N

N

Ip M+2/ h2biBM; M/ .2#m;;BM; amTTQ i 7Q"
1t2+mi #H2 .aGb
6 2x2? E?Q " K-1'r M "Qmbb2-C2 M@J B2 JQiim-

hQ +Bi2 i?Bb p2 ' bBQM,

6 2x2? E?Q " K- 1'r M "Qmbb2- C2 M@J 'B2 JQiim- :2°'bQM amMvaX /)
;BM; amTTQ i 7Q° _2 +iBp2 1t2+mi #H2 .aGbX aQ7ir "2 M/ avbi2Kb JQ
RyXRyydfbRykdy@ykk@yRyk8@r X ? H@yjdkjNky

> G A/, ? H@yjdkjNky
?2iiTh,ff? HXb+B2M+2f? H@yjdkjNky
am#KBii2/ QM R8 CmH kykk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.science/hal-03723920
https://hal.archives-ouvertes.fr

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Advanced Testing and Debugging Support for Reactive Executable DSLs

Faezeh Khorram Erwan Bousse Jean-Marie Mottu Gerson Sunyge

Received: date / Accepted: date

Abstract Executable Domain-Speci c Languages (xDSLs) executing, and analyzing 247 event-driven TDL test cases
allow the de nition and the execution of behavioral models.for 70 models conforming to two different reactive xDSLSs.
Some behavioral models are reactive, meaning that durin . .

their execution, they accept external events and react by eJ?-EW'QFO!S Reactive Executable DSLTesting Test

posing events to the external environment. Since comple®€Scription LanguageDebugging Mutation Analysis
interaction may occur between the reactive model and the

external environment, they should be tested as early as pos-

sible to ensure the correctness of their behavior. In this pat |ntroduction

per, we propose a set of generic testing facilities for reactive

xDSLs using the standardized Test Description Languag@ wide range of Domain-Speci ¢ Languages (DSLs) ex-

(TDL). Given a reactive xDSL, we generate a TDL library ist for describing the expected behavior of systems (e.g.,
enabling the domain experts to write and run event-driver16, (13, 3/ 31} 32, 33, 36]). DSLs are used in modeling en-
TDL test cases for conforming reactive models. To furtheiironments and when the environment offers dynamic Ver-
support the domain expert, the approach integrates interapcation and Validation (V&V) techniques, the users (i. e.,
tive debugging to help in localizing defects, and mutationthe domain experts) can also analyze the behavioral models
analysis to measure the quality of test cases. We evaluate thg early as possible to ensure the correctness of their behav-
level of genericity of the approach by successfully writing,jor. These techniques require the execution of the models,
hence, their application is reserved to DSLs with execution

semantics, such as DSLs with translational semantics (i. e.,

Faezeh Khorram

IMT Atlantique, Nantes Univers, Ecole Centrale Nantes
CNRS, LS2N, UMR 6004, F-44000 Nantes, France
E-mail: faezeh.khorram@imt.atlantique.fr
https://faezeh-kh.github.io/

Erwan Bousse .

IMT Atlantique, Nantes Univergi, Ecole Centrale Nantes
CNRS, LS2N, UMR 6004, F-44000 Nantes, France
E-mail: erwan.bousse@Is2n.fr
https://bousse-e.univ-nantes.io/

Jean-Marie Mottu i

IMT Atlantique, Nantes Universi, Ecole Centrale Nantes
CNRS, LS2N, UMR 6004, F-44000 Nantes, France
E-mail: jean-marie.mottu@Is2n.fr

Gerson Sung]

IMT Atlantique, Nantes Universi, Ecole Centrale Nantes
CNRS, LS2N, UMR 6004, F-44000 Nantes, France
E-mail: gerson.sunye@Is2n.fr
https://sunye-g.univ-nantes.io/

compilation) or operational semantics (i. e., interpretation).
In this paper, we focus on DSLs with operational semantics,
referred to agxecutable DSLs (xDSLSs)

Testing is probably the most prevalent dynamic V&V
technique used for software systems and is commonly en-
riched with two additional families of techniques: 1) debug-
ging, to localize and x the defect causing a test case to falil;
and 2) test quality measurement, to identify how a test suite
can be improved with new test cases. Accordingly, different
approaches have emerged in recent years to provide testing
support for xDSLs. A rst set of approaches aim to provide
testing frameworks that aspeci c to selected xDSLs, such
as fUML activity diagrams[[30, 18] or service-based Busi-
ness Process Model and Notation (BPMN) processes [26], A
second set of approaches aim to provide more generic test-
ing frameworks, i. e. directly compatible with a wide range
of xDSLs. Such approaches are much more versatile and can

https://faezeh-kh.github.io/
https://bousse-e.univ-nantes.io/
https://sunye-g.univ-nantes.io/

2 Khorramet al.

target large categories of DSLs such as grammar-based con3: We offer two test analysis techniques: (i) to diagnose
piled DSLs [41] or interpreted xDSLE [20]. the cause of failure when a test case fails, an interac-

However, no testing approach is able to realistically deal tive debugging facility is provided. It coordinates the
with all possible categories of xDSLs. In particular, there are initialization and the online interplay of two debugger
so-calledreactivexDSLs whose semantics are event-driven, instances, which are initialized for the test case and its
meaning that executed models will react to speci ¢ occur- tested xModel from the model debugger proposedlin [5];
ring events at runtime. At least two main challenges must be (ii) to measure the quality of a TDL test suite de ned
considered to provide testing for reactive xXDSLs. First, test with the proposed approach, we provide an integration
cases for conforming models must be described as a scenario of our generic testing approach with the mutation test-
of exchanging xDSL-speci ¢ events. Hence, the considered ing framework proposed in_[15].

testing language for writing test cases must support using .
those events as test data types. Second, to run such a t%st-rhe proposed approach is implemented for the GEMOC

. . «
case, the execution semantics of the testing language m udio, a language and modeling workbench for xDSLS [4].

be somehow connected to the event-driven execution semem—e applied the approach for two different reactive xDSLs,

tics of the reactive xDSL. Thereby, the interaction scenarioXArdumO 1. €., used for modeling Arduino boards and their

speci ed in the test case can be veri ed by interacting withexetClJtlon I.?E'g.’ andt XPSStNtl) Ihe". de ngd f?r: S|Fr>nul<':_1t|ngs
the tested model during its execution, systems with discrete-event behavior using the Precise Se-

In addition, to our knowledge, there is currently no test—mantlcs of UML State Machines (PSSM) [36]. Successful

ing approach for xDSLs that is properly integrated with de-US€ of the approach for writing, executing, and analyzing

. . . 247 event-driven test cases for 70 models conforming to two
bugging and test quality measurement techniques. For ex-

ample, while there are interesting interactive debugging a very different reactive xDSLs validates its genericity. Also,

proaches for model5[5] 6], none is able to support the ste to demonstrate the applicability of the test quality measure-

by-step execution of a test caskeng withthe step-by-step ment feature of the approach, we performed mutation anal-

execution of the tested model. This is especially crucial wheﬁ?é&nn?i TriL teit ?utlteds.f 'Eh6e5y rtma;/er:]un rc1)|rr]1 cumnudlatn::]aI);
testing reactive models that require many interactions, ang:i utants generated 1o state machines and a muta-

thus multiple “back-and-forth” between the test case and thgOn score has been calculated for them with success.

model. Likewise, regarding test quality measurement, while Paper organizationSectior ? provides the background

a recent approach aims to provide mutation analysis for xD"Elnd a running example. Sectiph 3 describes an overview of

SLs [15], this approach is incomplete as it is not yet able g4 proposed approach. In Sectiqi}s 4 phd 5, the provided

actually run tests cases on the generated mutants facilities for writing and executing test cases are presented,

Providing such complex facilities—namely testing, de_respe.ctively. Sectidn 6 introdl_Jces the provided test analysis
bugging, and test quality measurement—rfor a givewre- techniques. Our tool support is shown in Secfipn 7. In Sec-
active xDSL is an expensive and error-prone task. A desirt_ion, the evaluation process and results are illustrated. The
able solution would be genericapproach applicable to a related work is presented in Sectiph 9 and the paper con-

wide range of reactive xXDSLS. In our previous work][20], cludes in Sectioh_ 10 with a discussion on future work.
we proposed a rst generic testing approachrfon-reactive

xDSLs—albeit without any debugging or test quality mea- L

surement facilities. Continuing this research direction, th@ Background and Motivation

present paper proposes three new core contributions to su

port testing for reactive xDSLs as well as offering interactive'[r).1 this s_ect|0n, we rst de_scnbe the executable D.SLS con-
debugging and test quality measurement techniques: sidered in the scope of this paper. Afterward, we introduce

an overview of the Test Description Language (TDL) as well
1. Given a reactive xDSL, we enable writing event-drivenas its adaptation in our previous work for providing testing
test cases using the standardized Test Description Lagupport for non-reactive xDSL5 [20]. To motivate the pro-
guage (TDL). We achieve this by automatically gener-posed approach, we also present a running example.
ating an event-compatible TDL library for the xDSL,
based on the xDSL de nition. Then, the domain expert
can use XxDSL-speci ¢ events as test data types—to de2.1 Executable DSLs (XDSLs)
ne both test input data and expected output—when writ-
ing TDL test cases. This paper targets xDSLs composed of at least two parts:
2. To execute the event-driven test cases on the reactian abstract syntax determining the concepts of a particular
models, we extend the TDL test execution engine of ouapplication domain, and an operational semantics (i. e., the
previous workl[[20] by integration with the reactive modelinterpreter) de ning how the runtime state of a conforming
execution approach proposed(in|[24]. model varies during its execution.

Advanced Testing and Debugging Support for Reactive xDSLs 3

Fig. 1 An xDSL for a subset of UML State Machines conforming to the PSSM speci cétidn [36] (referred to as xPSSM). Its semantics is provided
in two styles, content-based (b) and event-driven (c).

2.1.1 Running Example: XPSSM 2.1.2 Abstract Syntax

UML State Machines is a well-known subset of the Uni-We consider the abstract syntax of an xDSL to be de ned

ed Modeling Language (UML) standard [35] commonly as & metamodel, using a metamodeling language such as
used to model systems with discrete event-driven behavioMOF [34] or Ecore [[40]. Generally, a metamodel is made
The Precise Semantics of UML State Machines (PSSM) is gf a set of metaclasses, each containing a set of features. A
standardized extension of UML that de nes a complete exef€ature can be either an attribute typed by a primitive type
cution semantics for UML State Machinés [36]. This paperor @ reference to another metaclass.

relies on a simpli ed version of PSSM as a running exam- Part (a) of Figure[]1 brie y shows the abstract syntax
ple, referred to as xPSSM. xXPSSM only contains elementsf xPSSM de ned as a metamodel. The root element is a
related to the reactive behavior of UML State Machines. EsCustomSystemit contains oné&tateMachineand can have
sentially, an xXPSSM model is a state machine that can preseveralSignalswhich will be used in itsStateMachine A

cess external occurrences of events and perform behavioBateMachinecomprises one or morBegion each repre-

in reaction. Figurg|1 shows an overview of different parts ofsents a behavior fragment that may execute concurrently
the XPSSM language de nition, and we present each part iwith other regions if they are owned by either the s@tete

the reminder of this section. or StateMachine A Regionis a graph comprising a set of

4 Khorramet al.

PseudostateoneFinalState severStatesthat three of them
haveentry Behavior(such as theénsertCardMsg of the
Wait State) and one of them haslaActivity Behavior(the
updateCardBalance of the MakeWithdrawal State), and
severalTransitionswhich some require signal occurrences
to get enabled. For example, the transition frovait to
GetPin state will be enabled once the state machine receives
a SignalOccurrencéor the Card Signal Also, the outgo-
ing transition of theVlakeWithdrawal state has a behavior,
Fig. 2 A sample xPSSM model for cash withdrawal from an ATM. namelydeliverCash .
It has a defect since it does not validate the entered pin correctly (the There are two conditions for a successful withdrawal.
wrong constraint is highlighted in red where= is used instead of ==) First, the entere®in must be equals to th€ard's pin .
It is de ned as aConstraintfor the outgoing transition of

Verticesinterconnected byfransitions which determines the ValidatePin state, but with a wrong operator (high-
the behavioral ow within theRegion lighted in red in Figurg]2). We aim to detect this defect with a

Pseudostateand State are two kinds oVertex Pseu- testsuite written and executed using our proposed approach.
dostatesare transitive meaning that the execution passesS€cOnd; the entereimountmust be lower than equals to

through them without pause. There are different kinds ofn€Card's balance (i.e., theConstraintof the outgoing
Pseudostatesuch as initial, fork, join, terminate. In con- transition of theCheckBalance state).

trast,State is astablevertex which means when the execu-

tion enters them, it leaves when either some event occur1.3 Operational Semantics

that triggers alransition moving to anothelState or the)))
StateMachinds terminated. AState may haveentry ,do- 1he operational semantics of an xDSL must comprise two

Activity , andexit Behaviors—in our simpli ed PSSM, Parts: the de nition of the possible runtime states of a model
aBehavioris an empty element without any substance. Thé/Nder execution, and a set of execution rules de ning how
entry andexit behaviors are executed when Bate is such a runtime state changes over time. We consider the run-
entered and exited, respectively. Execution oftbActivity ~ time state to be de ned in a separate metamodel that intro-
behavior starts after thentry Behavior (if any) has com- duces new features—later referred to as dynamic features—
pleted, and nishes when either it is completed or State for the metaclasses of the abstract syntax. This metamodel
is exited.FinalStateis a special kind oBtate representing extends the abstract syntax metamodel using a non-intrusive
the completion of itRegioncontainer. extension mechanism, such as the UML package mer(ﬁ [35]
The execution rules perform an in-place endogenous trans-
formation that de nes how the runtime state of a model changes
during the execution of the said model.

In this paper, we only consider xDSLs with discrete-

A Transition connects aourcevertex to atarget one.
It can contain three main elementsCanstraint a Behav-
ior, and severalriggers A Transitionis enabled when its
guardConstraint (if any) evaluates tdarue, and itsBehav- X i))
ior (if any) is executed once the transition is traversed. Th&VENt operational semantics (i. ., not continuous). Gener-

traversal of the transitions may depend on the reception dily: these semantics can be de ned as content-based or event-
the event occurrences. This is de ned by allocatifrig- driven [24]. The former kind executes a model using an ini-
gerelements to them. Arigger speci es anEventsuch as tial runtime state for the model that must be provided before

SignalEventvhose occurrence (i. eSignalOccurrendeen- the execution starts. The latter kind runs a model through
ables the traversal of the transition containing Trigger. an environment able to interact with the model execution

The SignalOccurrenceontainsvaluesfor the attributesof through event occurrences. In the following, we clarify their

its associate§ignal When a state machine receives a Signaplifferences as well as their requirements for testing support.

occurrence, all the enabled transitions that contairigger))

pointing to the relate@ignalwill be traversed. Content-Based Semanticé content-based semantics de-
Figurg 2 shows an example model conforming to xPSSMNES hO_N .tf) run 6_‘ model |n' a:losgdenvwonment, where

It describes aStateMachinethat models the behavior of only an initial runtime state is provided to the model before

withdrawing cash from an Automated Teller Machine (ATM).it is started. The execution rules of a content-based seman-

The bankCard. the entered®in and theAmountof with- 1ICS comprise at least one rule acting as a starting point for

drawal areSignalswhose speci ¢ occurrences can be givente model execution, usually called theain(). This rule

to the state machine at runtime usiSignalOccurrences " trigger other execution rules (if any), and each may call

The Card Signal has two attributes for its pin and balance. @ There are also other ways to de ne the runtime state, such as using

This StateMachinehas oneRegioncomprising one initial imports or inheritance relationships.

Advanced Testing and Debugging Support for Reactive xDSLs 5

other rules and perform observable execution steps in ordenodels during their execution. While different approaches
to nalize the execution. can be used to de ne such an interface (e!g., [7]} [24]), this
For example, we de ned a content-based semantics fopaper uses the metalanguage proposed ih [24]. This meta-
xPSSM. First, the runtime state de nition is shown in partlanguage speci es that a behavioral interface comprises a
(b.1) of Figurg 1. ThecurrentVertex is a dynamic feature set ofacceptedandexposecevents, each containing param-
of the Region which is used to remember the last executedceters. Anaccepted evenspeci es what can be accepted by
Vertex at each execution step. ThgnalOccurrences a running model and aexposed eventletermines its ob-
dynamic feature holds an ordered list of the signal occurservable reactions. While this metalanguage allows events to
rences that should be dispatched to a state machine, i. e. the processed asynchronously by the model (i. e. the model
required input for the state machine execution. &ecuted- can receive new event occurrer@edile still in the middle
Behaviors keep track of théehaviorinstances of the state of processing one), in the present paper we only consider
machine that have been executed. It is required for testingvents that are processed synchronously—often referred to
purposes and will be used in Sect[on|2.3. We also de ned as arun-to-completiorsemantics.
set of content-based execution rulés %) part of Figurd 1) For example, thé¢c.3) part of Figurd [L shows a behav-
that are explained below using the running example. ioral interface for xPSSM containing three event de nitions:
n Flgur@, theA‘I_’M.V\ﬁthdrqwCaslstat_e machine relies accepted eventun: triggers the initialization of its state
on three different signals for its execution, labelgdrd, machine parameter
Pin, andAmount The content-based semantics of XPSSM . .
— accepted evensignaloccurred takes a signal occur-

requires that the sequence of concrete occurrences of said : . .
: . rence as parameter and triggers its corresponding execu-
signals be prepared before the execution and stored all at . .)
tion steps in the state machine.

once in thesignalOccurrences dynamic feature. Thmain() . .

. . . - — exposed evenbehaviorexecuted noti es the execu-
rule then starts the execution which results in activating the tion of theBehaviorelements
Wait state and executing ifesertCardMsg entry behav- '
ior, hence adding this behavior to the list ekecuted- The behavioral interface of an xDSL must be imple-
Behaviors . Afterwards, themain() rule calls thesignal- mented by the execution rules of its operational semantics.
OccurrenceReceived(eventlile on each of the provided For instance, théc.1)and the(c.2)parts of Figurél present
signal occurrences in order. Here, rst tliard occurrence an event-driven semantics for xPSSM (the runtime state def-
will be dispatched which enables the transition to Get- inition and the execution rules, respectively). Tha() ex-
Pin state. Then, th®in occurrence will be executed, hence ecution rule implements theccepted event rurthesignal-
traversing the transition to théalidatePin state. The exe- OccurrenceReceived(eventlile implements theccepted
cution continues until either a signal occurrence is require@vent signaloccurred and theexecute() rule implements
(e.g., after entering thEetAmountstate, an occurrence for theexposed event behaviaxecuted
theAmountsignal is required to exit) or the execution reaches As an example, to execute thdM.WithdrawCaslstate
aFinalState(e. g., in theValidatePin state, if the entered machine (Figurg]2), event occurrences conforming to xPSSM's
pin is wrong, the transition to thEinalState will be tra- behavioral interface should be communicated to the state
versed and the execution will be terminated). machine. One can rst send mn event with theATM.-

WithdrawCashstate machine as its parameter. This starts

Event-Driven SemanticsAlthough it is possible to execute the execution and resulted in activating ¥ait state and

a model solely based on its content, there are many cases fxecuting itinsertCardMsg entrybehaviorwhich will be
quiring dynamically interacting with a running model, e. g. exposed by the model throughbehaviorexecutedevent.

for running a co-simulation with other modelg [6] 24]. This It is indeed the state machine reaction to receivingrtire
requires the xDSL's operational semantics to have a regvent occurrence. As trrirrentVertex is theWait state,
event-driverbehavior that precisely speci es how one can@n occurrence for theignaloccurredevent must be sent to
interact with a running model, and how the said model shoulthe state machine with@ard instance to pursue.

react. In this paper, we consider that this aspect is handled by Therefore, unlike content-based semantics, event occur-
a language component called a behavioral interface, whicfences are given to a running model one by one, who then

we introduce in the next section as the foundation for thderforms observable reactions at runtime. Consequently, it
event-driven semanticg an xDSL. is possible to send different event occurrences to a model

based on the responses that it provides, i. e. to dynamically
react to the model's observable actions. This is especially

2.1.4 Behavioral Interface . . .
useful for techniques that bene t from dynamic interactions

The behavioral interface of an xDSL §peci es the types Pf Please note that the “occurrence” word is used in the paper in two
events that can be sent to and received from conformingays, for reactive xDSLs in general, and for xPSSM in particular.

6 Khorramet al.

components. AZomponentinstances typed by &Component-
Type, which determines the component communication chan-
nels using the so-called gates. Accordingly, it contains at
least one gate (i. eGatelnstancgthat is instantiated from
a GateType A GateTypede nes what kind of data can be
exchanged through its instances.
Test Descriptiorn To describe the behavior of a test case, the
TestDescriptionelement should be instantiated. It uses one
of the previously de nedlestCon guration instances, and
contains a sequence BEhaviorelements. Currently, twenty
Fig. 3 An Excerpt of the TDL Metamodel [10] types of behavior are de ned in the TDL standard, such as
MessageTimeOut, AlternativeBehavioretc. Examples of

_ _ _) TDL test cases are given shortly after.
with a model, such as interactive debuggers, testing frame-

works, or co-simulation environments.

In the remainder of the paper, xDSLs with content-based
semantics are calletbn-reactivexDSL, while xDSLs with 2.3 TDL-based Testing Support for Non-Reactive xDSLs
event-driven semantics are callezhctivexDSL.
In our previous work([20], we proposed a generic testing ap-
proach for non-reactive xDSLs using TDL. Two roles were
involved in the approach: a language engineer who imple-
L) ments a non-reactive xDSL according to the de nitions given
The Test Description Language (TDL) was introduced by, Sectior Z1L, and a domain expert who uses this xDSL to
the European Telecommunications Standards Institute (ETR e pehavioral models and wishes to write test cases for
as a generic language for describing test cases. TDL SURiem Our proposed approach provided all the required ma-
ports describing test objectives derived from system requiregia| for the domain experts to write and execute TDL test
ments and de ning test cases thatre ne those objectives [27]5 s for their models. Its main components which are used

The standard semantics of TDL provides a loose semanticg, § extended in this paper are described in Sedfions @and 5.

written in natural languagé [10] and a precise translationail;Or more information, we refer the reader to the paper [20].
semantics using the Testing and Test Control Notation ver- For example, this approach can be used to w.rite TDL

slon: (ETCSI'S) at‘ﬁ a tEa_Ir%eIzt I:nglfjage [111_-||-TCN'? ItS also}est cases for xPSSM models when they are executed by the
Standardized by the - A reterence impiementation 0% g\ content-based semantics (bytof Figure[1). Fig-

TDL is also provided, containing a standard abstract syntax re[3 depicts an excerpt of a TDL test case for ATa.-
textual and graphical concrete syntax, and tools for mod ithdrawCastState machine. Each arrow correspon d.s toa
validation, and transformation to TTCN-3, among others. . o .
. . MessageTDL Behavior that carries some data and is ex-
Figure[3 shows the main elements of the TDL abStraCE:hanged between thkest Componentand theSUT When

syntax. APackagels the root element of a TDL model, the sender of Messages the Test Component the ex-
hence the container of all other elements. To de ne a com-

plete test case, three main information are required:

Test Data The rst step in de ning test data is to deter-

mine the required data types. TDL does not provide any con-

crete data type since its main objective is to be generic and
platform-independent. So the testers should de ne their re-

quired types using thBataTypeelement, then instantiating

them to de ne test data, both the input data that will be sent

to the System Under Test (SUT) during test case execution,

and the expected output data that will be used in assertions

(i. e. to de ne the oracle of the test case).

Test Con guration : A test con guration speci es a com-

munication protocol between the test suite (later referred to

as thetest systednand the SUT. TDL follows a component-

based approach, hencelastCon guration comprises two

or moreComponentinstancesone in the role oSUT and Fig. 4 A TDL test case for the running example written using our pre-
the rest aslTester as well as theConnectionsbetween the vious work [20]

2.2 The Test Description Language (TDL)

Advanced Testing and Debugging Support for Reactive xDSLs 7

changed data is test input data or a request, otherwise, it @&ent for theenterPinMsg Behavior. Therefore, test cases

some expected output (i. e. an assertion). of reactive models must be written differently, hence leading
Our approach allows the domain expert to use the doto the following rst requirement:

main concepts when de ning test data. For instance, in the

rst Messagen Figure[4, two signal occurrences, one for

the Card and one for thePin are de ned and sent to the

state machine. This puts the state machine in an initial ru

time state as this data will be set as the value o$idmal-

Occurrenceslynamic feature. We intentionally use a wrong

pin number to see whether the test case can detect the defeq{hen, running tests on a model obviously requires a way to
of the state machine. Then, the test component requests {gqcute the model, which can be performed differently de-
run the modelfunMode) and get its runtime state after ex- pending on how the xDSL's semantics is de ned. For non-
ecution getModelStatg. These two operations are also pro- ja4ctive xDSLs, the model execution is a one-time opera-
vided by the approach. To de ne the expected output, the djon, \while for reactive xDSLs, it is driven by exchanging
main expert can again use the domain concepts, in this caggents at runtime. This means for executing a test case on
the executedBehaviorslynamic feature with its expected 3 reactive model, the model should keep running and inter-
value i. e., thre®ehaviorinstances of the state machine in- 4¢ting with the test case until the test case is terminated; is
cluding insertCardMsg , enterPinMsg, andwrongPin- agsed, failed, or has an inconclusive result. Thus for pro-

Msg As shown in Figuré]4, the assertion is failed (the rstjging test execution support, there is a second requirement:
red arrow) because due to the defect of the model, the value

of theexecutedBehavioris f insertCardMsg , enterPin-
Msg enterAmountMsgy It means the test case detects theReq.2 The test runner should be able to run event-driven
defect of the model successfully. test cases by online interaction with an event-driven model
Besides, the approach offers facilities to use Object Conexecution engine that can run reactive models.

straint Language (OCL) queries in the TDL test cases. For
instance, in the test case of Figjre 4, the test component _ .

) As complex interactions may occur between the test cases
sends an OCL query to the model to retrieve the value of

. . and the models, it is dif cult to diagnose the point of failure
its currentVertexfeature. The expected result isalState) . .

e ! when atest case fails. In such cases, a synchronized interac-
but it is failed since the model is wrong and at this point, it

is in theGetAmountstate. tive debugging facility would be greatly helpful and would
allow (1) to execute and observe step-by-step the test case
and its tested model both at the same time; and (2) to jump

2.4 Motivation and Requirements from one execution to another when an interaction occurs
between them. Therefore, we consider this third requirement

Our previous work [20] provides testing support for an xDSLfor the proposed approach:

under two conditions: (1) it is possible to provide input data

to the model under test when initializing its runtime state, (2)

it is possible to get output data at the end of the executiofR€d-3 An interactive debugging facility is required for di-

by retrieving the nal runtime state of the model, which can 29nosing the cause of failure in the failed test cases.

then be compared with some expected state. For example,

in the test case shown in Fig[ite4, input data is provided by\y;, these three requirements ful lled, testers will be able
giving an initial value to thaignalOccurrences - dynamic to run their tests and debug failed ones. However, if test
feature, and thexecutedBehaviors dynamic feature is cases do not nd any bug, while it may validate the cor-
retrieved to be compared with some expected SEQUENCE. o iness of the tested model (in the best case), it may also

However, given a reactive xDSL, a running model shoulgjqight weaknesses of the test suite (in the worst case).
only communicate data using the behavioral interface of the;

X . _Jo properly measure the quality of a test suite, one well-
xDSL. Accordingly, a prospective test case for a reactvg nown ef cient technique is mutation analysis [19], which

model should be described as a scenario in which the teéﬁn produce a score representing the overall quality of the

system sends events to the model and checks whether they .aqes. We therefore decided to consider the following
model sends back the expected event. For instance, if W4l requirement for the proposed approach:

write a test case for the ATM state machine, the test com-

ponent shall send signal.occurredevent with a signal oc-

currence for theCard signal to the running state machine, Req.4 The approach should support test suite quality mea-
and check whether it reacts by exposingghaviorexecuted surement based on mutation analysis.

Req.1 The testing language used for writing test cases should
r‘e_xllow the domain expert to use the events speci ed in the
xDSL's behavioral interface as test data types.

8 Khorramet al.

In the next sections, we present our approach providing Finally, the approach offers two test analysis techniques
testing and debugging facilities for reactive xDSLs on thefor the domain expert. Firstnteractive Debuggindat the
basis of our previous work. We ful Il all the aforementioned top center) to help the domain expert to nd out the cause of
requirements with, respectively, generating an event-compatifddure in a test case. It can be used to debug interactively
TDL library for a given reactive xDSL to ful lIReq.], in- the test case and its model under test at the same time, so the
tegrating the TDL interpreter with event-driven model exe-domain expert can observe gradually the model's reaction to
cution tools to ful Il Req.2 adapting interactive debugging the reception of requests from the test case. Seddnth-
facilities for TDL test failure diagnosis to ful IReq.3 and tion Analysis(at the bottom center) to help the domain ex-
providing a TDL test quality measurement tool based orperts to measure the quality of their written TDL test cases.
mutation analysis to ful IReq.4 In a nutshell, given a TDL test suite for a model, it performs

mutation analysis on the model and calculates a mutation
score for the test suite which can be used for measuring its
3 Approach Overview quality. These analysis techniques support both non-reactive
and reactive xDSLs and are presented in Se€fion 6.
Figure{} presents an overview of the proposed appﬁ)mh
the top left corner, we assume that a language engineer has
implemented a reactive XDSL based on the de nitions given4
in Sectior] 2.]l. The domain expert on the right de nes a sys-

tem with reactive behavior by instantiating models from theryig section presents how the approach provides facilities
provided xDSL. She/he wishes to test and debug those Mogs, riting test cases for reactive models using TDL. At rst,

els to ensure they behave as expected. we describe what should an event-driven test case look like
TheTDL Library Generatolis the rst component of the through an example. Then we introduce fFBL Library

approach (at the top center) that was initially introduced ingeneratonwhich enables writing such test cases in TDL by
our previous work[[20]. Its rst version producediamain- ,oviding a TDL library speci ¢ to a given reactive xDSL.
speci ¢ TDL library for a given non-reactive xDSL, provid- Finally, we show how the domain expert can use the library

ing all the data types required for the speci cation of test, \yrite executable test cases for reactive models.
data, a set of default test con gurations, and elements for

requesting the execution of the tested models and of OCL
queriesl[[20]. In this paper, we extend this component to sup- .
port reactive xDSLs. Through this extension, the generateé'1 A Sample Event-Driven Test Case

library also provides an event-compatible TDL package gen\-Ne mentioned in Sectidn 2.4 that an event-driven test case

erated from the de nition of the xXDSLs behavioral inter- . . .

: : . for a reactive model should be described as a scenario of
face. This package provides the required elements for writ-)
. . : . exchanging events between the test system and the tested
ing and executing event-driven TDL test cases for reactive .

: o . model. Figuré p shows such a test case fo/hkl.Withdraw-
models. Details are given in Section 4.

Executing TDL test cases on the models is the role OFashst.ate machine (previously shown in Figfife 2). Th? test
._._case aims to check that the ATM does not accept an incor-
the TDL Interpretercomponent (at the center) that we ini-

. . : . rect pin code, so it must be able to uncover the defect of the
tially proposed in[[20]. As Figurg]5 shows, it has connec- .

. . i . . model. As can be seen, the events used in the test case con-
tions with three external components: teecution Enging

form to the xPSSM's behavioral interface (tfe3) part of
the Query Evaluatorand theEvent ManagerThe rst two . . (ttws3)p
. . : Figurd 1) and their parameters are references to the elements
connections are from our previous work, enabling perform- .
of the ATM state machine.

ing operations on the "non-reactive' tested models and run- .
. : . . First, the test component sendsum event to request
ning OCL queries on them, respectively. This paper extend% . L
the start of the execution and expects to receive in return

the interpreter with a new connection to Buent Manager . .
: . . a behaviorexecutecevent for theinsertCardMsg behav-
to provide execution of event-driven TDL test cases on the

‘reactive’ models. We assume thatEvent Manageexists ior. This assertion passes (the rst green arrow in Figlre 6)

which provides services to interact with a running reactivebecause according to FigJre 2, when the state machine ini-

. .) . tializes, the execution should enter thé&it state, execute
model. More precisely, given a reactive XDSL, it enables the :) .

. its entry behavior nameéhsertCardMsg , and wait there
external tools such as testing tools to exchange events con-

forming to the xDSL's behavioral interface with the models:umII one of its outgoing transitions can be traversed.

conforming to the xDSL's abstract syntax at runtime. In Sec- . Next, the test component ser_1dS|gnaLoccurredevent
tion[3, this component is explained in more detai. with an occurrence of th€ard signal and expects to re-
ceive in return dehaviorexecuteavent for theenterPin-

B Elements of the Figure are written in italic in the text. Msgbehavior. As the state machine execution is currently in

Support for Writing Event-Driven TDL Test Cases

Advanced Testing and Debugging Support for Reactive xDSLs 9

Fig. 5 Overview of the Proposed Approach

theWait state, by receiving this event from the test compo-going transitions are evaluated to check if they are enabled.
nent, the transition to th&etPin state will be traversed. So However, as explained earlier, the ATM state machine con-
the execution enters this state and runsitry behavior tains a defect: an equality sign was mistakenly replaced by a
namedenterPinMsg . Therefore, the second assertion alsosuperior-or-equal sign, leading to the wrong constraint “en-
succeeds (the second green arrow in Filire 6). teredPin>= cardPin”. Consequently, instead of enabling
Afterwards, the test component sends anotignal- the transition to théinalState , the one to th&setAmount
occurred event with an occurrence of tHein signal and state is enabled. Therefore, tweongPinMsgevent is never
since the value of the entered pin (i.e., 2222) is differenpbbserved, meaning that the third assertion of the test case
from the the card's pin (i.e., 1234), it expects to receivefails (the rstred arrow in Figurg¢6).
a behaviorexecutedevent for thewrongPinMsgbehavior. Finally, the test component sends an OCL query to check
According to Figurd 2, as the state machine execution isvhether thecurrentVertex is thefinalState . As de-
currently in theGetPin state, receiving this event from the scribed above, due to the defect of the model, the execution
test component resulted in traversing the transition to thé currently in theGetAmountstate, so the assertion fails
ValidatePin state. At this point, the constraints of its out- (the second red arrow in Figuré 6). In the remainder of the
section, we explain how our proposed approach provides fa-
cilities for the domain expert to write such event-driven test
cases for any reactive model.

4.2 TDL Library Generator for Reactive xDSLs

The main objective of th@DL Library Generatorcompo-
nent is to provide a domain-speci ¢ TDL library for a given
XDSL. Such a library aims to provide a set of TDL elements
for the domain experts, allowing them to write TDL test
cases for the models conforming to the considered xDSL.
As shown in Figur¢]5, the generator reads the de nition of
an xDSL—in particular, the abstract syntax, the parts of the
operational semantics de ning the possible runtime states of
the conforming models, and the behavioral interface—and

Fig. 6 A potential event-driven TDL test case for the running example,produces a TDL library speci c to the xDSL which contains
with two passed and two failed assertions. four TDL packages:

10 Khorramet al.

1. xDSL-Speci ¢ Types Packagecontaining all the TDL de nition of the runtime state. Listing|1 shows some of the
data types required for the speci cation of test data. =~ generated TDL data types for the xPSSM Ecore metamodel
2. Common Package providing TDL elements common (the @) part of Figure]]L), includingCustomSystem Sig-
to any given xDSL, including a set of elements for per-nal, SignaOccurrenceStateMachine andBehavior Using
forming operations on the model under test and elementhis generated package, the domain expert can easily de ne
for enabling the use of OCL queries in the test cases. model elements in TDL and use them as test data.
3. xDSL-Speci ¢ Events Package with the TDL de ni-
tion of the events of the xDSL's behavioral interface.
4. Test Con guration Package, providing a default test

con guration to be used by the TDL test cases writteNrhe common package comprises a set of elements referred
for executable models. to asmodel execution commantts performing several op-

Packages 1,2,4 are generated for any xDSL (i. e., eithé?ratio_ns on the model under test,_suchmﬂ\/lodel for re-
non-reactive or reactive) and their generation is already mo&JHFSting its content-based executirrsetModel for reset-
explained in our previous work [20]. However, Package 31N its state to the default, aggtModelState for getting
(thexDSL-Speci ¢ Events Packaﬁis a new package gener- its current state, i. e., the content of its dynamic features. In
ated solely for reactive xDSLs. In what follows, we present2ddition, it provides a TDL element a@glQuery (query

in order how each package is generated. For Packages=17) that lets the test component to send OCL queries to
and 2, we summarize how they can be generated using ofjf€ tested model by setting the value ofgtsery argument.
previous work [20]. For Package 3, we describe our ncNe{b\ccordlngly, the result of the query evaluation can be used

generation process based on the events de ned in a givé’ﬁhen de ning a test oracle.

behavioral interface. For Package 4, we explain how we up-

graded the generator of our previous wark|[20] to obtair4.2.3 Generation of the xDSL-Speci ¢ Events Package

test con gurations adapted for reactive xDSLs. Afterwards,

we present how these packages can be used for writing teds discussed in Sectipn 2.4, the rstrequirement for a generic

cases for reactive models. testing approach for reactive xDSLs is to allow the domain
expert to use events as test data types when writing test

4.2.1 Generation of the xDSL-Speci ¢ Types Package cases. This means for a given reactive xDSL, the testing
language of the approach should support using the events

As discussed in Sectidn 2.2, test data is composed ¢ff the xDSL's behavioral interface in the test cases. Since

instances of TDL data types. Therefore, to use TDL for &our approach uses the TDL testing language, we need the

speci ¢ domain, all the required data types must be de nedde nition of the events in TDL, which we provide by the

beforehand. To avoid having the tester manually creatingDSL-Speci ¢ Eventpackage.

these types, we automated this task in our previous work This package is automatically generated by a transfor-

by proposing a model transformation from Ecore to TDL.mation from the behavioral interface metalanguage [24] to

This transformation generates TDL data types for a giverf DL. Table[1 shows the outline of the transformation rules.

xDSL from its de nition, mainly the abstract syntax and the In a nutshell, 8ehavioralinterface s transformed to a
TDL Packagethat is the container of other elements. Each

Event is transformed to &tructuredDataType which is

4.2.2 Generation of the Common Package

Package XPSSMTypes { annotated according to tlieventType and compriseMembers
Type CustomSystem (generated for thé&cventParameters. To assign the type
statemachine of type StateMachine, of Membersthe content of the previously generatddSL-

signals of type Signal); Speci ¢ Types Packags used.

Type Signal (attributes of type Attribute) ;
Type SignalOccurrence (

! . [Blelement | Generated TDL element]
signal of type Signal, - —
T VRIS o o A el Behavioral- Package containing all the other generated
. I Interface elements
ype StateMachine (- Import the xDSL-Speci ¢ Type$ackage
_name of type EString, regions of type Region); EventType Annotation
Type Behavior(_name of type EString); Event StructuredDataType containing onéMember
perParameter and annotated based on it type
} Event- Memberlts type is set using the TDL
Parameter DataTypes provided by the importe@ackage

Listing1 Some of the TDL Data Types generated for the xPSSM DSL
Table 1 Behavioral Interface to TDL Transformation Rules

1

2

w

Advanced Testing and Debugging Support for Reactive xDSLs 11

Package XxPSSMEvents { 1 Package testConfiguration {
Import all from xPSSMTypes; 2 Import all from common;
3 Import all from xPSSMEvents;
Annotation AcceptedEvent; 4
Annotation ExposedEvent; 5 Gate Type genericGateType accepts modelExecutionCommand;
6 Gate Type oclGateType accepts OCL;

Type run (state_machine of type StateMachine) with 7 Gate Type reactiveGateType accepts run , signal_occurred ,
{AcceptedEvent;}; behavior_executed;
Type signal_occurred (8 Component Type component having {
state_machine of type StateMachine, 9 gate genericGate of type genericGateType;
signal_occurrence of type SignalOccurrence 10 gate oclGate of type oclGateType;
) with {AcceptedEvent;}; 11 gate reactiveGate of type reactiveGateType;
Type behavior_executed (behavior of type Behavior) with 2}
{ExposedEvent;}; 13 Annotation MUTPath;
} 14 Annotation DSLName;

Listing 2 TDL elements generated for the xPSSM behavioral interface
16 Test Configuration xPSSMConfiguration {

17 create Tester tester of type component;
18 create SUT statemachine of type component with {
Listing[4 shows thexDSL-Speci ¢ Events Packagen- ., MUTPath: "TODO : Put the path to the MUT";

erated for the xPSSM's behavioral interface. To distinguist DSLName: ‘org.imt.pssm.reactive.ReactivePSSM;
accepted eventsom exposed eventéwo Annotation ele- ., ¥
ments are generated (lifg53-5). For each event of the XPSE connect tester.genericGate to statemachine.genericGate;
behavioral interface (pa(t3) in Figure[]), a TDLType IS 2 connect tester.oclGate to statemachine.oclGate;
pl’OdUCGd (IineE]E4) and is annotated with one ofAhe 2 connect tester.reactiveGate to statemachine.reactiveGate;
notation elements according to the type of the event. Foi }
example, the TDOype generated for theun event is anno-z }
tated asicceptedEvent (line[), and the one fdbehavior- Listing 3 TDL test con guration package generated for the xPSSM
_executeckvent is annotated &xposedEvent (line[14). DsL

The parameters of the events are transformell ém-
bersof the TDL Types For example, ling]7 shows ti\éem-
ber generated for thestatemachineparameter of theun

event. Since the parameters are references to the model ?é'st: either model execution commands or OCL queries. In

ements, their type conforms to the_ xDSLs abstract SyntaXthe present work, we add a new kind of requests which cor-
Thanks to the_ generated)SLSpeq ¢ types paCkageNe respond to all events of the behavioral interface of the con-
have the de nition of all the required data types in TDL. sidered XDSL

Therefore, we can use them to assign the type oMbe-

bers For instance in Listin§]2, thePSSMTypepackage is Listing[3 shows an example d&st Con guration Pack-
imported (ling 2) and its content i. e., the TOypesgener- agegenerated for the xPSSM DSL. It has thfgate Types
ated for the xPSSM metamodel is used several times (e. ghe rst two are de ned for exchanginmodelExecution-

the StateMachine in line[7 or theBehavior in line[13). Commanddine[d) andOClLqueries (ling p) provided by the
commotackage(imported in ling 2), and the third is added
4.2.4 Generation of the Test Con guration Package in this paper to communicate events (line 7) provided by

the xPSSMEventsPackage(imported in ling[B). There is

Although thexDSL-Speci ¢ Events Packageovidesthe also aComponent Typecomprising onegate instance for
required elements for writing event-driven TDL test caseseachGate Type(lines[§[12). Finally, alest Con guration
we need to de ne how the test system can get connecteid de ned containing twaComponent Instance®ne of the
to the reactive model under test to run such test cases. Thigsterkind (line[I7) and one of th8UT kind (lines TH-21).
information can be expressed using TDest Con gura- The SUT requires information about the model under test,
tion elements. In particular, a TDL test con guration de- including the path to the model (tdMUTPatrannotation in
nes what are the available communication gates, each gaténe [19) that should be set by the domain expert, and the
allowing speci ¢ types of requests. In our previous work name of the DSL that the model conforms to (DSLName
for non-reactive xDSLs, we considered that a test case exannotation in liné 20) which is automatically set by the TDL
changes only two kinds of messages with the model unddribrary Generator. The test con guration also speci es how

12 Khorramet al.

Package reactiveATM_testSuite {
Import all from common;
Import all from xPSSMTypes;
Import all from xPSSMEvents;

Import all from testConfiguration;

StateMachine ATM (_name = "withdrawCash");
Behavior insertCardMsg (_name = "insertCardMsg");

Test Description test_wrongPin uses configuration xPSSMConfiguration{

tester.reactiveGate sends run (state_machine = ATM) to statemachine.reactiveGate;
statemachine.reactiveGate sends behavior_executed (behavior = insertCardMsg) to tester.reactiveGate;
tester.reactiveGate sends signal_occurred (state_machine = ATM,

signal_occurrence = card_occurrence (signal = Card,

attributeValues = {cardPinValue (value = "1234"), cardBalanceValue (value = "1000")})

) to statemachine.reactiveGate;
statemachine.reactiveGate sends behavior_executed (behavior = enterPinMsg) to tester.reactiveGate;
tester.reactiveGate sends signal_occurred (state_machine = ATM,

signal_occurrence = pin_occurrence (signal = Pin, attributeValues = {enteredPinValue (value = "2222")})

) to statemachine.reactiveGate;
statemachine.reactiveGate sends behavior_executed (behavior = wrongPinMsg) to tester.reactiveGate;
tester.oclGate sends oclQuery (query = “self.statemachine.regions->first().currentVertex”) to statemachine.oclGate;
statemachine.oclGate sends finalState to tester.oclGate;

}
Listing 4 An event-driven TDL test case for testing the running example

the test system connects to the SUT through the de nition ofin expected output related to the query evaluation result, the
the Connectiondetween theiGateinstances (lings 22-24). oclGate should be used (lings #2423).

By importing the generated®SSMEventpackage (ling}4),
the domain expert de nes eventinstances and then uses them
as test data. For example, in ling 11, tster sends aun
event for theATMstate machine to the model under test, so

In Sectioff Z-L, we described an overview of an event-drivef{1® €vent is used as test input data. Afterwards, an asser-
test case (Figurig 6) for the running example (Figdre 2). Byion is de ned where the expected output ibehavior _-
using the TDL Library generated for the xPSSM DSL, the®*ecuted event for thensertCardMsg behavior (ling 1p),
domain expert can write such a test case in TDL that willSC the eventis used as expected output.
be executable. It is presented in lifeg[10-24 of Lisfihg 4.
Using the data types provided by thReSSMTypepackage
(imported in lind B), the domain expert can de ne model el-5 Support for Executing Event-Driven TDL Test Cases
ements to use them as test data, such as &tatgMachine
andBehaviordata types to de ne thdTMand theinser- In this section, we present theDL Interpretercomponent
CardMscelements, respectively. Note that, we do not preserwhich is responsible for executing TDL test cases on mod-
all the de ned test data in Listing| 4, but the complete TDL els. First, we describe its required external components and
code is accessible on a public GitLab server. then we explain its test execution algorithm.

The test case uses ti®SSMConfiguration (line[10)
provided by thetestConfiguration package (imported
in line[5) and is de ned as a sequence of exchanging datg.1 Required External Components
and/or requests between the gates of Teeter and SUT
component instances. When the data is an event, it should Bes illustrated in Figurg |5, the TDL Interpreter needs con-
exchanged through theactiveGate of the components nections with three external components. We assume they
(lines[11F21), and when the data is either an OCL query oalready exist and provide services as follows:

4.3 Using the TDL Library to write Event-Driven Tests

Advanced Testing and Debugging Support for Reactive xDSLs 13

— Execution Engine provides services to manage the ex-
ecution of the models such as running the model, reset-
ting its state to default, and getting its current state. This
component uses the operational semantics of an xDSL
to execute its conforming models.

— Query Evaluator: can trigger the evaluation of an OCL
query on a model and retrieves the result.

— Event Manager. provides services to send event occur-
rences to a running reactive model and to receive event
occurrences exposed by the model. As running the model
is performed by an execution engine, this component is
also connected to the execution engine to communicateig. 7 Class diagram showing the associations of the TDL Interpreter
event occurrences with running models.

The rst two connections were presented in detail in ourmetaprogramming approaches. e. one or several metalan-
previous work. The TDL Interpreter is connected to the ex-guages used in a particular fashion— can be used. Conse-
ecution engine to interpret thaodel execution commands quently, various execution engines and event managers may
used in a TDL test case, and is connected to the query evadxist, each supporting a speci ¢ metaprogramming approach.
uator to interpret th®©CL queriesnritten in a TDL test case To make the TDL Interpreter agnostic to this heterogeneity,
and to use the query evaluation result when required by we de ned its required interfaces.
test oracle. These two connections enabled our approach to The ExecutionEnginenterface is mostly similar to the
run TDL test cases on ‘non-reactive’ models![20]. In thisone from our previous work [[20]. It can be used for set-
paper, we add the third connection which is necessary faing up the execution engine based on the model under test
executing event-driven TDL test cases on ‘reactive’ modelsand its conforming xDSL, for executing the model, for set-

ting the model in a speci c runtime state, and for getting its
5.1.1 Connection to Event Manager current state. As this paper proposes interactive debugging
facilities, we added a new method to this interface to launch
As already explained in Sectiph 4, tA®L Library Gener- a debugger instance for the model under test. More details
ator provides the TDL de nition for the events of an XDSL's on these debugging facilities are provided in Sedfion 6.
behavioral interface (i. e., the generak&5L-Speci ¢ Events This paper introduces an interface for ExentManager
Packagg along with the required TDL gates for exchang- comprising methods for setting up for a speci ¢ model and
ing them between the test system and the model under teigé conforming reactive xDSL, accepting an event to process
(i. e., thereactiveGatein the Test Con guration Package on the model, retrieving an expected exposed event from the
Accordingly, we extended th&DL Interpreterto be able events exposed by the model, and stopping the communi-
to interpret these new elements, hence executing the everdation with the model and releasing the resources. For the
driven TDL test cases. To this end, we introduce a new inte©CL Query Evaluator, we also rely on a speci ¢ interface
gration for the TDL Interpreter with an external componentnamedOCLInterpreterfrom our previous work[20].
calledEvent ManagerThe Event Manager must be con g-
urable for a given reactive xDSL and allow external tools
(e.g., testing tools) to interact with the xDSL's conforming 5.2 Test Execution Algorithm of the TDL Interpreter
models based on the xDSL's behavioral interface using two
services: sendingccepted evenbccurrences to a running In this section, we provide the details of the TDL Interpreter
model, and receiving its observable reactions as occurrences nition, mainly its test execution algorithm. Please note

of theexposed events that all algorithms presented here are upgraded versions of
the algorithms originally presented as part of our previous
5.1.2 Overall Architecture work [20] and are extended here to support running tests

on reactive models using dvent ManagerAlgorithm|[]]
The UML class diagram presented in Figlife 7 shows thehows the main loop, which requires as input a TDL pack-
overall architecture of the TDL interpreter. As we mentionedage containing the set of TDL test cases to execute. For each
earlier, an execution engine uses the operational semantitsst case, its test con guration must be activated rst (line 3)
of an xDSL to execute its conforming models and an eventising Algorithm[2. As can be seen, the path to the model
manager uses the behavioral interface of an XDSL and ignder test and the name of the DSL are rst retrieved from
connected to an execution engine. To implement the opthe annotations of the SUT component. Then, based on the
erational semantics and the behavioral interface, differertonnections between the gates, the required external com-

14

Khorramet al.

Algorithm 1: The TDL Interpreter main loop
Input:
packagethe TDL package containing the TDL test cases to
be executed

1 begin

2 foreachtestcase packageestCaseslo

3 testcaseon figurationactivate()

4 foreach behavior2 testcaseehaviorsdo

5 if behavior is Messagthen

6 sourceGate behaviorsource

7 targetGate behaviortarget

8 if sourceGate.component.role is Tester
then

9 request behaviorargument

10 L targetGatesendRequestToSUEQues}

11 else ifsourceGate.component.role is SUT
then

12 testOracle behaviorargument

13 L targetGateassertfestOraclg

14 else ifbehavior is< other behavior types then

15 | .-

Algorithm 2: Activating test case con guration
Input:
configuration TDL test con guration to be activated
1 begin
2 MUTPath configurationsutComponeniMUT Path
DSLName configurationsutComponenbDSLName
foreach connectior? configurationconnectionglo

3 if connection between generic gatesn
engine new ExecutionEngine()
5 | enginesetUpMUT Path DSLNamg

(=2}
=

connection between OCL gatieen
OCLlInterpreter new OCLlInterpreter()

8 | OCLInterpretersetUp()

9 if connection between reactive gatesn

10 eventManager new EventManager()

11 | eventManagesetUpMUT Path DSLNamg

ponents are instantiated and con gured, including the Exe-
cution Engine, the OCL Interpreter, and the Event Manager.

Continuing with the main loop in Algorithin 1, after ac-

tivating the test con guration, the test case behavior should
be executed (line 4). The execution semantics of a behavior

depends on its type. For instance, to executéeasagee-
havior (line 5), according to its sourgate, theargumentis
treated differently. When the sourgatebelongs to aester
Componenttheargument is a request for the model under
test (line 10), and when it belongs t&&T Componentthe
argument is the expected result to be asserted (line 13).
Sending Requests to the S@&own in Algorithm B):
Depending on whiclgate of the SUT component is used for

Then, it checks whether the request can be accepted by the
gate Three cases are possible:

1. ifthegateis a generic gate and the request is a model ex-
ecution command (line 2), the con gurexhgineshould
be used to run the command (line 3).

2. if the gateis an OCL gate and the request is an OCL
query (line 4), the con gure®CLInterpretershould be
used to evaluate the query on the model (line 7). It should
be noted that the query is evaluated on the model in its
latest runtime state (line 6).

3. if the gate is a reactive gate and the request is an ac-
cepted event, the con guredventManagershould be
used to process the event.

Algorithm 3: Sending a request to the SUT

Input:
gate the gate for sending request to SUT,
request the request to be sent

1 begin

2 if gate is generic gate & request is
modelExecutionCommartiden

3 L enginerunCommandgeques)

if gate is OCL gate & request is OCL quehen

guery createQueryequesy
MUT Resource getMUTResource()
OCLlInterpreterrunQueryMU T Resourcequery)

N~ o a »

o]

if gate is reactive gate & request is accepted extkan
9 event createEventéques)
10 eventManageprocessAcceptedEvent(en)

Asserting the Expected Outpishown in Algorithn 4):
The TDL Interpreter asserts whether an expected output data
is equal to the real output data (i. e., the data received from
the model under test). Depending on whigte of the SUT
component is used for the assertion, the output data has dif-
ferent semantics:

— generic gate the expected output is indeed a specic
runtime state of the model under test. So the TDL In-
terpreter retrieves the current state of the model from the
context of theengine(line 3), and then checks whether
the model state is as expected (lines 4-7).

— OCL gate the expected output is the expected query
evaluation result, so it should be checked against the re-
sult generated by th@CLInterpreter(lines 9-12).

— reactive gatethe expected output is an exposed event
expected to be received from the model under test. Ac-
cordingly, theEventManageis requested to retrieve that
event from the events exposed by the model (lines 14-
15). If it retrieves nothing, the assertion fails (line 19).

sending a request, the TDL Interpreter selects which exter- In addition to the above-mentioned conditions, there are
nal component (con gured in Algorithin] 2) should be used.some speci ¢ cases that may lead to the interruption of the

Advanced Testing and Debugging Support for Reactive xDSLs 15

Algorithm 4: Asserting expected output information about the cause of failure. However, fault lo-
Input: calization can be more dif cult for more complex test cases
gate the gate for receiving data from SUT, such as event-driven ones which can involve complex se-
expectedOut puthe expected output data to be asserted guences of events exchanged with the model. In such cases,

Output : ; : P : ;
verdict the assertion result interactive debugglngs_a technlque commonly used in the
1 begin realm of software testing, allowing to execute and observe
2 if gate is generic gatéhen the SUT behavior one step at a time. However, it has not yet
3 currentState enginecontextresource been |everaged for model testing_
: 'f[“\r/reergtifttati;sesxpeCtedO”tpuhen In what follows, we rst de ne what is interactive de-
bugging. Then, we explain what are the obstacles prevent-

° else ing the use of interactive debugging with TDL test cases
7 | verdict FAIL g aging '

L= Finally, we present how we overcome these obstacles, and
¢ | if gateis OCL gatehen _ thus provide interactive debugging for TDL test cases.
9 queryResult OCLlInterpreteresultif

gueryResult.equals(expectedOut ghEn
10 | verdict PASS 6.1.1 De nition of Interactive Debugging
11 else
12 | verdict FAIL Interactive debugging involves manual control and observa-
13 if gate is reactive gate & expectedOut put is exposed tion of an execution Wlth the hglp of an interactive debugger.
eventthen Such debugger provides servicegptuseandunpausehe
14 expectedEvent createEvengxpectedOut pjit execution throughreakpoints—i. e., conditions upon which
15 exposedEvent the execution must be paused, such as “reaching a speci ¢
eventManagegetExposedEverakpected Evet del el N d . . b h

" if exposedEvent = NULthen model e ement"— and prepares information to observe the
17 | verdict PASS execution, such as the current stack of method calls or the
18 else values of all existing variables. An execution can be repre-
19 | verdict FAIL sented as a sequence of execution steps (e. g., a sequence of

L statements), and a step may itself contain a sequence of in-
ner steps (e.g., method calls, leading to more statements).
Based on this representation, an interactive debugger also

test case execution. This happens for instance when the tgyovides a common set of operators to perform step-by-step

system sends a syntactically wrong OCL query to the SUTobservation of an execution, such as:

or the exchanged event does not conform to the behavioral . . .

. . i — The resumeoperator, to continue the execution until a

interface of the xDSL speci ed by the test con guration, or S

. breakpoint is reached.

when the running external component throws some excep- . .

. . — The step overoperator, to continue the execution un-

tion. In these cases, the TDL Interpreter interrupts the test . : o

wecution and sets the verdict to INCONCLUSIVE til the end of the current step or until a breakpoint is
case execution and sets the verdict fo ' reached, hence ignoring the possible inner steps.

— The step intooperator, to continue the execution until
either some inner step is reached (if any) or when the
current step ends.

6 Interactive Debugging and Mutation Analysis for

TDL Test Cases
Note that a typical interactive debugger offers other services

After de ning and running a test suite for a given model, as well, such as conditional breakpoints or the ability to
two important concerns remain for the domain expert: beingluery/change the model runtime state. Yet, this paper fo-
able tolocalizethe defects of failed test cases, and being ablguses only on the above-described stepping operators— which
to measurenow well the test suite is in nding faults. In this are the most essential services of an interactive debugger—
section, we address these needs with facilities for interactivand leaves other debugging services for future work.
debugging and mutation analysis, respectively.

6.1.2 Requirements for Debugging TDL Test Cases

In the context of software testing, most of the popular test-
ing frameworks (e. g., JUnit) are compatible with interactive
A failed test case is essentially alert for the domain expert debugging facilities (e. gdb). Among other possibilities,
which tells there is a defect in the model causing the failurethis allows the tester to perform a step-by-step observation
For trivial test cases, the test report may provide adequatef the SUT behavior as triggered by the test case. But for

6.1 Interactive Debugging

16 Khorramet al.

Fig. 8 A sample scenario of performing interactive debugging for the running example

this to work, it must be possible to execute step-by-step nanodel under test or wishes $step intothe processing of the
only the SUT, but also the test case itself. In other words, itequest sent to the model by the test case (e. g., an event). To
must be possible to perform interactive debugging for bothmeet these expectations in our approach, we make the fol-
the test case and SUM unison When the test case and its lowing minor adaptations to common interactive debugging
SUT are both implemented using the same language (such asrvices for debugging TDL test cases:
Java programs and their JUnit tests), this is trivial to achieve
using a single debugger instance, since both the SUT and the
test case are then executed as one single executable program.
However, in the context of this paper, the test case and

Theresumepperator: It continues the test case execution
until a breakpoint is reached either in the test case or in
the model under test.

the SUT are two different executable models conforming to The step overoperator: It continues the execquq uq-
til the end of the current step or until a breakpoint is

two different languages. This means we need to (1) be able . :
) .. reached in the test case or in the model under test.
to debug the executable model itself, and then (2) to ini- .) . . .
- .) — The step intooperator: It continues the execution until
tialize two debugger instances at the same time, one for the . . : .
. . either some inner step is reached (if any) or the current

test case and another for the model under test, while making . . .

. . . . > step is ending. If in the current step, the test case sends
sure the debugging services remain consistent when used in :

a request to the model under test, gtep intooperator

two different debuggers, and coordinating the communica- o
. . pauses the execution inside the model under test at the
tion between the two debuggers. To the authors' knowledge, L .

very beginning of processing the sent request.

the rst matter is already addressed for both ENMF [4, 5] and
UML [6] models, and we use the interactive debugging ap- For example, Figurg|8 illustrates an interactive debug-
proach of [Eﬂ] as it supports the xDSLs considered in theging scenario for the running example using our rede ned
context of this paper. More speci cally, their approach candebugging services. Here we see a situation where the mod-
be con gured for a speci c xDSL and then can be used toeler has set a breakpoint (shown as a lled colored circle) in
debug its conforming executable models. However, the seche faulty TDL test case (previously shown in Figfite 6), on
ond challenge is still open and the remainder of this subsethe TDL message that sendsignaloccurredevent for the

tion explains our proposal to resolve it. Pin signal to theATM.WithdrawCaslstate machine. When

the test case execution reaches this TDL message, it pauses
because of the breakpoint. The modeler may wish to inves-
tigate how this event will be processed in the state machine.
When running a TDL test case with an interactive debugger>C PY Using thestep intooperator, the execution pauses at
as soon as the execution reaches a point where the test ce@s beginning of processing said event by the ATM state ma-
makes a request to the model under test (e.g., a TDL me§hine i. &., th&SetPinstate (label 1). _

sage sending an event to the reactive model), one can expect Aftérward, by using thetep ovemperator in the model

to be able to “jump” from the debugger of the TDL test casedebugger, the transition to théalidatePin state res be-

to the debugger of the model under test, and to switch to oz2USe the state machine has receivegaaloccurredevent

serving the model's behavior. More precisely, this can be ex{Or thePin Signal from the test case which is thisgger of

pected when the modeler either sets a breakpoint inside t{fis transition (label 2).
Using thestep oveionce more allows the modeler to ob-

B One of our authors is involved iAl[5] serve that instead of the transition to fiealState the tran-

6.1.3 Adapting Interactive Debugging for TDL

Advanced Testing and Debugging Support for Reactive xDSLs 17

sition to theGetAmountstate traverses, hence discoveringpausing the execution where reaching the rst breakpoint (if
the defect in the constraint of this transition. Accordingly,any). In the scenario of Figufe 9, it pauses at the very begin-
the execution enters th@etAmountstate (label 3) and the ning of the test suite execution as we con gured a breakpoint
processing of the event ends because there is no more trahere. Then, the domain expert can usedtep overservice
sition to traverse. of the debugger to start the execution of the rsttest case. As
Finally, using thestep oveloperator, the test case debug- described in Sectidn 5, for test case execution, the TDL In-
ger resumes, so the next TDL message can be executed (i.&rpreter rst activates the test con guration of the test case.

the TDL message after the breakpoint). For example, when the test case is event-driven and so its
tested model is reactive, the TDL Interpreter con gures an

6.1.4 Initialization and Coordination of Two Interactive ~ Instance of an Event Manager. Hereupon, the internal be-

Debuggers havior of the test case can be executed step-by-step using

the services of the test case debugger, sudtegsinto

As previously mentioned, debugging a TDL test case re- When the test component requests an execution in the
quires two interactive debugger instances, one for the teshodel under test, if the domain expert wants to observe the
case and one for its model under test. This subsection exaodel's behavior upon receiving that request, a second de-
plains how we spawn and coordinate them using a sampleugger is required to be initialized for the model. To do this,
scenario shown in Figurg 9. The domain expert starts thee added new functionalities to oWiDL Interpretercom-
process by requesting to debug a TDL test suite containingonent. As shown in Figufg 9, at the rst time that the do-
at least one TDL test case. This results in initializing a demain expert chooses ttatep intooperator (in the test case
bugger for the test suite, preparing the TDL Interpreter, andebugger) when the test component sends a request to the

Fig. 9 One possible interactive debugging scenario for an event-driven TDL test case written for a reactive model

18 Khorramet al.

model (e.g., an accepted event), the TDL Interpreter ini-
tializes a debugger for the model. Hereafter, the TDL In-
terpreter pauses and resumes the model debugger according
to the debugging services chosen by the domain expert in
the test case debugger, based on their rede ned semantics
presented in Sectidn 6.].3. It also deactivates the test case
debugger for the active time of the model debugger to en-
sure their consistency.

6.2 Test Quality Measurement Fig. 10 An overview of the integration of the TDL Interpreter with
WODEL-Test [15]
Measuring the quality of a test suite is often used to de-

cide whether the test suite should be improved, and ho : . :
much effort should be put into this endeavor. A popular mea‘?’ramework for any xDSL through an integration with WODEL-

. . : N _Test. Figur¢ TI0 shows how we achieved this integration, where
surement techniquesmsutation analysisvhich follows this the same roles and artifacts as our approach (F[gure 5) are
idea: if we inject arti cial faults into the SUT, an existing P

. . involved with only one additional task for the language en-
test suite that can nd those faults is probably good enough . y guag

at discovering real fault§ [8]. The arti cial faults are de ned gineers to de ne mutation operatqrs for their XD.SLS' As a
in the form of mutation operators which can perform Smallresult, the domain experts can write TDL test suites for the

syntactic changes and are systematically applied on the SUcIonformlng models and evaluate their quality.

to produce a set of mutants (i.e., faulty programs). After- As mentioned above and shown in Figlr¢ 10, WODEL-

ward, the test suite is run on each mutant. If there is at Iea-I:[eSt requires a _test runner |mplement|n.g a speci ¢ inter-
one test case in the test suite that its execution result is diT_—lace that d(_etermmes how to _run atest su_|te pn a mutant and
ferent for the SUT and the mutant, we conclude the test suiteow to demdg whether the given mutant is killed by the test
has detected the fault of the mutant, and the mutant is said uite. Accordingly, we connected our TDL Interpreter to the

have been “killed' by the test suite. Finally, a mutation score ODEL'T?St engine by de ning a connector W.h'Ch_ |mp!e—
is calculated that is the percentage of killed mutants amonments the interface and performs three operations: (1) it re-

all generated mutants. This mutation score is a criterion fogigersr? Ttﬁl‘ ttes'; switte anndtr; mrl:]tatnt:{omi:]het\r:VOTDDELL;;'fsrt
measuring the quality of the test suite. and runs the test suite on the mutant using the ©

To provide mutation analysis in a generic model testingfmter; (2) it receives the test execution result from the TDL
. o nterpreter and sets the mutant as “killed' if there is at least
approach, four features are required: (1) a de nition of mu-

tation operators for the considered xDSL; (2) a process tgni.testjczse_tm the_(;cesttﬁmte tTat '? fte_ulec: ort]_ the glveltn mu-
generate mutants out of models conforming to the considt-an]; and (3) Itp;zVIVs(S)DELr]I'a Tu a Iﬁ? es Imtg resufts in
ered xDSL; (3) a way to execute the considered test suite or" qrmance 0 g) -'es r.es.u em'? ates.

Itis worth mentioning that for this integration, we added

each mutant; and (4) a way to calculate the mutation score i
for the test suite. Recently, a framework named WODEL.SOme extra features in the proposed TDL Interpreter. As de-

Test was proposed by dBnez-Abajo et al. and is able to scribed in Sectiof]4, the TDL Interpreter runs a TDL test

support most of the above featurgs|[15]. More speci Ca"y,c:se on the model that '; persisted in the path splem ed in
WODEL-Test allows a language engineer to de ne mutation '€ test con guration of the test case. Consequently, to ex-
operators for her/his xDSL if the abstract syntax is providedeCUte the test case on another model, we need to modify

as a metamodel. Then, it automatically generates mutani@e test con guration. However, for mutation testing, a TDL

for the models conforming to that xDSL by applying the de-test case must be run on several merIs. i.e., the qngmal
ned mutation operators, model and the mutants generated for it, without modifying

However, WODEL-Test does not provide any testing fo.the test case de nition—including the test con guration. To

cility, and thus fail at providing feature (3). It indeed as- this end, we provide an optional service in the TDL Inter_-
sumes there is an existing testing framework for the givef?"€te" 1o be able to run a test case on a speci ¢ model while
xDSL which allows writing test suites for the conforming ignoring the model path speci ed in the test con guration.
models and provides an interface to run such test suites and

get the result. Based on this assumption, WODEL-Test gen-

erates an environment for the domain experts to run their Tool Support

written test suites on the generated mutants and to get their

mutation scores. As our proposed testing approach realizé¥e implemented each component of our proposed approach
this assumption, we can offer a complete mutation testings part of the GEMOC Studiol[4], a language and modeling

Advanced Testing and Debugging Support for Reactive xDSLs 19

workbench de ned on top of the Eclipse Modeling Frame- red and the enterAmountMsg behavior has been executed.
work (EMF). A base implementation of the TDL Library The GEMOC debugging tool also provides the values of all
Generator was reused from our previous work [20], and wasexisting variables for each debugger instance. For example,
extended with the new contributions of the present paper—we selected the ATM debugger, and at the bottom left, we
mainly, a model transformation able to translate behavioratan see the values of its variables (i. e., the last executed ver-
interfaces into TDL. We used the implementation of Leroytex and the execution status of all states).
et al. [24] for the behavioral interface de nition (i.e., alsoa Figure[I]lc shows how mutation analysis appears in the
part of the GEMOC Studio) and we implemented the transtool. Here, we analyze a TDL test suite (containing four test
formation in Java. A base implementation of the TDL In- cases) tailored for the correct version of the ATM state ma-
terpreter, written in Xtend [9], was also reused from ourchine and the result is shown in Figldre| 11c. Note that the
previous work[[20]. We improved its operational semanticsshown mutation operators for the xPSSM DSL are explained
and we integrated it with an existing Event Manager of then the next section. Under the state machine project (label 1),
GEMOC Studiol[24]. one folder per mutation operator exists, each containing mu-

Next, the Interactive Debugging component uses the madeits generated by WODEL-Test by applying that operator.
debugging framework of the GEMOC Studid [4, 5] for the We can see that the TDL test suite was exectued (label 2) on
initialization of two debugger instances, and the Eclipse deall models i. e., the original model and all the generated mu-
bug platform for managing their communication and syn-tants. The global result (label 3) reports that 186 mutants are
chronization, all implemented in Java. For the Test Qualitygenerated by applying 90 % of mutation operators (18 out of
Measurement component, as the WODEL-Test frameworR0) and the mutation score for the considered TDL test suite
is also implemented using EMF technologies [15], we easilys 67:2 %. The tool also provides information about the test
integrated it into our testing framework. More speci cally, suite execution result for each mutant (label 4).
we implemented a connector in Java (showf ih 10) which
connects the WODEL-Test engine to our TDL Interpreter.

Figure[1] displays three screenshots of the provided fag gyajuation
cilities running in the GEMOC studio modeling workbench
for the ATM.WithdrawCaslstate machine. The source COdeThe main goa| of our approach is to genericin terms of

is available on a public GitLab instaffteA screenshot of providing testing and debugging facilities for any reactive
the testing tool is shown in Figufe]l1a. Using the providedDSL that follows the de nitions given in Sectidn 2.1. To
icons in the toolbar and the menubar, we executed the TDbvaluate th@enericityof our approach and to investigate
Library Generator for the xPSSM DSL and it successfullywhether it ful lls each of the requirements listed in Sec-
generated an xPSSM-speci ¢ TDL library (label 1). In the tion[2:3, we designed and performed an empirical evaluation
middle, the event-driven TDL test case of List|rjg 4 is shownyhich is presented in this section.

(label 2) which is failed on the ATM state machine (label 3)
because the model has exposeldehaviorexecutedevent
for the enterAmountMsgbehavior (label 4) while the ex-
pected output isvrongPinMsgbehavior.

Figure 11b shows the usage of the interactive debugging ,sigered xDSLsin our experiment, we used the proto-

facility for the running example. It displays two debuggery e hresented in Sectifh 7 for two reactive xDSLs. The rst

instances, one fc_)r the test case (label 1_) and gnother for thea is the xPSSM DSL already presented in Sefion2.1.1,
ATM state machine (label 2), both running using GEMOC 54 the second one is calledrduina It is a speci ¢ DSL

execution engines (label 3). Running the test case in debug, modeling Arduino boards and their behavior. An Ar-

mode, we chose thstep intooperator of the test case de- j,ing model contains Boardrepresenting a physical board,
bugger where the test case wanted to sesigmaloccurred 4 asketchthat is executed on the board. Board com-

event for thePin signal to the ATM state machine. This ,ises various modules such as LEDs, sensors, and buttons.
paused the test case debugger on the rst of the next TDIa gyetchis a block of instructions, each performing a spe-

Message (i. e., assertingbeehaviorexecutedevent for the ci ¢ behavior such as turning on an LED or suspending the

WrongPinMsg behavior) and enabled a debugger for theg,o,tion for a speci ed duration. Using the behavioral in-

model under test. Using the stepping operators of the ATMerface of the xArduino DSL, an external tool can commu-
debugger (label 2), we observed when the ATM state Majjcate with a running xArduino model. For example, if we

chine has received the said event from the test case, the trals ne an xArduino model comprising a button and an LED
sition from theValidatePinto theGetAmountstate has been \, hich plinks when the button is pressed, an external tool can

https://gitlab.univ-nantes.frinaomod/ request for pressing the button during execution and will be
faezeh-public/xtdl/-/tree/SoSym2021 noti ed each time the LED turns on/off.

8.1 Experiment Setup

20 Khorramet al.

(a) TDL testing facilities

(b) Interactive debugging facilities

(c) Mutation analysis (using WODEL-Test facilities [15])
Fig. 11 Screenshots of the provided tools running in the GEMOC studio modeling workbench #&T ih&VithrawCaslstate machine

Advanced Testing and Debugging Support for Reactive xDSLs 21

Table 2 The evaluation data 217 TDL test cases for the xPSSM models (60 of them are
[[xPSSM [xArduino | transformed from the standard PSSM test suites [36] to TDL)
Abstract syntax size 35 5o gnd 30 test cases for the xArdw.no models. The numl_aer of
xDSL (n. of EClasses) lines of code for the test suites is shown as a range in Ta-
Size geg‘aﬁ‘“csl Tiie E'—OC), 975 768 ble[J. The smallest and the largest test suites are written for
(rf o?g?lr;tsn) erlace size 4 6 the xPSSM models, with 25 and 1311 LoC, respectively. All
Tested | Number of tested Models 65 5 the tested models and their test cases are publicly accessible

Models | Size range of tested models| 5 1o, [15.41 on |a public GitLab server.

(n. of EObjects) Lastly, we executed the TDL test cases on the models us-
TDL Library size

Test (LoC generated) 178 252 ing the TDL Interpreter component. For all the test cases, the
Artifacts| Total n. of test cases 517 30 test verdicts were set and the test results were reported us-
Size range of test suites(LoQ) 25- 1311 30- 132 ing the graphical view provided by our tool. We also manu-

ally veri ed that we obtain the expected verdict for each test
. case. In conclusion, we successfully used the proposed ap-
Table[2 shows the size of each xDSL as the number ofi 4 ch for two reactive xDSLs whose abstract syntaxes rep-

EClasses of its abstract syntax, the number of lines of codgysengifferent domainand whose execution semantics im-
(LoC) of its operational semantics, and the number of events,e mengitferent behavioral interfacesTherefore, we can
ofits behavioral interface. According to their values for each.,1.de that our approach is not tied to only one speci ¢

xDSL, xArduino has a larger abstract syntax and behavioreQDSL' and thus provides a certain degree of genericity.
interface, but a smaller operational semantics. The source
code of both xDSLs is available on a public GitLab server.

) 8.3 Evaluating Requirement Ful lIment
Considered Modeld~or each xDSL, we need a set of con-
forming models to be tested. For the xPSSM DSL, the PSSMNhpe of the objectives of our empirical evaluation is to in-
standard provides a set of UML state machines, each witfastigate the ability of the approach in ful lling the require-
a small test suite for asserting that a PSSM implementamnents listed in Sectidn 2.4.
tion executes the models as expected, indeed in compliance
with the standard [36]. We used a subset of them (60 modF

. : . . Ful lling Reg.1 Inthe rstrequirement, the testing approach
els) which represent an event-driven behavior using solel}/S requested to support the events speci ed in the behavioral
state machines. In addition, theTM.WithdrawCaslstate 5 PP P

. interface of an xDSL as test data types when writing test
machine presented in Sectjon]2.1 is considered in the expe P 9

iment, and we manually de ned four larger state maclﬁhesééses for its conforming models. As explained above, the
X . . TDL Library Generator successfully generated a domain-
for a total of 65 xPSSM models (60+5). As written in Ta- y y g

. . speci ¢ TDL library for each considered xDSL. This library
ble[2, the size of the considered xPSSM models ranges from o _ . . .
13 to 154 EObjects. For the xArduino, we manually de nedcontams anDSL-Speci ¢ Events Packagenich provides

: . L the de nition of the xDSL's behavioral interface in TDL.
ve models ranging from 15 to 41 EObjects in size. We also explained that we used the generated TDL library
of each xDSL to write event-driven TDL test cases for their
8.2 Evaluating Genericity conforming models. Therefore, our proposed testing approach
ful lls its rst requirement.

To evaluate the genericity of the approach, we applied it on
both considered xDSLs following the same process. Firstrul lling Req.2 The second requirement concerns the exe-
we executed the TDL Library Generator component for eacleution of event-driven TDL test cases on the reactive mod-
xDSL and it successfully generated a domain-speci c li-els. We described in Sectiph 5 that our testing approach pro-
brary for each of them. The number of lines of code for thevides an integration between the TDL Interpreter and an
XPSSM-speci ¢ TDL library is 178 and for the xArduino is Event Manager to realize this requirement and we explained
252 (also shown in Tabfg 2). As the TDL library is generatedn the previous subsection that we successfully executed the
from the xDSL de nition excluding the execution rules, the test cases of both xPSSM and xArduino reactive models.
size of the generated library for the xArduino is larger thanAccordingly, we conclude that our proposed approach ful-
that of for the xPSSM DSL. lIs the second requirement as well.

Second, using each generated TDL library, we wrote a
set of TDL test cases for each considered model. In total ing Req.3 The third requirement is related to pro-

We used the Samp'es from: https//wwwuml_d|agramsOrglstatevldlng faCI|ItIeS fOI’ teSt case fa'lure dlagl"lOSIS. FOI’ rea.“Z'
machine-diagrams.html ing this requirement, our testing approach proposes inter-

22 Khorramet al.

active debugging facilities for TDL test cases. We used insupporting domain and their execution semantics. However,

teractive debugging on both a set of failed TDL test casethere is a need to explore the approach for more reactive

of non-reactive models (four test cases from our previougDSLs made for different and more complex domains.

work [20]) and a set of failed event-driven TDL test cases of Our proposed approach aims to support the domain ex-

reactive models (such as the running example shown in Figgerts in writing and executing test cases for their executable

ure[8). In both cases, we successfully debugged the modeiodels. To validate its usability for the domain expert, a user

under test in unison with its test case, which ultimately helpestudy should be performed. Accordingly, a threat exists re-

us to localize the defect of the model. This shows the apgarding the approach usability and we consider it for our

proach ful lls the third requirement. future work. However, as our approach uses TDL which is
a standard testing language particularly de ned for the non-

Fullling Req.4 Inthe last speci ed requirement, the adop- technical testers, and as we support using the domain con-

tion of mutation analysis for measuring the quality of thecepts in writing TDL test cases, we tried to take the usability

TDL test suites is needed. Our testing approach offers sudeature into account.

facility by integration with the WODEL-Test mutation test-

ing framework|[[15]. To evaluate this integration and demon-

strate its usage, we performed mutation analysis of the cor$ Related Work

sidered XPSSM test suites as described below.

At rst, we de ned a set of mutation operators for XPSSM,EXIStlng related work can be Categorized either as ad-hoc
listed in Tablg B. A mutation operator can be applied on artesting approaches made for speci ¢ DSLs, or generic test-
xPSSM model, if the operator's requirement is realized bying approaches applicable to many DSLs.
the model (the third column in TabJé 3). The de nition of
these mutation operators is driven from existing work refer-))
enced in the fourth column of the table and we implemented-1 Testing Approaches for Speci ¢ DSLs

them using the WODEL DSL. [14]. Afterward, we ran mu- . - .
ﬁb\ speci ¢ methodology for designing and early testing of

tation analysis on the TDL test suites that we have written i table statecharts i driA 1281 which ;
Sectior 8.2 for 65 xPSSM models. This run includes thre(?execu abie statecharts IS proposed.in [.] which supports
our popular testing techniques: Test-Driven Development

steps for each xPSSM model: (1) generating mutants for thFrDD) Behavior-Driven Development (BDD), Design by

XPSSM model by applying the mutation operators; (2) ex- S
ecuting the TDL test suites provided for the model on bothContract (DbC), and property statecharts for monitoring the

the seed model and its generated mutants; and (3) reloortir¥iolation of behavioral properties during model execution.

. : ' Iﬁ the design phase, several tasks have to be performed,
the mutation analysis result, such as percentage of the ap- ¢ which red for the test h h
plied mutation operators, number of the generated mutant f)me of which are required 1or the lesting phase such as

mutation score (i. e., percentage of killed mutants), and tesqe ning th? execution spenarlos using the BDD approach,
implementing the mapping between the steps of the scenar-

execution result for each model. The rst step is completelyi nd the statechart test primitives (in Pvthon). and writin

performed by the WODEL tools, and the rest is done by ouros.tat ¢ s ?)etf‘ a 1e_f] P gs(gtho) a.ﬁ[t ; ?I
integration of the WODEL and TDL tools. unit tests (in Python). The scenarios an . € uni . ests W.I

i%@n be executed on the statecharts to validate their behavior.

results. As shown in Figufe Jl2a, from 20 mutation operators Ithough they support a compl_ete process of designing and

alidating statecharts, the testing activities should be per-

described in Tablg]3, 13 were applicable on 3 of xPSS) S : .
models. 17 on 17 models. 18 on 19 models. and 19 on thé)rmed by a technical tester as coding in Python is required.
, ’ ’ Hili et al. propose an approach for interactive monitor-

rest of 26 models. The number of generated mutants for each . .
9 cl:ng of real-time and embedded systems modeled using UML

PSSM model is provided in Fi 12b which ranges from
x 'S provi In Figure] i g Real-Time (UML-RT) [17]. Their approach enables differ-

28 to 664, a total of 12674 mutants. Finally, the mutation t ext | A h as tools for dat llecti
score for the 65 TDL test suites of xPSSM models is pre-en_ extgrna .cor?p;.onen S siuc. asd ootst_ or ag co ::'c ||otn,
sented in Figure 12c which ranges from38% to 7478 %. animation, simufation, analysis, adaptation, and control to

Therefore, we claim that the approach succeeds in ful IIinng%C_m'tO(rj tTeAexecutlofrlk?f.the COd? g(]jgner?ed frhom iUMtlr‘]'
the fourth requirement. model. As one of their case studies, they show how the

approach can be used to perform functional steering. There-
fore, although they do not provide any testing approach for
8.4 Threats to Validity writing test cases, they show how the approach can be ap-

plied for testing purposes. Moreover, they are focusing on
The fact that we only used the approach for two xDSLsmonitoring the behavior of the generated code while we are
threatens the validity of its genericity. We tried to use twofocusing on testing the executable models to ensure the cor-
xDSLs that are very different from each other regarding theirectness of their behavior as early as possible.

Advanced Testing and Debugging Support for Reactive xDSLs 23

Table 3 The mutation operators for the xPSSM DSL

[Symbol | Description | Requirement from the model | Reference]
ccs Creates a connected state Containing at least one state [87,125,15]
ccfs Creates a connected nal state Containing at least one state [25,(15]
ctr Creates a transition with random source and target stat€entaining at least two states [25,115]
ctr2 Creates a transition with source but without target stgteContaining at least one state [12]
rtr Removes a transition Containing at least one transition [37,112125. 39, 15]
dtr Duplicates a transition Containing at least one transition [39]
rst Removes a state and adjacent transitions Containing at least one state [12,[15]
cis Changes the initial state to a different one Containing at least two initial states [37,112/25] 15]
cfs Changes the nal state to a different one Containing at least two nal states [25]
cst Changes the source state of a transition Containing at least one transition and two states [39]
rts Changes the target state of a transition Containing at least one transition and two states [12,/39,15]
sdt Swaps the direction of a transition Containing at least one transition [25,115]
rev Removes a trigger Containing at least one trigger 87,112, 25]
cev Creates a trigger and set it to a transition Containing at least one transition 37,112, 25]
cet Changes the trigger of a transition Containing at least one trigger 37,112 25]
rac Removes a behavior Containing at least one behavior [37,112,)25]
cac Creates a behavior and set it to a transition Containing at least one transition 37,112, 25]
cat Changes the behavior of a transition Containing at least one transition with a behavior [37,/12,25]
cas Creates a behavior and set it to a state Containing at one state [25]
rco Removes a constraint Containing at least one transition with a constrainf39]

(a) Number of applied mutation operators for (b) Number of generated mutants for each (c) Mutation score for each xXPSSM test suite
all XPSSM models XxPSSM models

Fig. 12 The result of mutation analysis of xPSSM models

To tackle the inherent complexity of testing domain in-ecution Language (WS-BPEL) or BPMN2, a speci c test-
tensive cloud applications, a con gurable test DSL is pro-ing approach is proposed ih [26]. They use a metamodel
posed in[[38]. Given an abstract de nition for a cloud appli- extension technique to add test-speci c elements (e.g., as-
cation (indeed for its User interface, user interactions, dataertions) to the BPMN metamodel. To ensure the test mod-
setup, environment, and platform con guration) using theels have deterministic behaviors, they enforce some control-
domain concepts, it generates a speci c test DSL and a testew restrictions. The domain expert can de ne test cases
ing toolset named Legend for authoring, executing, and deas BPMN models in which there is of®ol describing the
bugging test cases for cloud applications|[21]. process under test and othewmols specifying the test case

In the context of measurement Systems’ a Speci c DSLbehaViOl'. ThePools communicate with each other by ex-
named Sequencer is used in the NASA awarded measurehanging messages To execute such test models, the tech-
ment system (DEWESoft) which enables adjusting measurdical information for running the physical operations of the
ments and creating measurement procedures. To provide té¥tocess under test must be provided in advance.
ing support for the Sequencer DSL, a speci c testing frame- A sizable amount of works are proposing testing ap-
work namely Sequencer Testing Tool (SeTT) is proposegroaches for the fUML [[33] which are described below.
in [22]. The SeTT tool enables the domain expert to de nea BDD framework enables describing the requirements as
test cases for each part of the measurement system. Itindeggecutable user stories and the acceptance criteria as exe-
allows augmenting test elements such as assertions into tegtable scenarios attached to the user stories, In [23], a BDD
Sequencer models. framework is proposed for the fUML by de ning a UML

To de ne test cases for the executable business processpso le for BDD and a BDD library comprising executable
that are modeled using Web Services Business Process Eoemmands required when describing fUML scenarios. The

24 Khorramet al.

framework allows the domain expert to de ne fUML models erated GPL code of the model under test. It also translates
following a BDD approach, meaning that she/he rst de nesthe test results from the GPL code to the DSL, to report the
executable fUML stories and scenarios and then describessult using the domain concepts. Therefore, this approach
the fUML models satisfying them. is useful for compiled DSLs and performs testing at the code

In [2], a testing approach is proposed for f{UML where level, while we provide testing facilities for the interpreted
the behavioral scenarios of a system are rst described u€SLs and the test cases are run at the model level.
ing UML sequence diagrams enriched with timing proper- Meyers et al. propose a generic testing approach for xD-
ties that are described in UML MARTE constraint language SLs with discrete-event semantics i. e., reactive xDSL5s [29].
These diagrams describe the communications between ti@g@ven an input xDSL, it generates an xXDSL-Speci ¢ testing
different components of a system, and each component is itanguage by extending the abstract syntax of the xDSL with
self described using fUML activity diagram. In this work, a a limited set of testing features. To execute each test case
testing tool is provided which automatically evaluates thewritten using this language, the operational semantics of the
conformance of the fUML activities to the sequence diaxDSL must be instrumented speci cally for it. Instrumen-
grams and their timing constraints. In addition, they generattation means new execution rules (i. e., for test case execu-
test input data from the sequence diagrams and use themtion) must be added to the xDSL's execution rules. This in
test the behavior of the activity diagrams automatically. turn requires (1) using the same approach for implementing

In [30], a functional testing framework is proposed to both execution rules, and (2) the language engineer should
validate the behavior of fUML models. For describing testenrich the abstract syntax of the xDSL with event-related
cases, they provide an executable test speci cation languag®ncepts to specify where new rules must be added. In con-
that supports using temporal expressions for the precise s&rast, our approach does not require changing the xDSL def-
lection of the runtime states to be asserted, using OCL queriegion, hence being easily applicable to any reactive xDSL.
for specifying complex assertions on the runtime states of & addition, we use a standard testing language (i. e., TDL)
system that behaves concurrently, and verifying the execuder writing test cases and we offer two analysis techniques
tion order of the activity nodes for concurrent systems. to help the domain expert in performing testing activities.

In [18], a simulation and test generation approach is pro-
posed for the fUML activity diagrams containing tfode [18].
At rst, the fUML models are translated into Java code.10 Conclusion and Future Work

Afterward, the test input data are generated automatically

from the Java code, enabling an exhaustive simulation df réactive xXDSL with testing support enables its users to
the fUML models. Finally, using the provided simulation validate the behavior of their reactive models as early as pos-

the test cases along with the test oracle are auto-generatéi(.ti’le' In '_[his paper, W? prqposecganerictestingl approach
satisfying 100 % coverage of the Java code. for reactive xDSLs with discrete-event operational seman-

To sum up, DSL-speci ¢ approaches promote usability,t?cs using the TDL standard testing language. Given a reac-

as they enable the domain experts to describe test cases H4€ XDSL, our approach offers services for the de nition,

ing the system description language that is familiar to the execution, debugging, and quality measurement (i. €., based

Nevertheless, they lack reusability since a new test Ianguad@ _mutat|0n analysis) of the test cases f(I)r.the conforming re-
must be engineered for each new DSL. In contrast, our apﬁCt'Ve models. We evaluated the genericity of the approach

proach provides generic testing solutions reusable for a widy 1t application for two different xDSLs. In conclusion,
range of xXDSLs. we observed that our generic testing approach for xDSLs

advances the tool support for existing as well as emerging

xDSLs.
9.2 Generic Testing Approaches We have identi ed several interesting research directions

for the future, such as performing a user study to evaluate
When a grammar-based DSL has a translational semantidéle usability feature of the approach for the domain experts,
if the target language (i. e., a general-purpose language) prénd extending the approach to support integration testing of
vides a unit testing framework (e. g., JUnit for Java), thercompositional models i. e., models conforming to several in-
the work of Wu et al. provides a unit testing framework for terconnected xDSLs. In addition, bene ting from our muta-
that DSL [41]. It requires the language engineers to de ndion analysis support, we can develop ef cient test genera-
the mapping algorithms between the testing actions of theffon techniques for reactive xDSLs since mutation analysis
DSL and the target GPL. Accordingly, the framework canallows us to evaluate if a test generator works ef cieritly [1].
translate test cases from DSL code to GPL which enables us-

ing the GPL testing tools for executing test cases on the gemcknowledgements This project has received funding from the Eu-
ropean Union's Horizon 2020 research and innovation program under
@ Action language for fUML the Marie Sk odowska Curie grant agreement No 813884. We would

Advanced Testing and Debugging Support for Reactive xDSLs

25

like to appreciate the great help of Dr.Pabloriez-Abajo for the inte-
gration of our work with the WODEL-Test framework.

13.

References

1.

10.

11.

12.

. E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and

. J. Deantoni.

. R. DeMillo, R. Lipton, and F. Sayward.

J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.
Namin. Using mutation analysis for assessing and com-
paring testing coverage criteridEEE Transactions on
Software Engineering2(8):608-624, 2006.

. M. Arnaud, B. Bannour, A. Cuccuru, C. Gaston, S. Ger-

ard, and A. Lapitre. Timed symbolic testing framework
for executable models using high-level scenarios. In
Complex Systems Design & Managemegratges 269—
282. Springer, 2015.

. R. Bendraou, B. Combemale, X. &yut, and M.-P.

Gervais. De nition of an eXecutable SPEM 2.0.
In 14th Asia-Paci ¢ Software Engineering Conference
(APSEC) pages 390-397. IEEE Computer Society,
2007.

. E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer,

J. Deantoni, and B. Combemale. Execution framework
of the gemoc studio (tool demo). FProceedings of the
2016 ACM SIGPLAN International Conference on Soft-
ware Language Engineeringage 84—89. Association
for Computing Machinery, 2016.

B. Baudry. Omniscient debugging for executable dsls:
Journal of Systems and Softwatg7:261-288, 2018.

. F. Ciccozzi, . Malavolta, and B. Selic. Execution of uml

models: a systematic review of research and practice.
Software and Systems Modeljrig:2313-2360, 2019.

Heterogeneous Languages and their Coordination. In
Architecture Centric Virtual Integration (ACV.Julien
Delange and Jerome Hugues and Peter Feiler, 2016.
Hints on
test data selection: Help for the practicing programmer
Computer11(4):34-41, 1978.

. S. Efftinge, M. Eysholdt, J. &hnlein, S. Zarnekow,

R. von Massow, W. Hasselbring, and M. Hanus. Xbase:
Implementing domain-speci ¢ languages for ja&l G-
PLAN Notices48(3):112-121, 2012.

ETSI ES 203 119-1. Methods for testing and speci -
cation (mts); the test description language (tdl); part 1:
abstract syntax and associated semantics, 2020. URL
https://tdl.etsi.org/index.php/downloads |

ETSI ES 203 119-6. Methods for testing and speci -
cation (mts); the test description language (tdl); part 6:
Mapping to ttcn-3, 2020. URhttps://itdl.etsi.
org/index.php/downloads

S. Fabbri, J. Maldonado, and M. Delamaro. Pro-
teum/fsm: a tool to support nite state machine val-
idation based on mutation testing. Proceedings.

14.

15.

16.

18. J. Igbal, A. Ashraf, D. Truscan, and |. Porres.

Modeling the Behavioral Semantics oflg'

20.

21.

22.

23.

SCCC'99 XIX International Conference of the Chilean
Computer Science Sociepages 96-104, 1999.

T. Fischer, J. Niere, L. Torunski, and Au@dorf. Story
diagrams: A new graph rewrite language based on the
uni ed modeling language and java. In H. Ehrig, G. En-
gels, H.-J. Kreowski, and G. Rozenberg, editditseory
and Application of Graph Transformationgsages 296—
309. Springer Berlin Heidelberg, 2000.

P. ®mez-Abajo, E. Guerra, and J. de Lara. Wodel: A
domain-speci c language for model mutation. Mmo-
ceedings of the 31st Annual ACM Symposium on Ap-
plied Computing SAC '16, page 1968-1973. Associa-
tion for Computing Machinery, 2016.

P. G@mez-Abajo, E. Guerra, J. de Lara, and M. G.
Merayo. Wodel-test: a model-based framework for
language-independent mutation testin§oftware and
Systems Modelin@0:1-27, 2020.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot.
Statemate: a working environment for the development
of complex reactive systemslEEE Transactions on
Software Engineerindl6(4):403-414, 1990.

17. N. Hili, M. Bagherzadeh, K. Jahed, and J. Dingel. A

model-based architecture for interactive run-time mon-
itoring. Software and Systems Modeljrip:959-981,
2020.

Ex-
haustive simulation and test generation using fuml ac-
tivity diagrams. In P. Giorgini and B. Weber, editors,
Advanced Information Systems Engineeripages 96—
110, Cham, 2019a. Springer International Publishing.
Y. Jia and M. Harman. An analysis and survey of the
development of mutation testintEEE Transactions on
Software Engineerind37(5):649-678, 2011.

F. Khorram, E. Bousse, J.-M. Mottu, and G. Seiny
Adapting tdl to provide testing support for executable
dsls.Journal of Object Technolog®0(3):6:1-15, 2021.

T. M. King, G. Nunez, D. Santiago, A. Cando, and
C. Mack. Legend: An agile dsl toolset for web accep-
tance testing. IfProceedings of the 2014 International
Symposium on Software Testing and Analyts$STA
2014, page 409-412. Association for Computing Ma-
chinery, 2014.

T. Kos, M. Mernik, and T. Kosar. Test automation of a
measurement system using a domain-speci ¢ modelling
language. Journal of Systems and Softwafel1:74 —
88, 2016.

l. Lazar, S. Motogna, and B.@v. Behaviour-driven de-
velopment of foundational uml componenEectronic
Notes in Theoretical Computer Scien2é4(1):91-105,
2010. Proceedings of the 7th International Workshop
on Formal Engineering approaches to Software Com-
ponents and Architectures (FESCA 2010).

26

Khorramet al.

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

B. Combemale, and W. Schwinger. Behavioral inter-
faces for executable dslSoftware and Systems Model-
ing, 19(4):1015-1043, 2020.

J.-h. Li, G.-x. Dai, and H.-h. Li. Mutation analysis for

testing nite state machines. 1B009 Second Interna- 40.

tional Symposium on Electronic Commerce and Secu-
rity, pages 620-624, 2009.

D. Lubke and T. van Lessen.
driven testing of service-based processe&nterprise,
Business-Process and Information Systems Modeling
pages 119-133. Springer, 2017.

P. Makedonski, G. Adamis, M.&rik, F. Kristoffersen,

M. Carignani, A. Ulrich, and J. Grabowski. Test de-
scriptions with etsi tdl. Software Quality Journal27
(2):885-917, 2019.

T. Mens, A. Decan, and N. |. Spanoudakis. A method
for testing and validating executable statechart models.
Software and Systems Modeljrig:837-863, 2019.

B. Meyers, J. Denil, I. Bvid, and H. Vangheluwe.
Automated testing support for reactive domain-speci ¢
modelling languages. IRroceedings of the 2016 ACM
SIGPLAN International Conference on Software Lan-
guage Engineeringpages 181-194. Association for
Computing Machinery, 2016.

S. Mijatov, T. Mayerhofer, P. Langer, and G. Kappel.
Testing functional requirements in uml activity dia-
grams. In J. C. Blanchette and N. Kosmatov, editors,
Tests and Proofgpages 173—-190, Cham, 2015. Springer
International Publishing.

OASIS. Web services business process execution lan-
guage version 2.0, 2007.

Object Management Group. Business Process Model
And Notation, 2010.

Object Management Group. Semantics of a Founda-
tional Subset for Executable UML Models, 2013.

Object Management Group. Meta Object Facility, 2016.
Object Management Group. Unied Modeling Lan-
guage, 2017.

Object Management Group. Precise Semantics of UML
State Machines, 2019.

S. Pinto Ferraz Fabbri, M. Delamaro, J. Maldonado, and
P. Masiero. Mutation analysis testing for nite state
machines. IrProceedings of 1994 IEEE International
Symposium on Software Reliability Engineeripgges
220-229, 1994.

D. Santiago, A. Cando, C. Mack, G. Nunez, T. Thomas,
and T. M. King. Towards domain-speci c testing lan-
guages for software-as-a-service. 2nd International
Workshop on Model-Driven Engineering for High Per-
formance and Cloud computing (MDHPClpages 43—
52, 2013.

Bpmn-based model41.

. D. Leroy, E. Bousse, M. Wimmer, T. Mayerhofer, 39. F. Siavashi, D. Truscan, and J. Vain. Vulnerability as-

sessment of web services with model-based mutation
testing. In2018 IEEE International Conference on
Software Quality, Reliability and Security (QRBages
301-312, 2018.

D. Steinberg, F. Budinsky, E. Merks, and M. Paternos-
tro. EMF: eclipse modeling frameworkPearson Edu-
cation, 2008.

H. Wu, J. Gray, and M. Mernik. Unit testing for domain-
speci c languages. In W. M. Taha, editddomain-
Speci ¢ Languagespages 125-147. Springer Berlin
Heidelberg, 2009.

	Introduction
	Background and Motivation

