavior.target
8 if sourceGate.component.role is Tester

then
9 request← behavior.argument

10 targetGate.sendRequestToSUT(request)

11 else if sourceGate.component.role is SUT
then

12 testOracle← behavior.argument
13 targetGate.assert(testOracle)

14 else if behavior is <other behavior types> then
15 ...

Algorithm 2: Activating test case configuration
Input:
con f iguration: TDL test configuration to be activated

1 begin
2 MUT Path← con f iguration.sutComponent.MUT Path

DSLName← con f iguration.sutComponent.DSLName
foreach connection ∈ con f iguration.connections do

3 if connection between generic gates then
4 engine←new ExecutionEngine()
5 engine.setUp(MUT Path, DSLName)

6 if connection between OCL gates then
7 OCLInterpreter← new OCLInterpreter()
8 OCLInterpreter.setUp()

9 if connection between reactive gates then
10 eventManager← new EventManager()
11 eventManager.setUp(MUT Path, DSLName)

ponents are instantiated and configured, including the Exe-
cution Engine, the OCL Interpreter, and the Event Manager.

Continuing with the main loop in Algorithm 1, after ac-
tivating the test configuration, the test case behavior should
be executed (line 4). The execution semantics of a behavior
depends on its type. For instance, to execute a Message be-
havior (line 5), according to its source gate, the argument is
treated differently. When the source gate belongs to a Tester
Component, the argument is a request for the model under
test (line 10), and when it belongs to a SUT Component, the
argument is the expected result to be asserted (line 13).

Sending Requests to the SUT (shown in Algorithm 3):
Depending on which gate of the SUT component is used for
sending a request, the TDL Interpreter selects which exter-
nal component (configured in Algorithm 2) should be used.

Then, it checks whether the request can be accepted by the
gate. Three cases are possible:

1. if the gate is a generic gate and the request is a model ex-
ecution command (line 2), the configured engine should
be used to run the command (line 3).

2. if the gate is an OCL gate and the request is an OCL
query (line 4), the configured OCLInterpreter should be
used to evaluate the query on the model (line 7). It should
be noted that the query is evaluated on the model in its
latest runtime state (line 6).

3. if the gate is a reactive gate and the request is an ac-
cepted event, the configured eventManager should be
used to process the event.

Algorithm 3: Sending a request to the SUT
Input:
gate: the gate for sending request to SUT,
request: the request to be sent

1 begin
2 if gate is generic gate & request is

modelExecutionCommand then
3 engine.runCommand(request)

4 if gate is OCL gate & request is OCL query then
5 query← createQuery(request)
6 MUT Resource← getMUTResource()
7 OCLInterpreter.runQuery(MUT Resource, query)

8 if gate is reactive gate & request is accepted event then
9 event← createEvent(request)

10 eventManager.processAcceptedEvent(event)

Asserting the Expected Output (shown in Algorithm 4):
The TDL Interpreter asserts whether an expected output data
is equal to the real output data (i. e., the data received from
the model under test). Depending on which gate of the SUT
component is used for the assertion, the output data has dif-
ferent semantics:

– generic gate: the expected output is indeed a specific
runtime state of the model under test. So the TDL In-
terpreter retrieves the current state of the model from the
context of the engine (line 3), and then checks whether
the model state is as expected (lines 4-7).

– OCL gate: the expected output is the expected query
evaluation result, so it should be checked against the re-
sult generated by the OCLInterpreter (lines 9-12).

– reactive gate: the expected output is an exposed event
expected to be received from the model under test. Ac-
cordingly, the EventManager is requested to retrieve that
event from the events exposed by the model (lines 14-
15). If it retrieves nothing, the assertion fails (line 19).

In addition to the above-mentioned conditions, there are
some specific cases that may lead to the interruption of the

Advanced Testing and Debugging Support for Reactive xDSLs 15

Algorithm 4: Asserting expected output
Input:
gate: the gate for receiving data from SUT,
expectedOut put: the expected output data to be asserted
Output :
verdict: the assertion result

1 begin
2 if gate is generic gate then
3 currentState← engine.context.resource
4 if currentState == expectedOut put then
5 verdict← PASS

6 else
7 verdict← FAIL

8 if gate is OCL gate then
9 queryResult← OCLInterpreter.result if

queryResult.equals(expectedOut put) then
10 verdict← PASS

11 else
12 verdict← FAIL

13 if gate is reactive gate & expectedOut put is exposed
event then

14 expectedEvent← createEvent(expectedOut put)
15 exposedEvent←

eventManager.getExposedEvent(expectedEvent)
16 if exposedEvent != NULL then
17 verdict← PASS

18 else
19 verdict← FAIL

test case execution. This happens for instance when the test
system sends a syntactically wrong OCL query to the SUT,
or the exchanged event does not conform to the behavioral
interface of the xDSL specified by the test configuration, or
when the running external component throws some excep-
tion. In these cases, the TDL Interpreter interrupts the test
case execution and sets the verdict to INCONCLUSIVE.

6 Interactive Debugging and Mutation Analysis for
TDL Test Cases

After defining and running a test suite for a given model,
two important concerns remain for the domain expert: being
able to localize the defects of failed test cases, and being able
to measure how well the test suite is in finding faults. In this
section, we address these needs with facilities for interactive
debugging and mutation analysis, respectively.

6.1 Interactive Debugging

A failed test case is essentially an alert for the domain expert
which tells there is a defect in the model causing the failure.
For trivial test cases, the test report may provide adequate

information about the cause of failure. However, fault lo-
calization can be more difficult for more complex test cases
such as event-driven ones which can involve complex se-
quences of events exchanged with the model. In such cases,
interactive debugging is a technique commonly used in the
realm of software testing, allowing to execute and observe
the SUT behavior one step at a time. However, it has not yet
been leveraged for model testing.

In what follows, we first define what is interactive de-
bugging. Then, we explain what are the obstacles prevent-
ing the use of interactive debugging with TDL test cases.
Finally, we present how we overcome these obstacles, and
thus provide interactive debugging for TDL test cases.

6.1.1 Definition of Interactive Debugging

Interactive debugging involves manual control and observa-
tion of an execution with the help of an interactive debugger.
Such debugger provides services to pause and unpause the
execution through breakpoints—i. e., conditions upon which
the execution must be paused, such as “reaching a specific
model element”— and prepares information to observe the
execution, such as the current stack of method calls or the
values of all existing variables. An execution can be repre-
sented as a sequence of execution steps (e. g., a sequence of
statements), and a step may itself contain a sequence of in-
ner steps (e. g., method calls, leading to more statements).
Based on this representation, an interactive debugger also
provides a common set of operators to perform step-by-step
observation of an execution, such as:

– The resume operator, to continue the execution until a
breakpoint is reached.

– The step over operator, to continue the execution un-
til the end of the current step or until a breakpoint is
reached, hence ignoring the possible inner steps.

– The step into operator, to continue the execution until
either some inner step is reached (if any) or when the
current step ends.

Note that a typical interactive debugger offers other services
as well, such as conditional breakpoints or the ability to
query/change the model runtime state. Yet, this paper fo-
cuses only on the above-described stepping operators— which
are the most essential services of an interactive debugger—
and leaves other debugging services for future work.

6.1.2 Requirements for Debugging TDL Test Cases

In the context of software testing, most of the popular test-
ing frameworks (e. g., JUnit) are compatible with interactive
debugging facilities (e. g. jdb). Among other possibilities,
this allows the tester to perform a step-by-step observation
of the SUT behavior as triggered by the test case. But for

16 Khorram et al.

Fig. 8 A sample scenario of performing interactive debugging for the running example

this to work, it must be possible to execute step-by-step not
only the SUT, but also the test case itself. In other words, it
must be possible to perform interactive debugging for both
the test case and SUT in unison. When the test case and its
SUT are both implemented using the same language (such as
Java programs and their JUnit tests), this is trivial to achieve
using a single debugger instance, since both the SUT and the
test case are then executed as one single executable program.

However, in the context of this paper, the test case and
the SUT are two different executable models conforming to
two different languages. This means we need to (1) be able
to debug the executable model itself, and then (2) to ini-
tialize two debugger instances at the same time, one for the
test case and another for the model under test, while making
sure the debugging services remain consistent when used in
two different debuggers, and coordinating the communica-
tion between the two debuggers. To the authors’ knowledge,
the first matter is already addressed for both EMF [4, 5] and
UML [6] models, and we use the interactive debugging ap-
proach of [5]4 as it supports the xDSLs considered in the
context of this paper. More specifically, their approach can
be configured for a specific xDSL and then can be used to
debug its conforming executable models. However, the sec-
ond challenge is still open and the remainder of this subsec-
tion explains our proposal to resolve it.

6.1.3 Adapting Interactive Debugging for TDL

When running a TDL test case with an interactive debugger,
as soon as the execution reaches a point where the test case
makes a request to the model under test (e. g., a TDL mes-
sage sending an event to the reactive model), one can expect
to be able to “jump” from the debugger of the TDL test case
to the debugger of the model under test, and to switch to ob-
serving the model’s behavior. More precisely, this can be ex-
pected when the modeler either sets a breakpoint inside the

4 One of our authors is involved in [5]

model under test or wishes to step into the processing of the
request sent to the model by the test case (e. g., an event). To
meet these expectations in our approach, we make the fol-
lowing minor adaptations to common interactive debugging
services for debugging TDL test cases:

– The resume operator: It continues the test case execution
until a breakpoint is reached either in the test case or in
the model under test.

– The step over operator: It continues the execution un-
til the end of the current step or until a breakpoint is
reached in the test case or in the model under test.

– The step into operator: It continues the execution until
either some inner step is reached (if any) or the current
step is ending. If in the current step, the test case sends
a request to the model under test, the step into operator
pauses the execution inside the model under test at the
very beginning of processing the sent request.

For example, Figure 8 illustrates an interactive debug-
ging scenario for the running example using our redefined
debugging services. Here we see a situation where the mod-
eler has set a breakpoint (shown as a filled colored circle) in
the faulty TDL test case (previously shown in Figure 6), on
the TDL message that sends a signal occurred event for the
Pin signal to the ATM.WithdrawCash state machine. When
the test case execution reaches this TDL message, it pauses
because of the breakpoint. The modeler may wish to inves-
tigate how this event will be processed in the state machine.
So by using the step into operator, the execution pauses at
the beginning of processing said event by the ATM state ma-
chine i. e., the GetPin state (label 1).

Afterward, by using the step over operator in the model
debugger, the transition to the ValidatePin state fires be-
cause the state machine has received a signal occurred event
for the Pin Signal from the test case which is the Trigger of
this transition (label 2).

Using the step over once more allows the modeler to ob-
serve that instead of the transition to the FinalState, the tran-

Advanced Testing and Debugging Support for Reactive xDSLs 17

sition to the GetAmount state traverses, hence discovering
the defect in the constraint of this transition. Accordingly,
the execution enters the GetAmount state (label 3) and the
processing of the event ends because there is no more tran-
sition to traverse.

Finally, using the step over operator, the test case debug-
ger resumes, so the next TDL message can be executed (i. e.,
the TDL message after the breakpoint).

6.1.4 Initialization and Coordination of Two Interactive
Debuggers

As previously mentioned, debugging a TDL test case re-
quires two interactive debugger instances, one for the test
case and one for its model under test. This subsection ex-
plains how we spawn and coordinate them using a sample
scenario shown in Figure 9. The domain expert starts the
process by requesting to debug a TDL test suite containing
at least one TDL test case. This results in initializing a de-
bugger for the test suite, preparing the TDL Interpreter, and

pausing the execution where reaching the first breakpoint (if
any). In the scenario of Figure 9, it pauses at the very begin-
ning of the test suite execution as we configured a breakpoint
there. Then, the domain expert can use the step over service
of the debugger to start the execution of the first test case. As
described in Section 5, for test case execution, the TDL In-
terpreter first activates the test configuration of the test case.
For example, when the test case is event-driven and so its
tested model is reactive, the TDL Interpreter configures an
instance of an Event Manager. Hereupon, the internal be-
havior of the test case can be executed step-by-step using
the services of the test case debugger, such as step into.

When the test component requests an execution in the
model under test, if the domain expert wants to observe the
model’s behavior upon receiving that request, a second de-
bugger is required to be initialized for the model. To do this,
we added new functionalities to our TDL Interpreter com-
ponent. As shown in Figure 9, at the first time that the do-
main expert chooses the step into operator (in the test case
debugger) when the test component sends a request to the

Fig. 9 One possible interactive debugging scenario for an event-driven TDL test case written for a reactive model

18 Khorram et al.

model (e. g., an accepted event), the TDL Interpreter ini-
tializes a debugger for the model. Hereafter, the TDL In-
terpreter pauses and resumes the model debugger according
to the debugging services chosen by the domain expert in
the test case debugger, based on their redefined semantics
presented in Section 6.1.3. It also deactivates the test case
debugger for the active time of the model debugger to en-
sure their consistency.

6.2 Test Quality Measurement

Measuring the quality of a test suite is often used to de-
cide whether the test suite should be improved, and how
much effort should be put into this endeavor. A popular mea-
surement techniques is mutation analysis which follows this
idea: if we inject artificial faults into the SUT, an existing
test suite that can find those faults is probably good enough
at discovering real faults [8]. The artificial faults are defined
in the form of mutation operators which can perform small
syntactic changes and are systematically applied on the SUT
to produce a set of mutants (i. e., faulty programs). After-
ward, the test suite is run on each mutant. If there is at least
one test case in the test suite that its execution result is dif-
ferent for the SUT and the mutant, we conclude the test suite
has detected the fault of the mutant, and the mutant is said to
have been ‘killed’ by the test suite. Finally, a mutation score
is calculated that is the percentage of killed mutants among
all generated mutants. This mutation score is a criterion for
measuring the quality of the test suite.

To provide mutation analysis in a generic model testing
approach, four features are required: (1) a definition of mu-
tation operators for the considered xDSL; (2) a process to
generate mutants out of models conforming to the consid-
ered xDSL; (3) a way to execute the considered test suite on
each mutant; and (4) a way to calculate the mutation score
for the test suite. Recently, a framework named WODEL-
Test was proposed by Gómez-Abajo et al. and is able to
support most of the above features [15]. More specifically,
WODEL-Test allows a language engineer to define mutation
operators for her/his xDSL if the abstract syntax is provided
as a metamodel. Then, it automatically generates mutants
for the models conforming to that xDSL by applying the de-
fined mutation operators.

However, WODEL-Test does not provide any testing fa-
cility, and thus fail at providing feature (3). It indeed as-
sumes there is an existing testing framework for the given
xDSL which allows writing test suites for the conforming
models and provides an interface to run such test suites and
get the result. Based on this assumption, WODEL-Test gen-
erates an environment for the domain experts to run their
written test suites on the generated mutants and to get their
mutation scores. As our proposed testing approach realizes
this assumption, we can offer a complete mutation testing

Fig. 10 An overview of the integration of the TDL Interpreter with
WODEL-Test [15]

framework for any xDSL through an integration with WODEL-
Test. Figure 10 shows how we achieved this integration, where
the same roles and artifacts as our approach (Figure 5) are
involved with only one additional task for the language en-
gineers to define mutation operators for their xDSLs. As a
result, the domain experts can write TDL test suites for the
conforming models and evaluate their quality.

As mentioned above and shown in Figure 10, WODEL-
Test requires a test runner implementing a specific inter-
face that determines how to run a test suite on a mutant and
how to decide whether the given mutant is killed by the test
suite. Accordingly, we connected our TDL Interpreter to the
WODEL-Test engine by defining a connector which imple-
ments the interface and performs three operations: (1) it re-
ceives a TDL test suite and a mutant from the WODEL-Test
and runs the test suite on the mutant using the TDL Inter-
preter; (2) it receives the test execution result from the TDL
Interpreter and sets the mutant as ‘killed’ if there is at least
one test case in the test suite that is failed on the given mu-
tant; and (3) it provides the final mutation testing results in
conformance to the WODEL-Test result templates.

It is worth mentioning that for this integration, we added
some extra features in the proposed TDL Interpreter. As de-
scribed in Section 4, the TDL Interpreter runs a TDL test
case on the model that is persisted in the path specified in
the test configuration of the test case. Consequently, to ex-
ecute the test case on another model, we need to modify
the test configuration. However, for mutation testing, a TDL
test case must be run on several models i. e., the original
model and the mutants generated for it, without modifying
the test case definition—including the test configuration. To
this end, we provide an optional service in the TDL Inter-
preter to be able to run a test case on a specific model while
ignoring the model path specified in the test configuration.

7 Tool Support

We implemented each component of our proposed approach
as part of the GEMOC Studio [4], a language and modeling

Advanced Testing and Debugging Support for Reactive xDSLs 19

workbench defined on top of the Eclipse Modeling Frame-
work (EMF). A base implementation of the TDL Library
Generator was reused from our previous work [20], and was
extended with the new contributions of the present paper—
mainly, a model transformation able to translate behavioral
interfaces into TDL. We used the implementation of Leroy
et al. [24] for the behavioral interface definition (i. e., also a
part of the GEMOC Studio) and we implemented the trans-
formation in Java. A base implementation of the TDL In-
terpreter, written in Xtend [9], was also reused from our
previous work [20]. We improved its operational semantics
and we integrated it with an existing Event Manager of the
GEMOC Studio [24].

Next, the Interactive Debugging component uses the model
debugging framework of the GEMOC Studio [4, 5] for the
initialization of two debugger instances, and the Eclipse de-
bug platform for managing their communication and syn-
chronization, all implemented in Java. For the Test Quality
Measurement component, as the WODEL-Test framework
is also implemented using EMF technologies [15], we easily
integrated it into our testing framework. More specifically,
we implemented a connector in Java (shown in 10) which
connects the WODEL-Test engine to our TDL Interpreter.

Figure 11 displays three screenshots of the provided fa-
cilities running in the GEMOC studio modeling workbench
for the ATM.WithdrawCash state machine. The source code
is available on a public GitLab instance5. A screenshot of
the testing tool is shown in Figure 11a. Using the provided
icons in the toolbar and the menubar, we executed the TDL
Library Generator for the xPSSM DSL and it successfully
generated an xPSSM-specific TDL library (label 1). In the
middle, the event-driven TDL test case of Listing 4 is shown
(label 2) which is failed on the ATM state machine (label 3)
because the model has exposed a behavior executed event
for the enterAmountMsg behavior (label 4) while the ex-
pected output is wrongPinMsg behavior.

Figure 11b shows the usage of the interactive debugging
facility for the running example. It displays two debugger
instances, one for the test case (label 1) and another for the
ATM state machine (label 2), both running using GEMOC
execution engines (label 3). Running the test case in debug
mode, we chose the step into operator of the test case de-
bugger where the test case wanted to send a signal occurred
event for the Pin signal to the ATM state machine. This
paused the test case debugger on the first of the next TDL
Message (i. e., asserting a behavior executed event for the
WrongPinMsg behavior) and enabled a debugger for the
model under test. Using the stepping operators of the ATM
debugger (label 2), we observed when the ATM state ma-
chine has received the said event from the test case, the tran-
sition from the ValidatePin to the GetAmount state has been

5 https://gitlab.univ-nantes.fr/naomod/

faezeh-public/xtdl/-/tree/SoSym2021

fired and the enterAmountMsg behavior has been executed.
The GEMOC debugging tool also provides the values of all
existing variables for each debugger instance. For example,
we selected the ATM debugger, and at the bottom left, we
can see the values of its variables (i. e., the last executed ver-
tex and the execution status of all states).

Figure 11c shows how mutation analysis appears in the
tool. Here, we analyze a TDL test suite (containing four test
cases) tailored for the correct version of the ATM state ma-
chine and the result is shown in Figure 11c. Note that the
shown mutation operators for the xPSSM DSL are explained
in the next section. Under the state machine project (label 1),
one folder per mutation operator exists, each containing mu-
tants generated by WODEL-Test by applying that operator.
We can see that the TDL test suite was exectued (label 2) on
all models i. e., the original model and all the generated mu-
tants. The global result (label 3) reports that 186 mutants are
generated by applying 90 % of mutation operators (18 out of
20) and the mutation score for the considered TDL test suite
is 67.2 %. The tool also provides information about the test
suite execution result for each mutant (label 4).

8 Evaluation

The main goal of our approach is to be generic in terms of
providing testing and debugging facilities for any reactive
xDSL that follows the definitions given in Section 2.1. To
evaluate the genericity of our approach and to investigate
whether it fulfills each of the requirements listed in Sec-
tion 2.4, we designed and performed an empirical evaluation
which is presented in this section.

8.1 Experiment Setup

Considered xDSLs In our experiment, we used the proto-
type presented in Section 7 for two reactive xDSLs. The first
one is the xPSSM DSL already presented in Section 2.1.1,
and the second one is called xArduino. It is a specific DSL
for modeling Arduino boards and their behavior. An Ar-
duino model contains a Board representing a physical board,
and a Sketch that is executed on the board. A Board com-
prises various modules such as LEDs, sensors, and buttons.
A Sketch is a block of instructions, each performing a spe-
cific behavior such as turning on an LED or suspending the
execution for a specified duration. Using the behavioral in-
terface of the xArduino DSL, an external tool can commu-
nicate with a running xArduino model. For example, if we
define an xArduino model comprising a button and an LED
which blinks when the button is pressed, an external tool can
request for pressing the button during execution and will be
notified each time the LED turns on/off.

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/SoSym2021
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/SoSym2021

20 Khorram et al.

1

2 3

4

(a) TDL testing facilities

1

2

3

4

(b) Interactive debugging facilities

1

2

3

4

(c) Mutation analysis (using WODEL-Test facilities [15])

Fig. 11 Screenshots of the provided tools running in the GEMOC studio modeling workbench for the ATM.WithrawCash state machine

Advanced Testing and Debugging Support for Reactive xDSLs 21

Table 2 The evaluation data

xPSSM xArduino

xDSL
Size

Abstract syntax size
(n. of EClasses) 35 59

Semantics size (LoC) 975 768
Behavioral Interface size
(n. of Events) 4 6

Tested
Models

Number of tested Models 65 5
Size range of tested models
(n. of EObjects) 13 - 154 15 - 41

Test
Artifacts

TDL Library size
(LoC generated) 178 252

Total n. of test cases 217 30
Size range of test suites(LoC) 25 - 1311 30 - 132

Table 2 shows the size of each xDSL as the number of
EClasses of its abstract syntax, the number of lines of code
(LoC) of its operational semantics, and the number of events
of its behavioral interface. According to their values for each
xDSL, xArduino has a larger abstract syntax and behavioral
interface, but a smaller operational semantics. The source
code of both xDSLs is available on a public GitLab server.

Considered Models For each xDSL, we need a set of con-
forming models to be tested. For the xPSSM DSL, the PSSM
standard provides a set of UML state machines, each with
a small test suite for asserting that a PSSM implementa-
tion executes the models as expected, indeed in compliance
with the standard [36]. We used a subset of them (60 mod-
els) which represent an event-driven behavior using solely
state machines. In addition, the ATM.WithdrawCash state
machine presented in Section 2.1 is considered in the exper-
iment, and we manually defined four larger state machines6

for a total of 65 xPSSM models (60+5). As written in Ta-
ble 2, the size of the considered xPSSM models ranges from
13 to 154 EObjects. For the xArduino, we manually defined
five models ranging from 15 to 41 EObjects in size.

8.2 Evaluating Genericity

To evaluate the genericity of the approach, we applied it on
both considered xDSLs following the same process. First,
we executed the TDL Library Generator component for each
xDSL and it successfully generated a domain-specific li-
brary for each of them. The number of lines of code for the
xPSSM-specific TDL library is 178 and for the xArduino is
252 (also shown in Table 2). As the TDL library is generated
from the xDSL definition excluding the execution rules, the
size of the generated library for the xArduino is larger than
that of for the xPSSM DSL.

Second, using each generated TDL library, we wrote a
set of TDL test cases for each considered model. In total,

6 We used the samples from: https://www.uml-diagrams.org/state-
machine-diagrams.html

217 TDL test cases for the xPSSM models (60 of them are
transformed from the standard PSSM test suites [36] to TDL)
and 30 test cases for the xArduino models. The number of
lines of code for the test suites is shown as a range in Ta-
ble 2. The smallest and the largest test suites are written for
the xPSSM models, with 25 and 1311 LoC, respectively. All
the tested models and their test cases are publicly accessible
on a public GitLab server.

Lastly, we executed the TDL test cases on the models us-
ing the TDL Interpreter component. For all the test cases, the
test verdicts were set and the test results were reported us-
ing the graphical view provided by our tool. We also manu-
ally verified that we obtain the expected verdict for each test
case. In conclusion, we successfully used the proposed ap-
proach for two reactive xDSLs whose abstract syntaxes rep-
resent different domains and whose execution semantics im-
plement different behavioral interfaces. Therefore, we can
conclude that our approach is not tied to only one specific
xDSL, and thus provides a certain degree of genericity.

8.3 Evaluating Requirement Fulfillment

One of the objectives of our empirical evaluation is to in-
vestigate the ability of the approach in fulfilling the require-
ments listed in Section 2.4.

Fulfilling Req.1 In the first requirement, the testing approach
is requested to support the events specified in the behavioral
interface of an xDSL as test data types when writing test
cases for its conforming models. As explained above, the
TDL Library Generator successfully generated a domain-
specific TDL library for each considered xDSL. This library
contains an xDSL-Specific Events Package which provides
the definition of the xDSL’s behavioral interface in TDL.
We also explained that we used the generated TDL library
of each xDSL to write event-driven TDL test cases for their
conforming models. Therefore, our proposed testing approach
fulfills its first requirement.

Fulfilling Req.2 The second requirement concerns the exe-
cution of event-driven TDL test cases on the reactive mod-
els. We described in Section 5 that our testing approach pro-
vides an integration between the TDL Interpreter and an
Event Manager to realize this requirement and we explained
in the previous subsection that we successfully executed the
test cases of both xPSSM and xArduino reactive models.
Accordingly, we conclude that our proposed approach ful-
fills the second requirement as well.

Fulfilling Req.3 The third requirement is related to pro-
viding facilities for test case failure diagnosis. For realiz-
ing this requirement, our testing approach proposes inter-

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/SoSym2021/Language_Workbench
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/SoSym2021/Modeling_Workbench

22 Khorram et al.

active debugging facilities for TDL test cases. We used in-
teractive debugging on both a set of failed TDL test cases
of non-reactive models (four test cases from our previous
work [20]) and a set of failed event-driven TDL test cases of
reactive models (such as the running example shown in Fig-
ure 6). In both cases, we successfully debugged the model
under test in unison with its test case, which ultimately helped
us to localize the defect of the model. This shows the ap-
proach fulfills the third requirement.

Fulfilling Req.4 In the last specified requirement, the adop-
tion of mutation analysis for measuring the quality of the
TDL test suites is needed. Our testing approach offers such
facility by integration with the WODEL-Test mutation test-
ing framework [15]. To evaluate this integration and demon-
strate its usage, we performed mutation analysis of the con-
sidered xPSSM test suites as described below.

At first, we defined a set of mutation operators for xPSSM,
listed in Table 3. A mutation operator can be applied on an
xPSSM model, if the operator’s requirement is realized by
the model (the third column in Table 3). The definition of
these mutation operators is driven from existing work refer-
enced in the fourth column of the table and we implemented
them using the WODEL DSL [14]. Afterward, we ran mu-
tation analysis on the TDL test suites that we have written in
Section 8.2 for 65 xPSSM models. This run includes three
steps for each xPSSM model: (1) generating mutants for the
xPSSM model by applying the mutation operators; (2) ex-
ecuting the TDL test suites provided for the model on both
the seed model and its generated mutants; and (3) reporting
the mutation analysis result, such as percentage of the ap-
plied mutation operators, number of the generated mutants,
mutation score (i. e., percentage of killed mutants), and test
execution result for each model. The first step is completely
performed by the WODEL tools, and the rest is done by our
integration of the WODEL and TDL tools.

The three charts of Figure 12 demonstrate our analysis
results. As shown in Figure 12a, from 20 mutation operators
described in Table 3, 13 were applicable on 3 of xPSSM
models, 17 on 17 models, 18 on 19 models, and 19 on the
rest of 26 models. The number of generated mutants for each
xPSSM model is provided in Figure 12b which ranges from
28 to 664, a total of 12674 mutants. Finally, the mutation
score for the 65 TDL test suites of xPSSM models is pre-
sented in Figure 12c which ranges from 43.54 % to 74.78 %.
Therefore, we claim that the approach succeeds in fulfilling
the fourth requirement.

8.4 Threats to Validity

The fact that we only used the approach for two xDSLs
threatens the validity of its genericity. We tried to use two
xDSLs that are very different from each other regarding their

supporting domain and their execution semantics. However,
there is a need to explore the approach for more reactive
xDSLs made for different and more complex domains.

Our proposed approach aims to support the domain ex-
perts in writing and executing test cases for their executable
models. To validate its usability for the domain expert, a user
study should be performed. Accordingly, a threat exists re-
garding the approach usability and we consider it for our
future work. However, as our approach uses TDL which is
a standard testing language particularly defined for the non-
technical testers, and as we support using the domain con-
cepts in writing TDL test cases, we tried to take the usability
feature into account.

9 Related Work

Existing related work can be categorized either as ad-hoc
testing approaches made for specific DSLs, or generic test-
ing approaches applicable to many DSLs.

9.1 Testing Approaches for Specific DSLs

A specific methodology for designing and early testing of
executable statecharts is proposed in [28] which supports
four popular testing techniques: Test-Driven Development
(TDD), Behavior-Driven Development (BDD), Design by
Contract (DbC), and property statecharts for monitoring the
violation of behavioral properties during model execution.
In the design phase, several tasks have to be performed,
some of which are required for the testing phase such as
defining the execution scenarios using the BDD approach,
implementing the mapping between the steps of the scenar-
ios and the statechart test primitives (in Python), and writing
unit tests (in Python). The scenarios and the unit tests will
then be executed on the statecharts to validate their behavior.
Although they support a complete process of designing and
validating statecharts, the testing activities should be per-
formed by a technical tester as coding in Python is required.

Hili et al. propose an approach for interactive monitor-
ing of real-time and embedded systems modeled using UML
Real-Time (UML-RT) [17]. Their approach enables differ-
ent external components such as tools for data collection,
animation, simulation, analysis, adaptation, and control to
monitor the execution of the code generated from a UML-
RT model. As one of their case studies, they show how the
approach can be used to perform functional steering. There-
fore, although they do not provide any testing approach for
writing test cases, they show how the approach can be ap-
plied for testing purposes. Moreover, they are focusing on
monitoring the behavior of the generated code while we are
focusing on testing the executable models to ensure the cor-
rectness of their behavior as early as possible.

Advanced Testing and Debugging Support for Reactive xDSLs 23

Table 3 The mutation operators for the xPSSM DSL

Symbol Description Requirement from the model Reference
ccs Creates a connected state Containing at least one state [37, 25, 15]
ccfs Creates a connected final state Containing at least one state [25, 15]
ctr Creates a transition with random source and target states Containing at least two states [25, 15]
ctr2 Creates a transition with source but without target state Containing at least one state [12]
rtr Removes a transition Containing at least one transition [37, 12, 25, 39, 15]
dtr Duplicates a transition Containing at least one transition [39]
rst Removes a state and adjacent transitions Containing at least one state [12, 15]
cis Changes the initial state to a different one Containing at least two initial states [37, 12, 25, 15]
cfs Changes the final state to a different one Containing at least two final states [25]
cst Changes the source state of a transition Containing at least one transition and two states [39]
rts Changes the target state of a transition Containing at least one transition and two states [12, 39, 15]
sdt Swaps the direction of a transition Containing at least one transition [25, 15]
rev Removes a trigger Containing at least one trigger [37, 12, 25]
cev Creates a trigger and set it to a transition Containing at least one transition [37, 12, 25]
cet Changes the trigger of a transition Containing at least one trigger [37, 12, 25]
rac Removes a behavior Containing at least one behavior [37, 12, 25]
cac Creates a behavior and set it to a transition Containing at least one transition [37, 12, 25]
cat Changes the behavior of a transition Containing at least one transition with a behavior [37, 12, 25]
cas Creates a behavior and set it to a state Containing at one state [25]
rco Removes a constraint Containing at least one transition with a constraint [39]

(a) Number of applied mutation operators for
all xPSSM models

(b) Number of generated mutants for each
xPSSM models

(c) Mutation score for each xPSSM test suite

Fig. 12 The result of mutation analysis of xPSSM models

To tackle the inherent complexity of testing domain in-
tensive cloud applications, a configurable test DSL is pro-
posed in [38]. Given an abstract definition for a cloud appli-
cation (indeed for its User interface, user interactions, data
setup, environment, and platform configuration) using the
domain concepts, it generates a specific test DSL and a test-
ing toolset named Legend for authoring, executing, and de-
bugging test cases for cloud applications [21].

In the context of measurement systems, a specific DSL
named Sequencer is used in the NASA awarded measure-
ment system (DEWESoft) which enables adjusting measure-
ments and creating measurement procedures. To provide test-
ing support for the Sequencer DSL, a specific testing frame-
work namely Sequencer Testing Tool (SeTT) is proposed
in [22]. The SeTT tool enables the domain expert to define
test cases for each part of the measurement system. It indeed
allows augmenting test elements such as assertions into the
Sequencer models.

To define test cases for the executable business processes
that are modeled using Web Services Business Process Ex-

ecution Language (WS-BPEL) or BPMN2, a specific test-
ing approach is proposed in [26]. They use a metamodel
extension technique to add test-specific elements (e. g., as-
sertions) to the BPMN metamodel. To ensure the test mod-
els have deterministic behaviors, they enforce some control-
flow restrictions. The domain expert can define test cases
as BPMN models in which there is one Pool describing the
process under test and other Pools specifying the test case
behavior. The Pools communicate with each other by ex-
changing messages To execute such test models, the tech-
nical information for running the physical operations of the
process under test must be provided in advance.

A sizable amount of works are proposing testing ap-
proaches for the fUML [33] which are described below.
A BDD framework enables describing the requirements as
executable user stories and the acceptance criteria as exe-
cutable scenarios attached to the user stories. In [23], a BDD
framework is proposed for the fUML by defining a UML
profile for BDD and a BDD library comprising executable
commands required when describing fUML scenarios. The

24 Khorram et al.

framework allows the domain expert to define fUML models
following a BDD approach, meaning that she/he first defines
executable fUML stories and scenarios and then describes
the fUML models satisfying them.

In [2], a testing approach is proposed for fUML where
the behavioral scenarios of a system are first described us-
ing UML sequence diagrams enriched with timing proper-
ties that are described in UML MARTE constraint language.
These diagrams describe the communications between the
different components of a system, and each component is it-
self described using fUML activity diagram. In this work, a
testing tool is provided which automatically evaluates the
conformance of the fUML activities to the sequence dia-
grams and their timing constraints. In addition, they generate
test input data from the sequence diagrams and use them to
test the behavior of the activity diagrams automatically.

In [30], a functional testing framework is proposed to
validate the behavior of fUML models. For describing test
cases, they provide an executable test specification language
that supports using temporal expressions for the precise se-
lection of the runtime states to be asserted, using OCL queries
for specifying complex assertions on the runtime states of a
system that behaves concurrently, and verifying the execu-
tion order of the activity nodes for concurrent systems.

In [18], a simulation and test generation approach is pro-
posed for the fUML activity diagrams containing Alf7 code [18].
At first, the fUML models are translated into Java code.
Afterward, the test input data are generated automatically
from the Java code, enabling an exhaustive simulation of
the fUML models. Finally, using the provided simulation,
the test cases along with the test oracle are auto-generated
satisfying 100 % coverage of the Java code.

To sum up, DSL-specific approaches promote usability,
as they enable the domain experts to describe test cases us-
ing the system description language that is familiar to them.
Nevertheless, they lack reusability since a new test language
must be engineered for each new DSL. In contrast, our ap-
proach provides generic testing solutions reusable for a wide
range of xDSLs.

9.2 Generic Testing Approaches

When a grammar-based DSL has a translational semantics,
if the target language (i. e., a general-purpose language) pro-
vides a unit testing framework (e. g., JUnit for Java), then
the work of Wu et al. provides a unit testing framework for
that DSL [41]. It requires the language engineers to define
the mapping algorithms between the testing actions of their
DSL and the target GPL. Accordingly, the framework can
translate test cases from DSL code to GPL which enables us-
ing the GPL testing tools for executing test cases on the gen-

7 Action language for fUML

erated GPL code of the model under test. It also translates
the test results from the GPL code to the DSL, to report the
result using the domain concepts. Therefore, this approach
is useful for compiled DSLs and performs testing at the code
level, while we provide testing facilities for the interpreted
DSLs and the test cases are run at the model level.

Meyers et al. propose a generic testing approach for xD-
SLs with discrete-event semantics i. e., reactive xDSLs [29].
Given an input xDSL, it generates an xDSL-Specific testing
language by extending the abstract syntax of the xDSL with
a limited set of testing features. To execute each test case
written using this language, the operational semantics of the
xDSL must be instrumented specifically for it. Instrumen-
tation means new execution rules (i. e., for test case execu-
tion) must be added to the xDSL’s execution rules. This in
turn requires (1) using the same approach for implementing
both execution rules, and (2) the language engineer should
enrich the abstract syntax of the xDSL with event-related
concepts to specify where new rules must be added. In con-
trast, our approach does not require changing the xDSL def-
inition, hence being easily applicable to any reactive xDSL.
In addition, we use a standard testing language (i. e., TDL)
for writing test cases and we offer two analysis techniques
to help the domain expert in performing testing activities.

10 Conclusion and Future Work

A reactive xDSL with testing support enables its users to
validate the behavior of their reactive models as early as pos-
sible. In this paper, we proposed a generic testing approach
for reactive xDSLs with discrete-event operational seman-
tics using the TDL standard testing language. Given a reac-
tive xDSL, our approach offers services for the definition,
execution, debugging, and quality measurement (i. e., based
on mutation analysis) of the test cases for the conforming re-
active models. We evaluated the genericity of the approach
by its application for two different xDSLs. In conclusion,
we observed that our generic testing approach for xDSLs
advances the tool support for existing as well as emerging
xDSLs.

We have identified several interesting research directions
for the future, such as performing a user study to evaluate
the usability feature of the approach for the domain experts,
and extending the approach to support integration testing of
compositional models i. e., models conforming to several in-
terconnected xDSLs. In addition, benefiting from our muta-
tion analysis support, we can develop efficient test genera-
tion techniques for reactive xDSLs since mutation analysis
allows us to evaluate if a test generator works efficiently [1].

Acknowledgements This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska Curie grant agreement No 813884. We would

Advanced Testing and Debugging Support for Reactive xDSLs 25

like to appreciate the great help of Dr.Pablo Gómez-Abajo for the inte-
gration of our work with the WODEL-Test framework.

References

1. J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and com-
paring testing coverage criteria. IEEE Transactions on
Software Engineering, 32(8):608–624, 2006.

2. M. Arnaud, B. Bannour, A. Cuccuru, C. Gaston, S. Ger-
ard, and A. Lapitre. Timed symbolic testing framework
for executable models using high-level scenarios. In
Complex Systems Design & Management, pages 269–
282. Springer, 2015.

3. R. Bendraou, B. Combemale, X. Crégut, and M.-P.
Gervais. Definition of an eXecutable SPEM 2.0.
In 14th Asia-Pacific Software Engineering Conference
(APSEC), pages 390–397. IEEE Computer Society,
2007.

4. E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer,
J. Deantoni, and B. Combemale. Execution framework
of the gemoc studio (tool demo). In Proceedings of the
2016 ACM SIGPLAN International Conference on Soft-
ware Language Engineering, page 84–89. Association
for Computing Machinery, 2016.

5. E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and
B. Baudry. Omniscient debugging for executable dsls.
Journal of Systems and Software, 137:261–288, 2018.

6. F. Ciccozzi, I. Malavolta, and B. Selic. Execution of uml
models: a systematic review of research and practice.
Software and Systems Modeling, 18:2313–2360, 2019.

7. J. Deantoni. Modeling the Behavioral Semantics of
Heterogeneous Languages and their Coordination. In
Architecture Centric Virtual Integration (ACVI). Julien
Delange and Jerome Hugues and Peter Feiler, 2016.

8. R. DeMillo, R. Lipton, and F. Sayward. Hints on
test data selection: Help for the practicing programmer.
Computer, 11(4):34–41, 1978.

9. S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow,
R. von Massow, W. Hasselbring, and M. Hanus. Xbase:
Implementing domain-specific languages for java. SIG-
PLAN Notices, 48(3):112–121, 2012.

10. ETSI ES 203 119-1. Methods for testing and specifi-
cation (mts); the test description language (tdl); part 1:
abstract syntax and associated semantics, 2020. URL
https://tdl.etsi.org/index.php/downloads.

11. ETSI ES 203 119-6. Methods for testing and specifi-
cation (mts); the test description language (tdl); part 6:
Mapping to ttcn-3, 2020. URL https://tdl.etsi.

org/index.php/downloads.
12. S. Fabbri, J. Maldonado, and M. Delamaro. Pro-

teum/fsm: a tool to support finite state machine val-
idation based on mutation testing. In Proceedings.

SCCC’99 XIX International Conference of the Chilean
Computer Science Society, pages 96–104, 1999.

13. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the
unified modeling language and java. In H. Ehrig, G. En-
gels, H.-J. Kreowski, and G. Rozenberg, editors, Theory
and Application of Graph Transformations, pages 296–
309. Springer Berlin Heidelberg, 2000.

14. P. Gómez-Abajo, E. Guerra, and J. de Lara. Wodel: A
domain-specific language for model mutation. In Pro-
ceedings of the 31st Annual ACM Symposium on Ap-
plied Computing, SAC ’16, page 1968–1973. Associa-
tion for Computing Machinery, 2016.

15. P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G.
Merayo. Wodel-test: a model-based framework for
language-independent mutation testing. Software and
Systems Modeling, 20:1–27, 2020.

16. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot.
Statemate: a working environment for the development
of complex reactive systems. IEEE Transactions on
Software Engineering, 16(4):403–414, 1990.

17. N. Hili, M. Bagherzadeh, K. Jahed, and J. Dingel. A
model-based architecture for interactive run-time mon-
itoring. Software and Systems Modeling, 19:959–981,
2020.

18. J. Iqbal, A. Ashraf, D. Truscan, and I. Porres. Ex-
haustive simulation and test generation using fuml ac-
tivity diagrams. In P. Giorgini and B. Weber, editors,
Advanced Information Systems Engineering, pages 96–
110, Cham, 2019a. Springer International Publishing.

19. Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions on
Software Engineering, 37(5):649–678, 2011.

20. F. Khorram, E. Bousse, J.-M. Mottu, and G. Sunyé.
Adapting tdl to provide testing support for executable
dsls. Journal of Object Technology, 20(3):6:1–15, 2021.

21. T. M. King, G. Nunez, D. Santiago, A. Cando, and
C. Mack. Legend: An agile dsl toolset for web accep-
tance testing. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA
2014, page 409–412. Association for Computing Ma-
chinery, 2014.

22. T. Kos, M. Mernik, and T. Kosar. Test automation of a
measurement system using a domain-specific modelling
language. Journal of Systems and Software, 111:74 –
88, 2016.

23. I. Lazăr, S. Motogna, and B. Pârv. Behaviour-driven de-
velopment of foundational uml components. Electronic
Notes in Theoretical Computer Science, 264(1):91–105,
2010. Proceedings of the 7th International Workshop
on Formal Engineering approaches to Software Com-
ponents and Architectures (FESCA 2010).

https://tdl.etsi.org/index.php/downloads
https://tdl.etsi.org/index.php/downloads
https://tdl.etsi.org/index.php/downloads

26 Khorram et al.

24. D. Leroy, E. Bousse, M. Wimmer, T. Mayerhofer,
B. Combemale, and W. Schwinger. Behavioral inter-
faces for executable dsls. Software and Systems Model-
ing, 19(4):1015–1043, 2020.

25. J.-h. Li, G.-x. Dai, and H.-h. Li. Mutation analysis for
testing finite state machines. In 2009 Second Interna-
tional Symposium on Electronic Commerce and Secu-
rity, pages 620–624, 2009.

26. D. Lübke and T. van Lessen. Bpmn-based model-
driven testing of service-based processes. In Enterprise,
Business-Process and Information Systems Modeling,
pages 119–133. Springer, 2017.

27. P. Makedonski, G. Adamis, M. Käärik, F. Kristoffersen,
M. Carignani, A. Ulrich, and J. Grabowski. Test de-
scriptions with etsi tdl. Software Quality Journal, 27
(2):885–917, 2019.

28. T. Mens, A. Decan, and N. I. Spanoudakis. A method
for testing and validating executable statechart models.
Software and Systems Modeling, 18:837–863, 2019.

29. B. Meyers, J. Denil, I. Dávid, and H. Vangheluwe.
Automated testing support for reactive domain-specific
modelling languages. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Lan-
guage Engineering, pages 181–194. Association for
Computing Machinery, 2016.

30. S. Mijatov, T. Mayerhofer, P. Langer, and G. Kappel.
Testing functional requirements in uml activity dia-
grams. In J. C. Blanchette and N. Kosmatov, editors,
Tests and Proofs, pages 173–190, Cham, 2015. Springer
International Publishing.

31. OASIS. Web services business process execution lan-
guage version 2.0, 2007.

32. Object Management Group. Business Process Model
And Notation, 2010.

33. Object Management Group. Semantics of a Founda-
tional Subset for Executable UML Models, 2013.

34. Object Management Group. Meta Object Facility, 2016.
35. Object Management Group. Unified Modeling Lan-

guage, 2017.
36. Object Management Group. Precise Semantics of UML

State Machines, 2019.
37. S. Pinto Ferraz Fabbri, M. Delamaro, J. Maldonado, and

P. Masiero. Mutation analysis testing for finite state
machines. In Proceedings of 1994 IEEE International
Symposium on Software Reliability Engineering, pages
220–229, 1994.

38. D. Santiago, A. Cando, C. Mack, G. Nunez, T. Thomas,
and T. M. King. Towards domain-specific testing lan-
guages for software-as-a-service. In 2nd International
Workshop on Model-Driven Engineering for High Per-
formance and Cloud computing (MDHPCL), pages 43–
52, 2013.

39. F. Siavashi, D. Truscan, and J. Vain. Vulnerability as-
sessment of web services with model-based mutation
testing. In 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pages
301–312, 2018.

40. D. Steinberg, F. Budinsky, E. Merks, and M. Paternos-
tro. EMF: eclipse modeling framework. Pearson Edu-
cation, 2008.

41. H. Wu, J. Gray, and M. Mernik. Unit testing for domain-
specific languages. In W. M. Taha, editor, Domain-
Specific Languages, pages 125–147. Springer Berlin
Heidelberg, 2009.

	Introduction
	Background and Motivation
	Approach Overview
	Support for Writing Event-Driven TDL Test Cases
	Support for Executing Event-Driven TDL Test Cases
	Interactive Debugging and Mutation Analysis for TDL Test Cases
	Tool Support
	Evaluation
	Related Work
	Conclusion and Future Work

