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A new mathematical formulation for the constitutive laws governing elastic perfectly plastic materials is proposed here. In particular, it is shown that the elastic strain rate and the plastic strain rate form an orthogonal decomposition with respect to the tangent cone and the normal cone of the yield domain. It is also shown that the stress rate can be seen as the projection on the tangent cone of the elastic stress tensor. This approach leads to a coherent mathematical formulation of the elasto-plastic laws and simplifies the resulting system for the associated flow evolution equations. The cases of one or two yields functions are treated in detail. The practical examples of the von Mises and Tresca yield criteria are worked out in detail to demonstrate the usefulness of the new formalism in applications.

In the theory of perfect plasticity, the deformation of a material is mainly decomposed into two components; an elastic deformation due to reversible microscopic processes for which there is a one-to-one map between the stress and the strain, and an irreversible plastic deformation for which such a map is lost. The calculation of deformations of an elasto-plastic material must therefore take into account not only its current state, but also its history. For this reason, the common approach consists to find this deformation as the result of infinitesimal variations of the strain and the stress tensors (see, e. g., [START_REF] Lubliner | Plasticity Theory[END_REF], [START_REF] Hashiguchi | Elastoplastic model of metals with smooth elastic-plastic transition[END_REF], [START_REF] Han | Plasticity, Interdisciplinary Applied Mathematics book series[END_REF]).

Before describing the aim and main results of this work, let us start with a simple reminder of the general principles of elasto-plasticity. Leaving aside thermal effects and hardening (the latter will be the subject of a specific study in a future paper), the deformation of a material occupying -in its undeformed state -a domain Ω ⊂ R 3 is described by the knowledge of the displacement vector field u(x, t) characterizing the geometry, and the Cauchy stress tensor σ(x, t) characterizing the state of the material (with x is any point of Ω and t is time). In incremental elastic perfectly plastic model, the displacement u (assumed to be small) and the stress σ are governed by the following usual principles:

• (additive decomposition) The strain rate tensor ε is the sum the elastic strain rate εe and the plastic strain rate εp :

(1) ε = εe + εp .

• (the yield criterion) The stress tensor satisfies

(2) σ ∈ C,
where C is a nonempty closed convex subset of three-by-three symmetric tensors, M 3×3 sym (see, e. g., [START_REF] Drucker | The relation of experiments to mathematical theories of plasticity[END_REF], [START_REF] Hill | The mechanics of quasi-static plastic deformation in metals[END_REF], [START_REF] Lubliner | Plasticity Theory[END_REF]). It is assumed that the material is perfectly plastic, that is C is constant during the deformation process (no hardening or softening occurs). When the stress is strictly inside C, the strain-rate is equal to the elastic stress-rate ε = εe and εp = 0. The plastic onset occurs when the stress reaches the boundary ∂C of C (∂C is called the yield surface). Note that many yield criteria used in practice are commonly defined by functional constraints of the form [START_REF] Boulmezaoud | Some mathematical observations on plasticity[END_REF] f i (σ) 0 for 1 i m, where the yield functions f i depend only on the principal stresses of σ.

There is a large number of criteria describing the yield of materials in the literature.

The most commonly used are the Tresca criterion ( [START_REF] Tresca | Mémoire sur l'écoulement des corps solides soumis à de fortes pressions[END_REF]) and the von Mises criterion [START_REF] Mises | Mechanik der plastischen Formaenderung von Kristallen[END_REF]. • (Hooke's Law) The elastic strain rate εe is related to the stress rate by [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] σ = H( εe ),

where H is the fourth-order isotropic elasticity tensor given by [START_REF] Swedlow | Formulation of boundary integral equations for three-dimensional elastoplastic flow[END_REF]. • (Principle of maximum work) when σ ∈ ∂C, the pair (σ, εp ) satisfies [START_REF] Coon | Modeling the pack ice as an elastic-plastic material[END_REF] εp : σ εp : σ for all σ ∈ C.

(see [START_REF] Hill | A variational principle of maximum plastic work in classical plasticity[END_REF][START_REF] Hill | The Mathematical Theory of Plasticity[END_REF], [START_REF] Koiter | Stress-strain relations, uniqueness and variational theorems for elastic-plastic material with a singular yield surface[END_REF][START_REF]Koiter General theorems for elastic-plastic solids[END_REF], [START_REF] Lubliner | Plasticity Theory[END_REF]). • (Consistency condition) when σ ∈ ∂C, εp and σ verify [START_REF] Maso | Quasistatic Evolution Problems for Linearly Elastic-Perfectly Plastic Materials[END_REF] εp : σ = 0, at all times.

As indicated in [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF], condition [START_REF] Maso | Quasistatic Evolution Problems for Linearly Elastic-Perfectly Plastic Materials[END_REF] results from [START_REF] Coon | Modeling the pack ice as an elastic-plastic material[END_REF] under strong time regularity assumptions on σ (here σ is a tensor valued function depending on time t and position x). This might explain why this condition is often sidelined and not taken into account by many authors. In view of ( 1) and (4), Condition ( 5) is often written in the following form, called the normality rule, [START_REF] Maso | Quasistatic evolution in perfect plasticity as limit of dynamic processes[END_REF] εp ∈ N (C, σ), or, equivalently,

ε -H -1 ( σ) ∈ N (C, σ), (8) 
where N (C, σ) denotes the normal cone of C at σ and H -1 is the inverse of the operator H.

Because of the inherent irreversibility of plastic deformations, it is more meaningful to describe elasto-plastic deformation processes by their infinitesimal variations, i.e. by the strain rate and stress rate tensors. Besides, these principles are complemented by the local equations governing the displacement of the material elements, given in the general form [START_REF] Drucker | The relation of experiments to mathematical theories of plasticity[END_REF] ρü -div σ -h = 0, where u is the displacement of the material element with respect to its original spacial coordinate x with the two dots on its top denoting the second derivative in time, h is the volume density of forces, ρ the density of the material, and div σ the vector field given by (div σ) i = 3 j=1 ∂σ ij ∂x j for 1 i 3, augmented by appropriate boundary and initial conditions set by the forces acting on the boundary of the material and its initial state. These physical constraint that are nonetheless necessary in order to find a meaningful solution to this system of equations are not important for the present work. The proposed formulation can nevertheless accommodate any type of boundary and initial conditions.

It is worthwhile mentioning that under the assumption of a quasi-static evolution, equation (9) becomes [START_REF] Drucker | A more fundamental approach to plastic stress-strain relations[END_REF] div σ + h = 0, and that this type of assumption is often made in practice when the elasto-plastic times scales of the material are much faster than those of the underlying volume and boundary forces. The elastic and perfectly plastic time dependent problem of a material occupying a geometrical domain is often written as a variational inequality (see, e. g., [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF]). It leads to a non-linear and cumbersome large number of equations although it has been studied by several authors, both in the case of quasi-static evolution and in the case of full dynamics (see, e. g., [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF], [START_REF] Johnson | Existence theorems for plasticity problems[END_REF], [START_REF] Temam | A generalized Norton-Hoff Model and the Prandtl-Reuss Law of Plasticity[END_REF], [START_REF] Fuchs | Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids[END_REF], [START_REF] Maso | Quasistatic Evolution Problems for Linearly Elastic-Perfectly Plastic Materials[END_REF], [START_REF] Babadjian | Dissipative boundary conditions and entropic solutions in dynamical perfect plasticity[END_REF]). The present work aims at reformulating the local principles of elasto-plasticity into a smaller number of equations, which allows in particular to get rid of the inequalities (and thus of the variational inequalities associated with the global time evolution problem). Our approach is based on the following statement: behind the system lies the unique orthogonal decompositions of the strain rate ε and its image H( ε) in the form τ + η with τ belonging to the tangent cone of C at σ and η belonging to its polar cone (i. e. the normal cone of C at σ). More precisely, we shall prove the following.

εe = Π T (C,σ) ε, εp = Π N (C,σ) ε, σ = Π T (C,σ) H( ε),
where Π T (C,σ) (resp. Π N (C,σ) ) represents the orthogonal projection on T (C, σ) (resp. on N (C, σ)). This will allow us in particular to formulate the system as an augmented evolution system of the form [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF] ∂ ∂t

v σ - div σ H (σ, ε(v)) = h 0 , with H (σ, ε(v)) = Π T (C,σ) H( ε(v))
and v = u is the flow velocity of the material elements.

The nonlinear equality and inequality constraints associated with the yield criterion, which are inevitable when using a variational method for example, are replaced by easy to calculate projections onto the tangent and normal cones, as demonstrated by the application of this new methodology to the von Mises and Tresca criteria.

Time differentiation of the first component of the system leads to an evolution equation involving only the velocity

(12) ∂ 2 v ∂t 2 -div H (σ, ε(v)) = ∂h ∂t .
From all these elements, it follows that it is necessary to calculate the projectors Π T (C,.) and Π N (C,.) on the tangent cone and the normal cone. This approach is quite general, and does not require assumptions about the regularity of C, nor restrictions on the number of functions that define it. However, we will present the calculations in the cases where C is defined by one or two yield functions only, to demonstrate the usefulness of the new methodology in practical applications. The case of the Von Mises criterion will be in particular well detailed. The Tresca criterion, for which the domain has degenerate corners, will also be carefully examined. Finally, it will be discussed how invariance by similarity of the yield functions can be exploited to compute easily and efficiently the projectors involved in the formulation. The rest of this paper is organized as follows. This section will end with preliminaries and notations. In Section 2, we present the main results allowing to reformulate the equations of the elastic perfectly plastic model in terms of the projectors on the normal and tangent cones. In Section 3, we will treat in more details the case where we have one or two functions defining the yield surface. Section 4 is devoted to the Von Mises's and Tresca's criteria. The last section is devoted to some concluding remarks concerning invariance by similarity of yield functions and upcoming extensions.

Notations and preliminaries In the sequel, all the elements of R 3 will be considered as column vectors. For x, y ∈ R 3 , we denote by x • y ∈ R 3 their Euclidian scalar product, by x ⊗ y = xy t their tensor product and by x y = 1 2 (x ⊗ y + y ⊗ x) their symmetric tensor product. The superscript t denotes the matrix or vector transpose.The same notation will be used for any second order tensor σ and for the matrix of its components (σ ij ) 1 i, j n (with respect to the canonical basis of R 3 ). Given two second order tensors σ and ε, we denote by σε their products, by σ : ε = tr(σε T ) their scalar product and by . the associated (Frobenius) tensor norm. When σ and ε are symmetric, we have We set Λ(σ) = (λ 1 (σ), λ 2 (σ), λ 3 (σ)).

σ : ε = 3 i,j=1 σ ij ε ij = 3 i=1 σ ii ε ii + 2 1 i<j 3 σ ij ε ij ,
We denote by I 1 (σ), I 2 (σ) and I 3 (σ) the principal invariants of σ such that the characteristic polynomial of σ is given by ( 13)

det(λI -σ) = λ 3 -I 1 (σ)λ 2 + I 2 (σ)λ -I 3 (σ) for all λ ∈ R.
We have ( 14)

I 1 (σ) = tr(σ), I 2 (σ) = 1 2 (tr(σ) 2 -tr(σ 2 )), I 3 (σ) = det(σ). If f : M 3×3 sym → R is differentiable at σ ∈ M 3×3
sym , then ∇f (σ) will be its symmetric gradient at σ, that is ∇f (σ) is the unique second order tensor satisfying ∀σ ∈ M 3×3 sym , df (σ)σ = (∇f (σ)) : σ , where df (σ) is the differential of f at σ. It is worth noting that when the function f is defined over the nine dimensional space M 3×3 of 3 × 3 matrices with real entries, its symmetric gradient ∇f (σ) is different from its gradient as a function on M 3×3 (the former is the symmetric part of the latter). More precisely, the components of ∇f (σ) are given by ∇f (σ) =

1 i j 3 ∂f ∂σ ij (σ)e i e j .
We introduce the subspace of deviatoric tensors (or matrices):

(15)

M 3×3 D = {σ ∈ M 3×3 sym | tr(σ) = 0}, Obviously, M 3×3 sym = RI ⊕ ⊥ M 3×3 D
and for all σ ∈ M 3×3 sym , we can write

(16) σ = σ + tr(σ) 3 I,
where I is the identity tensor and σ ∈ M 3×3 D is the deviator of σ. Obviously I 1 (σ) = 0 and (17)

I 2 (σ) = I 2 (σ) - I 1 (σ) 2 3 , I 3 (σ) = tr(σ 3 ) 3 = 2I 1 (σ) 3 27 - I 1 (σ)I 2 (σ) 3 + I 3 (σ).
It is customary in solid mechanics to set J 2 (σ) = -I 2 (σ) and J 3 (σ) = I 3 (σ). We have

J 2 (σ) = 1 6 ((σ 11 -σ 22 ) 2 + (σ 22 -σ 33 ) 2 + (σ 11 -σ 33 ) 2 ) +σ 2 12 + σ 2 23 + σ 2 13 , (18) 
= 1 6 ((λ 1 -λ 2 ) 2 + (λ 2 -λ 3 ) 2 + (λ 1 -λ 3 ) 2 ), (19) = 1 2 σ 2 . ( 20 
)
Also, by the Cayley-Hamilton theorem, which states that every matrix is a solution of its characteristic equation, we have ( 21)

σ 3 = I 1 (σ)σ 2 -I 2 (σ)σ + I 3 (σ)I,
and thus

σ 3 = J 2 (σ)σ + J 3 (σ)I.
In the sequel, we also need to express the gradient of these invariants. The reader can easily verify the following identities

∇I 1 (σ) = I, (22) ∇I 2 (σ) = I 1 (σ)I -σ, (23) 
∇I 3 (σ) = σ 2 -I 1 (σ)σ + I 2 (σ)I, (24) ∇J 2 (σ) = σ, ( 25 
)
∇J 3 (σ) = σ 2 - 2 3 J 2 (σ)I. ( 26 
)
Now, given a nonempty convex set K ⊂ M 3×3 sym and σ ∈ K, the tangent cone T (K, σ) to K at σ is defined by ( 27)

T (K, σ) = {α(η -σ) | η ∈ K and α > 0},
where the overline denotes the topological closure of the underlying set. This is a closed convex cone of M 3×3 sym . The normal cone N (K, σ) of K at σ is defined as the dual cone of

T (K, σ), that is (28) N (K, σ) = {η ∈ M 3×3 sym | τ : η 0 for all τ ∈ T (K, σ)}. We recall that T (K, σ) = M 3×3
sym and N (K, σ) = {0} when σ belongs to the interior of K. We have the two elementary properties

• For all α > 0, T (αK, ασ) = T (K, σ), N (αK, ασ) = N (K, σ). • For all τ ∈ M 3×3 sym , T (K + τ , σ + τ ) = T (K, σ), N (K + τ , σ + τ ) = N (K, σ)
. Finally, we denote by Π K the orthogonal projection on the convex K as an operator on M 3×3 sym . For τ ∈ M 3×3 sym , we have [START_REF] Nayak | Elasto-plastic stress analysis: a generalization for various constitutive relations including strain softening[END_REF] Π K τ = argmin η∈K τη .

Reformulating elasto-plasticity equations

Consider an elasto-plastic material occupying a region Ω ⊂ R 3 . When volume and/or surface forces are applied to the material body, the deformation and the state of this material can be characterized by the evolution of the displacement vector field (x, t) ∈ Ω×I → u(x, t) and the Cauchy (internal) stress tensor (x, t) ∈ Ω × I → σ(x, t), respectively. Here, I is the time interval during which the deformation take place. For convenience, we assume that I I is semi-open on the form I = [0, T ). We denote by v = ∂u/∂t the velocity vector field, and σ the time derivative of σ while ε and ε are respectively the strain and the strain rate tensors: [START_REF] Necas | Mathematical Theory of Elastic and Elasto-plastic Bodies, an Introduction[END_REF] ε i,j = 1 2

∂u i ∂x j + ∂u j ∂x i , εi,j = 1 2 ∂v i ∂x j + ∂v j ∂x i , 1 i, j 3.
We are interested in the evolution in time of these quantities, locally, at all points x ∈ Ω. The focus is on the constitutive law which links the strain, the strain rate, the stress, and the stress rate tensors.

As stated in the introduction section, for many materials, it is meaningful to assume that the internal stress is restricted to a closed convex set C of M 3×3 sym and that C is insensitive to hydrostatic pressure, that is

(31) ∀σ ∈ C, ∀p ∈ R, σ + pI ∈ C.
Geometrically, this means that C is an infinite cylinder aligned along the identity matrix.

In particular, C is unbounded. The extension to materials not complying with (31) will be the subject of future work.

This indifference assumption has a direct implication on the normal and the tangent cones. We have

(32) RI ⊂ T (C, σ), N (C, σ) ⊂ (RI) ⊥
and, in particular, [START_REF] Sloan | Removal of singularities in Tresca and Mohr-Coulomb yield functions[END_REF] tr(τ ) = 0 for all τ ∈ N (C, σ).

Here and subsequently, we drop the (x, t) arguments for simplicity of notation.

Inside C, the internal stress σ is related to the elastic strain through Hooke's law ( 4) with [START_REF] Swedlow | Formulation of boundary integral equations for three-dimensional elastoplastic flow[END_REF] H(τ ) = 2µτ + λtr(τ )I, for all τ ∈ M 3×3 sym , where λ > 0 and µ > 0 are the Lamé coefficients, which are assumed to be constant. We can also write ε e = H -1 (σ) with ( 35)

H -1 (σ) = - λ 2µ(3λ + 2µ) tr(σ)I + 1 2µ σ, or (36) 
H -1 (σ) = - ν E tr(σ)I + 1 + ν E σ,
where E and ν are respectively the Young's modulus and Poisson's ratio, given by ( 37)

E = µ(3λ + 2µ) λ + µ , ν = λ 2(λ + µ) .
Theorem 2.1. The following two statements are equivalent:

(1) (ε, ε e , ε p , σ) satisfy (1), ( 2), ( 4), ( 5) and (6).

(2) (ε, ε e , ε p , σ) satisfy (2) at t = 0 and the following identities hold

εe = Π T (C,σ) ε, (38) εp = Π N (C,σ) ε, (39) σ = Π T (C,σ) H( ε). ( 40 
)
When these statements are true, we also have

σ = H( ε) -2µΠ N (C,σ) ε, (41) Π N (C,σ) H( ε) = 2µΠ N (C,σ) ε, (42) εe : εp = 0, (43) ε 2 = εe 2 + εp 2 . ( 44 
)
Before giving the proof of this theorem, let us make some comments. An important point that emerges from this theorem is the following constitutive law relating the stress rate and the strain rate

(45) σ = Π T (C,σ) H( ε).
It can be observed that this law unifies the elastic and plastic regimes. Indeed, in the elastic regime, σ is inside C and Π T (C,σ) = Id and we fall back onto the equations of linear elasticity.

If on the other hand σ is on the boundary of the yield domain, then T (C, σ) = M 3×3 sym . In this case, it becomes important to give an explicit expression for the projector Π T (C,σ) . This will be done in Section 3 for a yield domain defined by one or more yield functions. The examples of the Von Mises criterion and the Tresca criterion will be particularly detailed in section 4.

Let us briefly describe the impact of the characterization in (45) on the equations of motion governing the material deformation in unsteady and quasi-static regimes. The evolution equations in ( 9) and ( 45) can be gathered into the following system.

(46) ∂ ∂t ρv σ + -div σ Π T (C,σ) H( ε) = h 0 .
According to Lemma 2.2 below, we have Π

T (C,σ) (τ ) + Π N (C,σ) (τ ) = τ for all τ ∈ M 3×3 sym . Combining this with (42) gives Π T (C,σ) H( ε) = H( ε) -Π N (C,σ) H( ε) = H( ε) -2µΠ N (C,σ) ( ε). Thus, (47) ∂ ∂t ρv σ - div σ H (σ, ε) = h 0 . with (48) H (σ, τ ) = H(τ ) -2µΠ N (C,σ) (τ ).
In other words, from a mathematical point of view, the elasto-plastic incremental model of the material is obtained from the incremental elasticity model by replacing the linear elasticity operator H by the non-linear operator H (σ, .). Moreover, unlike H, this nonlinear operator H (σ, .) obviously depends on the current state of stress σ. Time differentiation of the first component of the system above leads to an evolution equation involving only the velocity filed.

(49)

∂ 2 v ∂t 2 -div H (σ, ε) = ∂h ∂t .
The equations in (49) expand the usual elastic wave equations that are valid only within the elastic regimes. We note however that H (σ, .) depends directly on σ and in the general case, the system must be complemented with (45).

For practical applications, it only remains to express the operator H in terms of its arguments. As it will elucidated below, in the case of the Von Mises criterion (73), for example, Formula (76) gives ( 50)

H (σ, ε) = λtr( ε)I + 2µ ε - µ k 2 max(0, ε : σ)χ( σ 2 -2k 2 )σ
, where χ : R → R is the Heaviside type function defined by χ(t) = 1 if t 0 and χ(t) = 0 else.

We now prove the theorem.

Proof of Theorem 2.1 -We need the following two lemmas. The first one is due to Morreau [START_REF] Moreau | Application of convex analysis to the treatment of elastoplastic systems, dans Applications of Methods of Functional Analysis to Problems of Mechanics[END_REF]. For a straightforward proof see for example Theorem 6.29 and Corollary 6.30 of [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF].

Lemma 2.2. Let (H , , ) be a real Hilbert space and K a closed convex cone in H . Let K * be its polar cone defined by

K * = {v ∈ H | ∀w ∈ K, v, w 0}.
Then, for any z ∈ H we have [START_REF] Babadjian | Dissipative boundary conditions and entropic solutions in dynamical perfect plasticity[END_REF] 

z = Π K z + Π K * z, (2) Π K z, Π K * z = 0, ( 3 
) If z = x + y with x ∈ K and y ∈ K * such that x = Π K z and y = Π K * z, then x, y < 0. Lemma 2.3. For all τ ∈ M 3×3 sym and η ∈ C, one has Π T (C,η) H(τ ) = H(Π T (C,η) τ ), (51) Π N (C,η) H(τ ) = H(Π N (C,η) τ ), (52) = 2µΠ N (C,η) τ . (53) Proof -Let τ T = Π T (C,η) τ and τ N = Π N (C,η) τ . Then, τ = τ T + τ N .
In view of [START_REF] Sloan | Removal of singularities in Tresca and Mohr-Coulomb yield functions[END_REF] we have ( 54)

H(τ ) = (λtr(τ T )I + 2µτ T ) + 2µτ N .
We observe that λtr(τ

T )I+2µτ T ∈ T (C, η) (since T (C, η) is a con- vex cone containing I), that 2µτ N ∈ N (C, η) and that (λtr(τ T )I+ 2µτ T ) : (2µτ N ) = 0.
In view of Lemma 2.2, we deduce that λtr(τ T )I + 2µτ T = Π T (C,η) Hτ and 2µτ N = Π N (C,η) H(τ ). This ends the proof of Lemma 2.3. Back to the proof of Theorem 2.1. We proceed in three separate steps.

First, we show that (1) implies [START_REF] Borwein | Convex Analysis and Nonlinear Optimization[END_REF]. Assume that (1), ( 2), ( 4), ( 5) and ( 6) are satisfied. On the one hand, since σ(t) ∈ C for all t ∈ I, we have for all t ∈ I and h > 0 sufficiently small, such that t + h ∈ I, we have (σ(t + h) -σ(t))/h ∈ T (C, σ(t)). Taking the limit when h → 0 + implies that σ(t) ∈ T (C, σ(t)). On the other hand, (4) gives εe (t) = H -1 ( σ(t)).

Thus, using Hooke law in [START_REF] Temam | Mathematical Problems in Plasticity[END_REF] and the fact that the tangent cone contains all real multiples of the identity (32), we deduce that εe ∈ T (C, σ).

On the other hand, we have εp ∈ N (C, σ), thanks to [START_REF] Maso | Quasistatic evolution in perfect plasticity as limit of dynamic processes[END_REF]. Furthermore,

εe : εp = H -1 ( σ) : εp = 1 + ν E σ : εp - ν E tr (σ)I : εp .
Using the consistency condition in [START_REF] Maso | Quasistatic Evolution Problems for Linearly Elastic-Perfectly Plastic Materials[END_REF] and the fact that εp is traceless according to (33) yields εe : εp = 0.

It follows that εe + εp is the Moreau's decomposition of ε described in Lemma (2.2) with K = T (C, σ). This entails [START_REF] Mises | Mechanik der plastischen Formaenderung von Kristallen[END_REF] and [START_REF] Yu | A closed-form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models[END_REF]. Combining [START_REF] Mises | Mechanik der plastischen Formaenderung von Kristallen[END_REF], ( 4) and (51) yields

σ = H( εe ) = H(Π T (C,σ) ε) = Π T (C,σ) H( ε).
Which is the identity in (40). Second, we show that (2) implies (1). Conversely, assume that (38), [START_REF] Yu | A closed-form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models[END_REF] and (40) are true and that ( 2) is satisfied at t = 0. We need to show that (1), ( 2), ( 5) and ( 6 Finally, identities (41) and (42) follow from ( 39) and ( 53) while ( 43) and (44) result from [START_REF] Mises | Mechanik der plastischen Formaenderung von Kristallen[END_REF], [START_REF] Yu | A closed-form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models[END_REF] and Lemma 2.2, and this concludes the proof of the theorem.

Remark -The hydrostatic pressure invariance property in [START_REF] Rockafellar | Convex Analysis[END_REF] implies that for all σ ∈ C, τ ∈ M 3×3 sym , α > 0 and β ∈ R, we have (55

) Π N (C,σ) (ατ + βI) = αΠ N (C,σ) τ .
Indeed, for η ∈ N (C, σ)

(ατ + βI) -η 2 = α 2 τ - 1 α η 2 + β 2 I 2 + 2αβtr(τ ),
(thanks to [START_REF] Sloan | Removal of singularities in Tresca and Mohr-Coulomb yield functions[END_REF]). Therefore, minimizing (ατ + βI) -η with respect to η is equivalent to minimizing τ -α -1 η .

3. Explicit constitutive laws in the case of one or two yield functions 3.1. The main practical results. In this section we write more explicitly the constitutive laws ( 38), ( 39) and (40) when the yield domain is defined by functional constraints. This is the case in most criteria used in practice where the yield domain is often defined by a single function. Nevertheless, Theorems 3.1 and 3.2 stated below deal with domains defined by several functions but the boundary points are characterized by either exactly one function and exactly two functions, respectively, thus covering most practical cases. For steamlining, the proofs of these theorems discussed in in sections 3.3 and 3.4 where the explicit calculations are presented. As one would expect, it is essentially a matter of explicitly computing the projection onto the tangent and normal cones invoked in [START_REF] Mises | Mechanik der plastischen Formaenderung von Kristallen[END_REF], [START_REF] Yu | A closed-form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models[END_REF] and (40). We also note that these results are applied in Section 4 to the cases of the Von Mises and Tresca criteria for illustration. Besides, the case of the Tresca criterion has some particularities which do not fit completely into the framework of theorems 3.1 and 3.2.

As done in [START_REF] Han | Plasticity, Interdisciplinary Applied Mathematics book series[END_REF], [START_REF] Koiter | Stress-strain relations, uniqueness and variational theorems for elastic-plastic material with a singular yield surface[END_REF], and [START_REF]Koiter General theorems for elastic-plastic solids[END_REF], for example, we consider in what follows a yield domain of the form:

(56) C = {σ ∈ M 3×3 sym | f i (σ) k i for i = 1, • • • , m}, where f 1 , • • • , f m are m convex differentiable functions of class C 1 and k 1 , • • • , k m are real constants.
We assume that there exists at least one element σ ∈ M 3×3 sym such that (57)

f i (σ ) < k i for all i = 1, • • • , m.
From a mathematical point of view, this condition amounts to saying that the interior of C is non empty and it is usually called Slater's condition (see, e. g., [START_REF] Borwein | Convex Analysis and Nonlinear Optimization[END_REF] or [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF]). Now, given σ ∈ C, define Sat(σ) the set of indices of saturated constraints at σ (see, e. g., [START_REF] Borwein | Convex Analysis and Nonlinear Optimization[END_REF] or [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF]):

Sat(σ) = {i | 1 i m and f i (σ) = k i }.
The set Sat(σ) is empty when σ is strictly inside the yield domain C. Otherwise, Sat(σ) = ∅, for all σ on the boundary of C. We may observe that

∀i ∈ Sat(σ) ∩ {1, 2, • • • , m}, ∇f i (σ) = 0.
This a straightforward consequence of the assumption in (57) because of the convexity of the functions f i . Also, in view of Slater's condition (57), we know that for all σ ∈ C such that Sat(σ) = ∅

T (C, σ) = {τ ∈ M 3×3 sym | ∀i ∈ Sat(σ), τ : ∇f i (σ) 0}, N (C, σ) = { i∈Sat(σ) α i ∇f i (σ) | α i 0 for all i ∈ Sat(σ)}. When Sat(σ) = ∅, T (C, σ) = M 3×3
sym and N (C, σ) = {0}. We recall that we are working under the assumption that the yield functions are insensitive to the hydrostatic pressure, that is the convex C in (56) satisfies the condition in [START_REF] Rockafellar | Convex Analysis[END_REF]. A direct consequence of this assumption is that for all σ ∈ C, we have

(58) ∀i ∈ Sat(σ), ∇f i (σ) : I = 0.
Assumption [START_REF] Rockafellar | Convex Analysis[END_REF] is in particular valid when the functions f i , i = 1, • • • , m, depend only on the invariants J 2 and J 3 , that is

f i (σ) = F i (J 2 (σ), J 3 (σ)) for 1 i m,
where F 1 , • • • , F m are given functions of two variables. We have the following two theorems.

Theorem 3.1. Let C be a yield domain defined by m smooth functions as in (56). Assume that C satisfies the hydrostatic pressure stability condition [START_REF] Rockafellar | Convex Analysis[END_REF].

Let σ ∈ C such that f 1 (σ) = k 1 and f i (σ) < k i for all i 2.
Then, the constitutive laws in [START_REF] Mises | Mechanik der plastischen Formaenderung von Kristallen[END_REF], [START_REF] Yu | A closed-form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models[END_REF], and (40) can be rewritten as

εp = max(0, ε : ∇f 1 (σ)) ∇f 1 (σ) 2 ∇f 1 (σ), (59) εe 
= ε -εp , (60) σ = λtr( ε)I + 2µ ε - max(0, ε : ∇f 1 (σ)) ∇f 1 (σ) 2 ∇f 1 (σ) . ( 61 
)
Theorem 3.2. Let C be a yield domain defined by m smooth functions (56). Assume that C satisfies the hydrostatic pressure stability condition [START_REF] Rockafellar | Convex Analysis[END_REF]. Let σ ∈ C such that f i (σ) = k i for i = 1, 2, and that f i (σ) < k i for all i 3. Assume also that ∇f 1 (σ) and ∇f 2 (σ) are not collinear. Let

α i = ε : ∇f i (σ) ∇f i (σ) , i = 1, 2, η 1 = α 1 -δα 2 1 -δ 2 , η 2 = α 2 -δα 1 1 -δ 2 , and δ = ∇f 1 (σ) : ∇f 2 (σ) ∇f 1 (σ) ∇f 2 (σ) .
Then, the constitutive laws (38), [START_REF] Yu | A closed-form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models[END_REF], and (40) can be rewritten as

εp =                η 1 ∇f 1 (σ) ∇f 1 (σ) + η 2 ∇f 2 (σ) ∇f 2 (σ) , if η i 0 for i = 1, 2, max(α 1 , 0) ∇f 1 (σ) ∇f 1 (σ) , if min(η 1 , η 2 ) < 0 and α 1 α 2 , max(α 2 , 0) ∇f 2 (σ) ∇f 2 (σ) , if min(η 1 , η 2 ) < 0 and α 1 α 2 , (62) 
εe = εεp , (63) σ = λtr( ε)I + 2µ ε -2µ εp . (64) Theorems 3.1 and 3.2 are part of the main results of this contribution. In view of Theorem 2.1, in order to establish the results in these Theorems it is sufficient to find the expressions of the projectors Π T (C,σ) and Π N (C,σ) , for yield domains as in (56), in the two simple cases when Sat(σ) is reduced to one and two indices, respectively. This problem technical and purely computational in nature and is almost independent of mechanical modeling: it is a more general issue of characterizing the projection of any vector on the normal and tangent cones of C. This is the subject of the following subsections. Proofs of theorems (3.1) and (3.2) are given in sections 3.3 and 3.4 hereafter.

3.2.

A simple lemma on projections. For σ ∈ C consider the subspace N (σ) defined by

N (σ) = span{∇f i (σ) | i ∈ Sat(σ)}, with the convention N (σ) = {0} if Sat(σ) = ∅. Denote by Π N σ (resp. Π T σ )
the orthogonal projection on N (σ) (resp. on N (σ) ⊥ , where N (σ) ⊥ represents the orthogonal subspace of N (σ)). It is easy to check that

N (C, σ) ⊂ N (σ) and N (σ) ⊥ ⊂ T (C, σ).
We have the following technical lemma. Lemma 3.3. Let σ ∈ C. Then, the following identities hold true

(65) Π N (C,σ) = Π N (C,σ) • Π N σ and Π T (C,σ) = Id -Π N (C,σ) • Π N σ .
Here, the symbol • denotes the composition operator of functions.

This lemma will simplify the search for the closed form expressions of the projections on the normal and tangent cones. Indeed, given τ ∈ M 3×3 sym , Π N (C,σ) τ can be computed by following the two steps: i. The first step consists of finding the orthogonal projection τ N of τ on N (σ):

τ N = i∈Sat(σ) β i ∇f i (σ),
where β i , i ∈ Sat(σ) are (unsigned) real numbers such that i∈Sat(σ)

β i ∇f i (σ) : ∇f k (σ) = τ : ∇f k (σ) for all k ∈ Sat(σ).
ii. The second step consists of projecting τ N (which lives in the finite dimensional space N ) onto N (C, σ). This projection coincides with Π N (C,σ) τ , the projection of τ on N (C, σ), according to Lemma 3.3.

The projection Π T (C,σ) is then obtained from the second identity in (65).

Proof of Lemma 3.3 -Let τ ∈ M 3×3 sym and set τ // = Π N σ τ and τ ⊥ = Π T σ τ . Thus, τ = τ // + τ ⊥ . In view of Lemma 2.1, we can also write

τ // = τ N + τ T ,
where τ N = Π N (C,σ) τ // and τ T = Π T (C,σ) τ // . Set τ T = τ T + τ ⊥ . Obviously, τ T ∈ T (C, σ) since N (σ) ⊥ ⊂ T (C, σ) and that T (C, σ) is a convex cone. In addition, τ T : τ N = 0 and τ = τ N + τ T . Thus, τ N = Π N (C,σ) τ and τ T = Π T (C,σ) τ , thanks to Lemma 2.1. This ends the proof.

Remark -The hypothesis that C is insensitive to hydrostatic pressure is not required in Lemma 3.3.

3.3.

The case of one saturated yield function: Proof of Theorem 3.1. In this subsection we consider the case of a single saturated yield function, that of points σ ∈ C for which |Sat(σ)| = 1, where |Sat(σ)| denotes the cardinality of the set Sat(σ). Without loss of generality, we assume that (66) f 1 (σ) = k 1 and f i (σ) < 0 for 2 i m.

Thus,

T (C, σ) = {ϕ ∈ M 3×3 sym | ϕ : ∇f 1 (σ) 0}, and 
N (C, σ) = {p∇f 1 (α) | p 0}. Proposition 3.4. Let σ ∈ C such that (66) holds true. Let τ ∈ M 3×3 sym . Then, Π N (C,σ) (τ ) = max(0, τ : ∇f 1 (σ)) ∇f 1 (σ) 2 ∇f 1 (σ), (67) Π T (C,σ) (τ ) = τ - max(0, τ : ∇f 1 (σ)) ∇f 1 (σ) 2 ∇f 1 (σ). (68) 
We recall that as a consequence of Salter's condition in (57) and convexity, we have ∇f 1 (σ) = 0 whenever f 1 (σ) = k 1 . We may also observe that the condition in [START_REF] Rockafellar | Convex Analysis[END_REF] is not needed in Proposition 3.4.

Proof -Let τ ∈ M 3×3

sym and set

η = τ -c 0 ∇f 1 (σ) with c 0 = max(0, τ : ∇f 1 (σ)) ∇f 1 (σ) 2 .
Obviously η ∈ T (C, σ). We observe that c 0 η : ∇f 1 (σ) = 0. Let κ be an element of T (C, σ). Then,

τ -κ 2 -τ -η 2 = (τ -η) + (η -κ) 2 -τ -η 2 = 2(τ -η) : (η -κ) + η -κ 2 = 2c 0 ∇f 1 (σ) : (η -κ) + η -κ 2 = -2c 0 ∇f 1 (σ) : κ + η -κ 2 0.
It follows that η minimizes τκ over T (C, σ). The rest of the proof follows thanks to lemma 2.2, from the fact that c 0 ∇f 1 (σ) ∈ N ((C, σ) and that the observation that this quantity is perpendicular to η.

Remark -A sufficient condition for the yield domain C to be stable to hydrostatic pressure variations (Condition 31) is that the functions f 1 , f 2 , • • • , f m depend only on the invariants J 2 and J 3 . We note here that if f 1 (σ) = F 1 (J 2 (σ), J 3 (σ)) for some differentiable function F 1 , then,

∇f 1 (σ) = ∂F 1 ∂J 2 (J 2 (σ), J 3 (σ))σ + ∂F 1 ∂J 3 (J 2 (σ), J 3 (σ))(σ 2 - 2 3 J 2 (σ)I).
(thanks to formula ( 26)), which yields a straightforward formula for computing the tangent and normal cones.

The proof of theorem 3.1 follows from Formulas (67) and (68).

3.4. The case of two saturated yield function: Proof of Theorem 3.2. In this subsection we consider the case of two saturated yield functions, that is when

|Sat(σ)| = 2.
Let's assume that (69)

f 1 (σ) = k 1 , f 2 (σ) = k 2 , and f i (σ) < k i for 3 i m.
We necessarily have (70) ∇f 1 (σ) and ∇f 2 (σ) are not collinear, otherwise, the two functions could be combined into one and we are back in the case of a single constraint. We know that

T (C, σ) = {ϕ ∈ M 3×3 sym | ϕ : ∇f 1 (σ) 0 and ϕ : ∇f 2 (σ) 0}, N (C, σ) = {η 1 ∇f 1 (α) + η 2 ∇f 2 (α) | η 1 0 and η 2 0}. As per Lemma 3.3, let N (σ) = span{∇f 1 (σ), ∇f 2 (σ)}.
Obviously N (C, σ) ⊂ N (σ). Consider the unit vectors

τ i = 1 ∇f i (σ) ∇f i (σ), i = 1, 2,
and set δ = τ 1 : τ 2 ∈ (-1, 1). The orthogonal projection on N (σ) is given by

(71) Π N σ τ = α 1 (τ )τ 1 + α 2 (τ )τ 2 , where α 1 (τ ) = (τ : τ 1 ) -δ(τ : τ 2 ) 1 -δ 2 , α 2 (τ ) = (τ : τ 2 ) -δ(τ : τ 1 ) 1 -δ 2 .
Proposition 3.5. Under the assumptions in (69) and (70), we have, for τ ∈ M 3×3 sym ,

(72) Π N (C,σ) (τ ) =    Π N σ τ if α 1 (τ ) 0 and α 2 (τ ) 0, max(τ : τ 1 , 0)τ 1 if min(α 1 (τ ), α 2 (τ )) < 0 and τ : τ 1 τ : τ 2 , max(τ : τ 2 , 0)τ 2 if min(α 1 (τ ), α 2 (τ )) < 0 and τ : τ 1 τ : τ 2 . Proof -Let τ ∈ M 3×3 sym and set τ 0 = Π N σ τ ∈ N (σ). From Lemma 3.3 we know that Π N (C,σ) τ = Π N (C,σ) (τ 0 ). We have four distinct cases: (1) τ 0 ∈ N (C, σ), that is α i (τ ) 0 for 1 i 2. Then, Π N (C,σ) (τ ) = Π N (C,σ) (τ 0 ) = τ 0 . (2) τ 0 ∈ T (C, σ), that is if τ : τ i = τ 0 : τ i 0 for 1 i 2. Then Π T (C,σ) (τ 0 ) = τ 0 and Π N (C,σ) (τ 0 ) = 0. (3) τ 0 ∈ N (C, σ), τ 0 ∈ T (C, σ) and τ : τ 1 τ : τ 2 . In this case α 1 (τ ) -α 2 (τ ) = (τ : τ 1 ) -(τ : τ 2 ) 1 -δ 0.
Thus α 1 (τ ) α 2 (τ ). Necessarily τ : τ 1 > 0 (since τ ∈ T (C, σ)) and α 2 (τ ) < 0 (since τ 0 ∈ N (C, σ)) . We also have

Π N σ τ -(τ : τ 1 )τ 1 = α 2 (τ )(-δτ 1 + τ 2 ).
Hence, (Π N σ τ -(τ : τ 1 )τ 1 ) :

τ i 0 for i = 1, 2. Thus, Π N σ τ -(τ : τ 1 )τ 1 ∈ T (C, σ). Since (τ : τ 1 )τ 1 ∈ N (C, σ) and (τ : τ 1 )τ 1 ⊥ Π N σ τ -(τ : τ 1 )τ 1 , we deduce that Π N (C,σ) (τ 0 ) = (τ : τ 1 )τ 1 and Π T (C,σ) (τ 0 ) = Π N σ τ -(τ : τ 1 )τ 1 . (4)
The case τ 0 ∈ N (C, σ), τ 0 ∈ T (C, σ) and τ : τ 2 τ : τ 1 is obtained by simple symmetry.

The proof of Theorem 3.2 follows from Theorem 2.1 and Proposition 3.5.

Examples: Von Mises and Tresca criteria

4.1. Von Mises criterion. In the case of the Von Mises criterion, the yield domain is defined as

(73) C = {σ ∈ M 3×3 sym | J 2 (σ) k}, for some given constant k > 0.
Corollary 4.1. Assume that C is defined by (73) and that J 2 (σ) = k. Then, the constitutive laws in [START_REF] Mises | Mechanik der plastischen Formaenderung von Kristallen[END_REF], [START_REF] Yu | A closed-form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models[END_REF], and (40) are reduced to

εp = max(0, ε : σ) 2k 2 σ, (74) εe = ε - max(0, ε : σ) 2k 2 σ, (75) σ = λtr( ε)I + 2µ ε - µ k 2 max(0, ε : σ)σ. ( 76 
)
Proof -This case corresponds to a single yield function

f 1 (σ) = J 2 (σ) = 1 2 σ 2 .
Using [START_REF] Lode | Versuche über den Einflußder mittleren Hauptspannung auf das Fließen der Metalle Eisen Kupfer und Nickel, Metalle Eisen Kupfer und Nickel[END_REF] gives

∇f 1 (σ) = σ. Hence, ∇f 1 (σ) 2 = σ 2 = 2J 2 (σ) = 2k 2 .
Replacing in (59), ( 60) and (61) gives formula (74), ( 75) and (76).

Tresca criterion.

The well known Tresca criterion (or the maximum shear stress criterion) corresponds to the yield domain

(77) C = {σ ∈ M 3×3 sym | f T (σ) k}, where (78) f T (σ) = 1 2 (λ 1 (σ) -λ 3 (σ)).
This is a convex function since

(79) f T (σ) = 1 2 (λ 1 (σ) + λ 1 (-σ)) and λ 1 (σ) = max u =1 σ : (u ⊗ u).
Also, the hydrostatic pressure stability condition in ( 31) is satisfied since

∀σ ∈ M 3×3 sym , ∀θ ∈ R, f T (σ + θI) = f T (σ)
. However, it is easy to see that the function f T is not everywhere differentiable.

Remark -

Of course, the definition in (79) is based on the assumption that the eigenvalues of σ are ordered (λ 1 (σ) λ 2 (σ) λ 3 (σ)). However, one can also use the definition

f T (σ) = 1 4 (|λ 1 (σ) -λ 2 (σ)| + |λ 2 (σ) -λ 3 (σ)| + |λ 1 (σ) -λ 3 (σ)|),
which does not depend on the order of the eigenvalues but makes it clearer that f T is not be everywhere differentiable.

Consistent with the condition in (31), we have

(80) f T (σ) = 1 2 (λ 1 (σ) -λ 3 (σ)).
We are drawn to apply the results of Proposition 3.4, corresponding to the case of a single function to express the constitutive laws for the Tresca yield criterion. However, since the function is not differentiable everywhere, we will have to treat separately the points where f T is not differentiable.

In order to use Proposition 3.1, we would like to express the yield function in terms of the components of σ directly. One sometimes encounters in the literature the smooth function (see, e. g., [START_REF] Lubliner | Plasticity Theory[END_REF], p. 137):

F (σ) = Π 1 i<j 3 ((λ i (σ) -λ j (σ)) 2 -4k 2 ), = 4J 2 (σ) 3 -27J 3 (σ) 2 -36k 2 J 2 (σ) 2 + 96k 4 J 2 (σ) -64k 6 ,
which satisfies

f T (σ) k (resp. f T (σ) = k) =⇒ F (σ) 0 (resp. F (σ) = 0).
This is a one directional implication which clearly is not an equivalence. A simple way to be convinced of this, is to observe that the domain {σ | F (σ) 0} has a smooth boundary, unlike the domain (77) defined by the Tresca criterion which has corners, or from a mathematical point of view, points on the boundary where the normal cone degenerates because the function f T is not differentiable there.

It is enough to characterize the constitutive laws when σ is at the boundary of the yield domain, i.e, when (81)

f T (σ) = k, (k > 0),
i.e, when the plastic yield limit is attained. This characterization goes through two steps: the computation of the normal cone, followed by the computation of the projections on the normal and the tangent cones. The former step requires the calculation of the subdifferential of f T .

We have two distinct cases:

(1) The three principal stresses are distinct; i.e, λ 1 (σ) > λ 2 (σ) > λ 3 (σ). In this case, the function f T is differentiable at σ (and its sub-differential is reduced to a singleton). The projection calculation in this case falls under Proposition 3.4 and Theorem 3.1. (2) Two of the principal stresses are equal, i.e, λ 2 (σ) = λ 1 (σ) = λ 3 (σ) or λ 2 (σ) = λ 3 (σ) = λ 1 (σ). This case is more complex because the subdifferential is not reduced to a point. The computation of the resulting projection will also be more complex and it is not be covered by Proposition 3.4 for a single function nor by Proposition 3.5 for the case of two functions.

We note that the case where the three principal stresses are equal is obviously excluded because of (81). Theorem 4.2. Assume that C is given by (77). Assume that σ satisfies (81) and that λ 1 (σ) > λ 2 (σ) > λ 3 (σ). Let v 1 (σ) and v 3 (σ) be the unitary eigenvectors associated with λ 1 (σ) and λ(σ), respectively. Then, the rules (38), ( 39) and (40) can be rewritten as

εp = q( ε; σ)[v 1 (σ) ⊗ v 1 (σ) -v 3 (σ) ⊗ v 3 (σ)], (82) εe = ε -εp , (83) σ = λtr( ε)I + 2µ ( ε -q( ε; σ)[v 1 (σ) ⊗ v 1 (σ) -v 3 (σ) ⊗ v 3 (σ)]) , (84) with q( ε; σ) = 1 2 max (0, ε : (v 1 (σ) ⊗ v 1 (σ) -v 3 (σ) ⊗ v 3 (σ))) , (85) = 1 2 max 0, ε : (v 1 (σ) ⊗ v 1 (σ) -v 3 (σ) ⊗ v 3 (σ)) . (86) 
The proof of Theorem 4.2 is based on combining Proposition 3.4 and the following Lemma

Lemma 4.3. Let σ ∈ M 3×3 sym such that λ 1 (σ) > λ 2 (σ) > λ 3 (σ).
Let v 1 (σ) and v 3 (σ) be the unitary eigenvectors of σ corresponding to λ 1 (σ) and λ 3 (σ), respectively. Then,

(87) ∇f T (σ) = 1 2 (v 1 (σ) ⊗ v 1 (σ) -v 3 (σ) ⊗ v 3 (σ)),
and thus, ∇f (σ) 2 = 1/2.

Proof -Since the λ i (σ), 1 i 3, are solutions of the equation

λ 3 -J 2 (σ)λ -J 3 (σ) = 0,
we have

λ 1 (σ) = Λ 0 cos ϕ 0 (σ) 3 , λ 2 (σ) = Λ 0 cos( 2π -ϕ 0 (σ) 3 ), λ 3 (σ) = Λ 0 cos( 2π + ϕ 0 (σ) 3 
).

where

Λ 0 (σ) = 4J 2 (σ) 3 , ϕ 0 (σ) = arccos 3 √ 3J 3 (σ) 2J 2 (σ) 3/2 ∈ [0, π]. It follows that f T (σ) = 1 2 (λ 1 (σ) -λ 3 (σ)) = J 2 (σ) sin(θ(σ)) with θ(σ) = π + ϕ 0 (σ) 3 .
Let v 1 (σ), v 2 (σ) and v 3 (σ) be the unitary eigenvectors of σ (and of σ) corresponding to λ 1 (σ), λ 2 (σ) and λ 3 (σ), respectively. Let P (σ) be the orthogonal matrix whose column vectors are v 1 (σ), v 2 (σ) and v 3 (σ). Then, σ = P (σ)D(σ)P (σ) t with

D(σ) =   λ 1 (σ) 0 0 0 λ 2 (σ) 0 0 0 λ 3 (σ)   = 2 √ J 2 √ 3   cos(α) 0 0 0 cos(β) 0 0 0 cos(γ)  
and α = θ -π/3, β = π -θ and γ = π + θ. We have

∇f T (σ) = sin(θ(σ)) 2 J 2 (σ) ∇J 2 (σ) + 1 3 J 2 (σ) cos(θ(σ))∇ϕ 0 (σ), = sin(θ(σ)) 2 J 2 (σ) ∇J 2 (σ) + √ 3 cos(θ(σ)) 2J 2 (σ) 2 sin(ϕ 0 (σ)) 3 2 J 3 (σ)∇J 2 (σ) -J 2 (σ)∇J 3 (σ) . Since J 3 = 2 cos(ϕ 0 )J 3/2 2 /(3 √ 
3) and ϕ 0 = 3θ -π, we get

(88) ∇f T (σ) = cos(2θ) 2 √ J 2 sin(3θ) ∇J 2 (σ) + √ 3 cos(θ) 2J 2 sin(3θ) ∇J 3 (σ).
Combining with [START_REF] Lode | Versuche über den Einflußder mittleren Hauptspannung auf das Fließen der Metalle Eisen Kupfer und Nickel, Metalle Eisen Kupfer und Nickel[END_REF] gives

∇J 3 (σ) = 2 3 J 2 P (σ)   cos(2α) 0 0 0 cos(2β) 0 0 0 cos(2γ)   P (σ) t .
Finally,

∇f T (σ) = 1 2 P (σ)   1 0 0 0 0 0 0 0 -1   P (σ) t = 1 2 (v 1 (σ)v 1 (σ) t -v 3 (σ)v 3 (σ) t ).
Remark -ϕ 0 (σ)/3 is called the Lode angle (see [START_REF] Lode | Versuche über den Einflußder mittleren Hauptspannung auf das Fließen der Metalle Eisen Kupfer und Nickel, Metalle Eisen Kupfer und Nickel[END_REF]). Remark -An alternative proof of the Lemma can be formulated using the characterization in (117) for the subdifferential of f T . We now deal with the case of a double eigenvalue. Assume that λ 2 (σ) = λ (σ) for some ∈ {1, 3} and λ 2 (σ) = λ 4-(σ). Set m = 4 -∈ {1, 3}. Let {v 1 (σ), v 2 (σ), v 3 (σ)} be a corresponding orthonormal basis of eigenvectors of σ. Thus,

(89) σ = 3 k=1 λ k (σ)v k (σ) ⊗ v k (σ) = λ 2 (σ)(v 2 (σ) ⊗ v 2 (σ) + v (σ) ⊗ v (σ)) + λ m (σ)v m (σ) ⊗ v m (σ) Define the subspace (90) G m (σ) = {τ ∈ M 3×3 sym | τ v m (σ) = 0}, and set (91) W m,i (σ) = v i (σ) ⊗ v i (σ), for 1 i 3 and i = m, W m,m (σ) = √ 2 v 2 (σ) v (σ).
We will use the following lemma whose proof is easy but reported in Appendix A for completeness. In what follows Π Gm(σ) denotes the orthogonal projection on G m (σ). Obviously, for all

τ ∈ M 3×3 sym (92) Π Gm(σ) τ = 3 i=1 (τ : W m,i (σ))W m,i (σ).
We set

(93) S m (σ; τ ) = Π Gm(σ) τ -λ m (Π Gm(σ) τ )I.
We observe that for all τ ∈ M 3×3 sym

• S 3 (σ; τ ) (resp. S 1 (σ; τ )) is symmetric semidefinite positive (resp. semidefinite negative) (since

λ 1 (Π G 3 (σ) τ ) λ 2 (Π G 3 (σ) τ ) λ 3 (Π G 3 (σ) τ )). • Π Gm(σ)
τ and S m (σ; τ ) commute with σ.

• 0 is an eigenvalue of Π Gm(σ) τ (it is an eigenvalue of all elements of G m (σ)), For Π Gm(σ) τ = 0, we set

(94) ρ m (σ; τ ) = max( 1 4 + (-1) (3-m)/2 3 4 3 k=1 λ k (Π Gm(σ) τ ) 3 k=1 |λ k (Π Gm(σ) τ )| , 0) ∈ [0, 1],
and, by convention, we set ρ m (σ; τ ) = 0 when Π Gm(σ) τ = 0.

Theorem 4.5. Assume that C is given by (77), that σ satisfies (81) and that λ 2 (σ) = λ (σ) for some ∈ {1, 3} and λ 2 (σ) = λ m (σ) with m = 4 -. Then, the rules (38), ( 39) and (40) can be rewritten as 

εp = ρ m ( ε; σ)[S m (σ; ε) -tr(S m (σ; ε))v m (σ) ⊗ v m (σ)], (95) 
(κ)v 3 (σ) ⊗ v 3 (σ) | κ ∈ M 3×3 sym,+ , κv 3 (σ) = 0}. (b) N (C T , σ) = {κ -tr(κ)v 3 (σ) ⊗ v 3 (σ) | κ ∈ M 3×3 sym,+ , κσ = σκ}. (c) Π N (C T ,σ) (τ ) = Π N (C T ,σ) (τ ) for all τ ∈ M 3×3 sym . (d) For all τ ∈ M 3×3 sym (99) Π N (C T ,σ) (τ ) = ρ 3 (σ; τ )[S 3 (σ; τ ) -tr(S 3 (σ; τ ))v 3 (σ) ⊗ v 3 (σ)].
Proof of Proposition 4.6 -(a) This characterization of the normal cone can be found in [START_REF] Boulmezaoud | Some mathematical observations on plasticity[END_REF]. It can also be deduced from the characterization in (117) due to [START_REF] Lewis | Convex analysis on the Hermitian matrices[END_REF] (Theorem 8.1).

(b) If κ ∈ M 3×3 sym,+ , κv 3 (σ) = 0, then 0 is an eignenvalue of κ. Spectral decomposition of κ gives κ = α 1 w 1 ⊗ w 1 + α 2 w 2 ⊗ w 2 with α i ∈ R and w i ∈ {v 3 (σ)} ⊥ = span{v 1 (σ), v 2 (σ)} = N (σ -λ 1 (σ)I), 1 1 2.
It is then easy to check that σ and κ commute. Conversely, if σ and κ commute then κv 3 (σ) is an eigenvector of σ corresponding to the eigenvalue λ 3 . Thus, v 3 (σ) is an eigenvector of κ. Let α 3 be the corresponding eigenvalue. Then, κ 0 = κ -α 3 v 3 ⊗ v 3 is also semidefinite positive and satisfies κ 0 v 3 (σ) = 0. (c) This is a direct consequence of [START_REF] Sewell | A plastic flow rule at a yield vertex[END_REF]. (d) We need to calculate the projection of any τ ∈ M 3×3 sym on N (C T , σ). In view of the characterization above of N (C T , σ) one is lead to consider the minimization problem (100) min

κ∈M 3×3 sym,+ ∩G 3 (σ) τ -κ + tr(κ)v 3 ⊗ v 3 2 .
Since tr(κ -tr(κ)v 3 ⊗ v 3 ) = 0 for all κ ∈ M 3×3 sym , problem (100) can be reformulated in terms of the deviatoric of τ as follows (101) min

κ∈M 3×3 sym,+ ∩G 3 (σ) τ -κ + tr(κ)v 3 ⊗ v 3 2 . Set F = span{v 3 ⊗ v 3 }, H = (F ⊕ G 3 (σ)) ⊥ , where (F ⊕ G 3 (σ)) ⊥ denote the orthogonal complement of F + G 3 (σ) as a subspace of M 3×3
sym . We may observe that G 3 (σ) is orthogonal to F and (102)

M 3×3 sym = F ⊕ ⊥ G 3 (σ) ⊕ ⊥ H. Besides, I ∈ F ⊕ G 3 (σ) since I = 3 k=1 v k ⊗ v k = v 3 ⊗ v 3 + W 1 + W 2 . Since H = (F ⊕ G 3 (σ)) ⊥ and I ∈ F ⊕ G 3 (σ) we get (103)
tr(η) = η : I = 0 for all η ∈ H.

Now, we can write

τ = τ F + τ G + τ H ,
with τ F , τ G , τ H the orthogonal projections of τ on the subspaces F , G and H respectively. We may observe that

τ F = (τ : v 3 ⊗ v 3 ) v 3 ⊗ v 3 = a 3 v 3 ⊗ v 3 with a 3 = τ : v 3 ⊗ v 3 .
Observing that tr(τ ) = 0 and tr(τ H ) = 0 (thanks to (103)), we that a 3 = tr(τ F ) = -tr(τ G ). Problem 101 becomes min

κ∈M 3×3 sym,+ ∩G τ F + tr(κ)v 3 ⊗ v 3 2 + τ G -κ 2 , or (104) min κ∈M 3×3 sym,+ ∩G 3 (σ) (tr(κ) -tr(τ G )) 2 + τ G -κ 2 ,
Let {w 1 , w 2 , v 3 } be an orthonormal basis of eigenvectors of τ G with µ 1 , µ 2 and 0 the corresponding eigenvalues (the vector v 3 is already an eigenvector). We can write

τ G = µ 1 w 1 ⊗ w 1 + µ 2 w 2 ⊗ w 2 .
Since a 3 = -tr(τ G ) we have (105)

a 3 = -µ 1 -µ 2 .
Any tensor κ of G 3 (σ) can be written in the form

κ = xw 1 ⊗ w 1 + yw 2 ⊗ w 2 + zw 1 w 2 ,
with x = κ : w 1 ⊗ w 1 , y = κ : w 2 ⊗ w 2 and z = 2κ : w 1 w 2 = 2κ : w 1 ⊗ w 2 . The corresponding matrix is semidefinite positive if and only if x 0, y 0 and z 2 4xy. In view of these elements, we can reformulate (101) as follows (106) min

x 0,y 0,z 2 xy

(x + y -µ 1 -µ 2 ) 2 + (µ 1 -x) 2 + (µ 2 -y) 2 + z 2 /4. Remark -We have Π G 3 (σ) I = v 1 (σ) ⊗ v 1 (σ) + v 2 (σ) ⊗ v 2 (σ) = I -v 3 (σ) ⊗ v 3 (σ).
Hence, we get the identity

(112) Π G 3 (σ) (τ ) = Π G 3 (σ) (τ ) - tr(τ ) 3 (I -v 3 (σ) ⊗ v 3 (σ)) .
We also deduce the identities

3 k=1 λ k (Π G 3 (σ) τ ) = 3 k=1 λ k (Π G 3 (σ) τ ) - 2tr(τ ) 3 , 3 k=1 |λ k (Π G 3 (σ) τ )| = 3 k=1 |λ k (Π G 3 (σ) τ ) - tr(τ ) 3 | - |tr(τ )| 3 .

Concluding remarks

5.1. Main results. The reformulation of the perfectly elasto-plastic model described in Section 2 is based in general on two main steps: (a) the characterization of the normal and tangent cones at any given point of the yield surface, (b) the projection of the strain rate and its Hooke law-transform on these cones at each point of the yield domain, according to Equations 38, 39, and 40. The result is an explicit evolution equation for the internal stress σ (41) which together with the flow evolution equations form a closed system of PDEs [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF].

In Sections 3 and 4, we have considered the particular case when the yield domain is described by an arbitrary (finite) number one functional constraints (convex and differentiable) and obtained the explicit expression of these projections when only one or only two of these constraints are saturated at a given boundary points. We then looked at the most common practical examples of the Von Mises and Tresca yield criteria. As we saw, while the Von Mises examples fall into the case a single functional constraint, the example of the Tresca criterion turned out to be much more complex and required a separate treatment. Nevertheless, but using several convex analysis and linear algebra tools, we were able to reduce it explicitly into the form in [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF]. This demonstrate that our is general and can applied in principle to all imaginable yield criteria. 5.2. General case of spectral yield functions. In the light of the Von Mises and Tresca examples considered here, it could be observed, however, that in most practical situations the yield functions are spectral. A function f : M 3×3 sym → R is said to be spectral (or weakly orthogonally invariant) if f (τ στ -1 ) = f (σ) for any σ ∈ M 3×3 sym and τ ∈ O 3 (see, e. g., [START_REF] Lewis | Convex analysis on the Hermitian matrices[END_REF] and [START_REF] Jarre | Convex Analysis on Symmetric Matrices[END_REF]). Thus, f is spectral if and only if there exists a permutation invariant function f : R n → R such that 

(114) f (v 1 , • • • , v n ) = f (Diag(v)).
For example, in the case of the Von Mises yield criterion (73) we have

f M (v 1 , v 2 , v 3 ) = 1 6 
1 i<j 3 (v i -v j ) 2 ,
while for the Tresca criterion (78) we have fT (v 1 , v 2 , v 3 ) = 1 2

1 i<j 3 |v i -v j |.
Spectral functions have been the subject of much mathematical work which is not fully exploited in plasticity or fracture mechanics (see, e. g., [START_REF] Lewis | Convex analysis on the Hermitian matrices[END_REF], [START_REF] Jarre | Convex Analysis on Symmetric Matrices[END_REF], [START_REF] Horn | Matrix Analysis[END_REF], [START_REF] Daniilidis | Prox-regularity of spectral functions and spectral sets[END_REF] and references therein). The purpose of this section is to show that one can go much further in characterizing projections on the normal and tangent cones for spectral yield domains.

Proposition 5.1. Assume that C is defined by inequalities (3) with f i spectral for all 1 i m, and that int(C) = ∅. Then, for all σ, (115) We also know that (see, e. g., [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF], Lemma 4.4.1) ∂F (σ) = co ∪ i∈J(σ) ∂f i (σ) , with J(σ) = {i | 1 i m and f i (σ) = 0}, (where co(A) denotes the convex hull of A, A being a subset of M 3×3 sym ). Thus,

N (C, σ) = { m i=1 α i τ t i Diag(v i )τ i | τ i ∈ O 3 , α i 0, v i ∈ ∂ f i (λ(σ)), α i f i (σ) = 0,
N (C, σ) = m i=1
µ i η i | µ i 0, η i ∈ ∂f i (σ) and µ i f i (σ) = 0 .

We then obtain (115) by using the following characterization of ∂f i (see [START_REF] Lewis | Convex analysis on the Hermitian matrices[END_REF], Theorem 8. The study of this equation of elasto-plastic waves remains to be done. The authors also plan to extend the approach proposed here to elasto-plastic deformations with hardening. This is the subject of a paper in preparation. Moreover, a near future goal is to apply the results obtained here in the modelling and study of the behaviour of sea ice dynamics, which is shown to behave like an elasto-plastic material [START_REF] Coon | Modeling the pack ice as an elastic-plastic material[END_REF]. However, because of the apparent technical difficulty early authors who worked on this subject either assumed that the elastic deformations are ignored when the plastic regime is reached [START_REF] Coon | Modeling the pack ice as an elastic-plastic material[END_REF] or that the sea ice is assumed to behave as a viscous plastic material [START_REF] Hibler | A dynamic thermodynamic sea ice model[END_REF]. Also, due to large difference between the horizontal and vertical (thickness) extends of sea ice, it is effectively considered a 2D material.
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 44 Elements of G m (σ) commute with σ and {W m,1 (σ), W m,2 (σ), W m,3 (σ)} is an orthonormal basis of G m (σ).

Proposition 4 . 6 .

 46 εe = εεp , (96) σ = λtr( ε)I (97) +2µ ( ε -ρ m ( ε; σ)[S m (σ; ε) -tr(S m (σ; ε))v m (σ) ⊗ v m (σ)]) . (98)The proof of Theorem 4.5 is mainly based on the following proposition. Assume that f (σ) = k and that λ 1 (σ) = λ 2 (σ) > λ 3 (σ). Then, (a) N (C T , σ) = {κ -tr

  (113) f (σ) = f (λ 1 (σ), • • • , λ n (σ)). ( f is said to be permutation invariant if f (v π(1) , • • • , v π(n) ) = f (v) for any v ∈ R n and any permutation π of {1, • • • , n}).Obviously, such a function f is unique since

  τ t i Diag(λ(σ))τ i = σ}. Proof -The proof is a straightforward consequence of widely known results in convex analsyis. Set (116)F (σ) = max 1 i m f i (σ).Obviously, F is convex, spectral and C = {F 0}. If F (σ) = 0 then (see, e. g.,[START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF], Theorem 1.3.5 p 172) N (C, σ) = {µτ | τ ∈ ∂F (σ) and µ 0}.

5 . 3 .

 53 ∂f i (σ) = {τ t Diag(w)τ | w ∈ ∂ f i (λ(σ)), τ ∈ O 3 , τ t Diag(λ(σ))τ = σ}.Outlook. The formulation we proposed here clearly reveals the nature of the nonlinearity of perfect elasto-plasticity. Through the expressions in[START_REF] Mises | Mechanik der plastischen Formaenderung von Kristallen[END_REF] to (44), the rules governing the behaviour of an elasto-plastic material are effectively reduced to the calculation of the projectors on the tangent and normal cones of the yield domain. This led us to propose the new equation of motion (118) ∂ 2 v ∂t 2 -div H (σ, ε(v)) = ∂h ∂t .

  The identity tensor of second order (resp. of order four) will be denoted by I (resp. Id). Given an integer n 1, M n×n sym denotes the space of n × n symmetric matrices, M n×n sym,+ is the subset of M n×n sym comprised of positive semidefinite matrices and O n is the group of n × n orthogonal matrices. Given a symmetric tensor σ ∈ M 3×3 sym , λ 1 (σ), λ 2 (σ) and λ 3 (σ) denote its principal values (or eigenvalues) aranged in decreasing order: λ 1 (σ) λ 2 (σ) λ 3 (σ).

	and
	σ = {σ 2 11 + σ 2 22 + σ 2 33 + 2σ 2 12 + 2σ 2 13 + 2σ 2 23 } 1/2 .
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We have obviously z = 0 when the minimum is reached and the problem becomes (107) min

x 0,y 0

This quadratic optimization problem can be solved by writing usual Karush-Kuhn-Tucker (KKT) conditions. The minimizer is

We would now like to write κ 0 as

This is possible if and only if

Hence, if µ 2 = µ 1 this system has one and only one solution

When µ 2 = µ 1 we know that x 0 = y 0 (thanks to (108)) and we can take (110) α = 1 and β = -min(µ 1 , 0).

Using (108) we can prove that if (µ 1 , µ 2 ) = 0 then

In this case, since tr(M 0 ) = αtr(τ G ) + 3β, we can write

with τ G = τ G -min(µ 1 , µ 2 , 0)I. This ends the proof of formula (99).

Proof of Theorem 4.6 -When λ 1 (σ) = λ 2 (σ) > λ 3 (σ) the result is a straightforward consequence of Theorem 2.1 and Proposition 4.6. Assume that λ 1 (σ) > λ 2 (σ) = λ 3 (σ). We have λ k (-σ) = λ 4-k (σ) for 1 k 3 and

Combining with Theorem 2.1 ends the proof.

Obviously, W m,i ∈ G m (σ) for 1 i 3. Furthermore, one can easily show that for i = m and j = m W m,i : W m,j = δ i,j , W m,i : W m,m = 0, W m,m : W m,m = 1. Furthermore, let κ ∈ G m (σ). Since κv m (σ) = 0, 0 is an eigenvalue of κ. Let {u 1 , u 2 , v 3 } be an orthonormal basis of eigenvectors of κ. We have the spectral decomposition

On the other hand,

Thus, for each i 2 there exists real numbers α i , β i such that u i = α i v 1 + β i v 2 . It follows that

We conclude that {W 1 , W 2 , W 3 } is an orthonormal basis of G m (σ).