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Introduction
Risk and disaster prevention has become a major societal issue over the past years. 
During the last decades, the number of disasters has increased and major crises have 
revealed the complexity of these events. Besides being a physical, natural or techno-
logical event, a catastrophe also has human, economic, financial, social, environmen-
tal and cultural effects. Modern societies, whatever their level of development, are still 

Abstract 

One of the major current challenges in the field of security and safety of populations 
is to advance further in the understanding and the ability to anticipate their behaviors 
when faced with threats or disasters. Several factors such as the hazard properties or 
the culture of risk can influence people behavior during a disaster. In this paper, we 
assume that the spatial configuration of the site where the disaster takes place has also 
a significant impact on collective behaviors. For this, we use a mathematical model 
based on meta‑population networks, in order to design realistic evacuation scenarios. 
This model, called the Alert‑Panic‑Control model, allows, on the one hand, to take into 
account the temporal dynamics of collective behaviors in front of disaster and on the 
other hand, the spatial context considered in terms of site maximum capacity. From 
the results of a in situ experiment carried out in 2019 with the population of Le Havre 
(France) concerning an industrial accident hypothesis, and in particular from the differ‑
ent evacuation paths chosen by the respondents, three scenarios of evacuation of the 
place located below the street level and in front of the  Niemeyer Cultural Centre were 
built. The results are able to quantify how the contagion of panic has a major impact 
or not on an evacuation forced by specific territorial properties. Too narrow paths can 
cause panic phenomena due to bottleneck. They also highlight that the function of the 
refuge places, recreational function in this case, must be taken into account insofar as 
they can gather many people, impeding the evacuation of the population exposed to 
the danger.
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unprepared to face the complexity of disasters and in general the population does not 
know how to behave in such situations. This partial ignorance of human behavior in 
front of catastrophic events is not only peculiar to population and/or decision-makers. It 
also depends on the difficulties of researchers in the understanding the range of behav-
iors adopted during a disaster (Crocq 2013), their sequence, dynamics and interdepend-
ence (Provitolo et al. 2015).

Research in geography shows that the influence of territorial and spatial contexts must 
be taken into account in order to better understand the collective behavioral dynam-
ics during a catastrophic event (Dubos-Paillard et  al. 2021; Provitolo et  al. 2020). 
Geographers consider that space is not a neutral support. Produced by societies, it is 
heterogeneous and anisotropic. As a result, it constrains the adopted behaviors, if only 
by the topography and the organisation of the buildings and the infrastructures in an 
urban area. In urban areas where the spatial extent of the disaster is large, the variety of 
observed behaviors may be wide. This variety also depends on the location, the intensity 
of the event, the social group, etc (Provitolo et al. 2015; Fischer 1998). Thus, for a same 
kind of disaster people’s responses can be different. Moreover, during a disaster, individ-
uals scarcely adopt the same behavior during the whole event. Indeed, we often observe 
a sequence of several behaviors.

Nevertheless, researchers have few empirical information about the real evolution of 
population response, because of the difficulties to collect real-time observation and to 
analyse human reactions during disasters. Therefore, the main sources of information 
about the behaviors adopted during a disaster are interviews and surveys carried out 
with operational actors, residents and victims after (or before) a disaster and in a specific 
territory.

In order to advance further in this research field, an interdisciplinary approach has 
been undertaken under the Com2SiCa research program. It combines an innovative 
experiment methodology with a mathematical modeling based on the APC (Alert-Panic-
Control) model applied to a network (Lanza et al. 2021).

The experiment consisted in the implementation of an in situ simulation based on a 
sound immersion in a real place where the occurrence of a disaster was plausible (Lago 
et al. 2022). During the sound immersion, interviewees were asked to react to what they 
heard in the soundtrack. This permitted to observe and record real-time participants’ 
behaviors, to monitor the stress level before and after the sound immersion, and to get 
information about the escape routes chosen during the experience.

In literature, a mathematical model describing the temporal dynamics of collective 
behaviors when faced with a disaster has been proposed (Verdière et  al. 2014; Cantin 
et al. 2016). In order to consider the influence of the territorial properties, in previous 
works we modeled the geographical area under study as a network (Lanza et al. 2021; 
Cantin 2017). The territory is therefore subdivided in different areas that correspond to 
the nodes of the network. By exploiting a meta-population approach, each node hosts a 
sub-population whose dynamics is governed by a APC model. Moreover, this sub-popu-
lation can move to the adjacent nodes of the network and influence their dynamics.

The aim of this work is to exploit the information collected during the surveys as an 
input to the mathematical model. Our objective is not to identify parameters from data 
in order to reproduce the evolution of a complex situation subject to many hazards. Our 
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purpose here is to exploit the information on the trajectories adopted in the stressful 
survey situation to design several realistic evacuation networks and scenarios. In par-
ticular, we are interested to investigate to what extent the spatial context and the urban 
functions influence the individual and collective behavioral dynamics. We show that 
our approach and our mathematical model permit to evaluate how behavioral dynamics 
impact evacuation paths in terms of hazard potential. This paper is structured as follows. 
First, the protocol of the in situ experiments and their results are briefly presented. Then, 
the Alert-Panic-Control Behavior (APC) mathematical model and its implementation on 
a network are explained. Finally numerical simulations of realistic evacuation scenarios 
designed by exploiting the data from the surveys are shown and discussed. We show that 
the maximal number of individuals that a place can host and the presence of people in 
a shelter at the onset of the event have an influence on the behavioral dynamics and can 
lead to a crisis in the crisis phenomena.

Field surveys to identify behavioral responses and escape trajectories 
in stressful situations
Surveys protocol

In 2018 and 2019, two in situ experiments (Lago et al. 2022) have been conducted: the 
first one on the seafront of Nice (France) where a tsunami hazard scenario has been 
investigated, and the second one in Le Havre (France) where the occurrence of a major 
technological catastrophic event has been considered. The surveys carried out aimed to 
immerse the participants in two distinct disaster scenarios, one of natural origin, the 
other of technological one. Their common factor is to simulate a sudden, rapid occur-
rence with little or no warning signs of a major event.

In this paper we mainly focus on the survey in Le Havre. The in  situ experiment 
in Le Havre took place in two different part of the city: at the seaside and in the city 
center, near the Niemeyer Cultural Centre. This place is of particular importance since 
it is a semi-closed esplanade with buildings open to the public (a city library, Le Vol-
can theater and a restaurant). Moreover, it is below the street level and surrounded by 
residential buildings, see Fig. 1. Three different exits can be taken in order to go up to 
the street level: via a narrow spiral footbridge it is possible to arrive to a small terrace 
with some restaurants and a porch (denoted by B in Fig. 1), while a larger staircase and 
an access ramp lead to Louis Brindeau Street (denoted by C in Fig. 1) and Place Per-
ret square. Due to its location in the basement, behavioral reactions take place without 
being aware of the events that could occur in the city. The difficulty of identifying the 
origin of a loud blast is likely to increase the stress because the interpretations can be 
different from one person to another (terrorist attacks, industrial explosion, collapse of 
a building, etc). When people cannot clearly identify the source of the danger, imita-
tion processes are often important and can lead to collective panic (Helbing et al. 2002; 
Moussaïd 2010).

The purpose of these experiments was to analyze people reactions facing a simu-
lated danger, and to observe and record the different behavioral sequences of each 
interviewee immersed into a scenario of a sudden, unforeseen (without pre-warn-
ing signs) disaster. The investigation seeks to provide the keys to understanding the 
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questionings, the reasonings and the behaviors that one might expect in such situa-
tions. Between in  situ simulation and interview, the investigation was structured in 
three steps (see Fig. 2):

• visual immersion
• sound immersion
• debriefing of the experience.

In particular, the second step consisted in a role-play scenario, where the interviewee 
was asked to listen to an audio track and react in the more naturally way. The sound 

Fig. 1 Cross sectional view of the Niemeyer Cultural Centre area. We can note the two main exits from the 
basement: the spiral footbridge at the center towards the restaurants area and a porch (B) and the large 
staircase on the right towards Louis Brindeau Street (C)

Fig. 2 Steps and purposes of the survey protocol (Lago et al. 2022)
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immersion aims to project the interviewee into a dynamic and fictitious (but cred-
ible) situation of a sudden and unforeseen disaster. During this immersion, the per-
son, depending on his/her emotional response, which may be more or less strong, 
reacts to the situation by adopting different behaviors. During this phase, no specific 
instructions were given to the volunteer except to listen carefully to the audio track. 
He/she reacts as he/she wishes, the researcher does not ask questions or suggest to 
adopt a particular behavior.

Categorization of human behaviors during a catastrophic event

The analysis of data from individual interviews with residents has enabled us to identify 
nearly twenty reactions (panic or reflective flight, mutual aid, seeking shelter, or simply 
moving away from the danger zone, to give just a few examples) (Dubos-Paillard et al. 
2021; Tricot et al. 2021). As this diversity of behavioral reactions cannot be integrated 
into mathematical models, we have found a consensus between thematicians and model-
ers while keeping the detail of the information obtained from the surveys. We have thus 
categorized this behavioral diversity on the basis of two criteria used in emotional psy-
chology to qualify reactions: the variables of emotional load and emotional regulation. 
The first takes into account the level of stress and nervousness, while the second refers 
to the ability to control this excess of emotions (Russell 1980). These two key variables 
allowed us to categorize the diversity of behavioral responses observed during the sur-
vey into three meta-behaviors: alert, controlled and panic behaviors, presented below.

• Alert behaviors (A) are micro-behaviors that can be observed from a motor point 
of view (e.g., a start or a rapid eye movement to scan what is happening in the near 
visual environment). This behavior marks a transition from the behavior that was 
appropriate for the current activity (e.g., jogging or driving to work). In an alert state, 
the person has an emotional charge which is weak, due to the state of uncertainty of 
the situation. This means that there has not yet been a significant rise in stress.

• Control behaviors (C) have the common feature of being reflective behaviors where 
the emotional load, more or less strong, is regulated. By regulating their emotions, 
the person seeks to adapt their reactions to the context of the disaster. These reac-
tions can be very varied. It is possible to observe behaviors such as controlled flight, 
taking shelter, and mutual aid, as well as less virtuous behaviors, such as theft or loot-
ing. In addition, it should be noted that not everyone behaves in the same way when 
faced with an identical situation. During an explosion, for example, people may seek 
shelter in the nearest building, others may instead prefer to flee and return home.

• Panic behaviors (P) are uncontrolled behaviors where fear-related emotions have 
taken over. Panic behavior involves a strong emotional charge and weak regulation, 
ineffective in regaining a controlled state. Different behaviors can signify a state of 
panic: panic flight or, on the contrary, stupor (Crocq 2013). The first is characterized 
by movement while the second, in contrast, is marked by immobility.
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Trajectories adopted in stressful situations

Among the control and panic behaviors, some produce movement while others are marked 
by immobility. Flight (reasoned or under the influence of panic), evacuation and taking 
shelter behaviors observed during the survey campaign carried out in Le Havre, are asso-
ciated with movement trajectories. In the  Niemeyer Cultural Centre area in Le Havre, 13 
respondents out of 16 adopted movement trajectories, i.e., 81 % of respondents. One of 
the objectives of the surveys carried out was precisely to capture these behaviors and the 
specific trajectories taken by the respondents. By immersing people in a simulated disas-
ter context, filming their reactions and equipping them with a smartwatch, we were able 
to map all of the paths taken to leave the danger zone (Ranarimahefa 2020). The extracted 
information from the interviews has been gathered and treated so as to render a geographi-
cal visualization of the different trajectories chosen by people. This map (Fig. 3) shows two 
different rationales for movement: some of the respondents tried to leave the danger zone 
(identified by them as being the basement area of the Niemeyer Cultural Centre) so as not 
to be trapped, while the others instead stayed in this zone in order to reach another building 
in a few seconds, in this case a library, in order to take shelter there. Among the people leav-
ing the area, we can identify three major trajectories: some took the wide stairs or the nar-
rower footbridge to leave the premises on foot, others preferred to go via the access ramp, 
especially those on a bicycle.

These collected, spatialized data allow us to discretize the space under study, to build 
the corresponding network and to feed the mathematical model presented below, in 
order to carry out realistic simulations and anticipate the spatio-temporal behavioral 
dynamics.

Mathematical model
The APC model

The Alert-Panic-Control (APC) model, proposed for the first time in Lanza et al. (2021), 
as the previous model developed in Verdière et al. (2014), Provitolo et al. (2015), Cantin 
et al. (2016), is a nonlinear ODE compartmental model inspired by the classical epidemic 
compartmental models such as the SIR (Susceptible-Infected-Recovered) one (Hethcote 
2000). It is based on the behavioral categorization proposed in the previous section and 
people is assumed to evolve among five main categories of behaviors during a catastrophe: 
the daily behaviors before the catastrophic event, the states of alert, panic and control, the 
behaviors of everyday life after the disaster. They can also die or be severely injured (vic-
tims). We consider two types of transitions from one behavior to another: the ones due to 
intrinsic motivations, that are peculiar to each individual and depend on the past, the indi-
vidual characteristics, etc, or the ones due to imitation processes. Indeed, human behavior 
is often ruled by imitation and social comparison with others (Drury et al. 2009).

We briefly present the variables and the equations of the model, firstly introduced in 
Lanza et al. (2021). We note t0 the initial moment of the catastrophic event and for t ≥ t0

and:
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• a(t) the number of individuals in a state of alert,
• p(t) the number of individuals in a state of panic,
• c(t) the number of individuals in a state of control,
• q(t) the number of individuals in the everyday behaviors,
• b(t) all the people in a behavior of everyday life after the disaster,
• v(t) the number of individuals who lose their lives during the disaster.
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Fig. 3 Mapping of the trajectories chosen by people during the interviews around the Niemeyer Cultural 
Center. These trajectories have been extracted from geolocalized watches. Three main escape directions 
(noted A, B, and C, respectively, on the map) can be identified
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The APC model equations are the following:

According to the flow diagram of Fig. 4, we assumed that, before the event, all the people 
adopt an everyday behavior q. The occurrence of a sudden catastrophic event is modeled 
by function γ . Once the event is triggered, people firstly pass through a state of alert, 
hence the term γ (t)q in the equation for a in system (1). For an unexpected and without 
warning signs event, function γ is defined as

At t = τ0 the event takes place and at t = τ1 the majority of the population in the daily 
behavior becomes alerted.

Then, alerted people adopt a panic or a control behavior, according to an intrinsic 
behavioral transition or an imitation process. All the linear terms in system (1) represent 
intrinsic transitions, while the nonlinear functions F, G and H model the transitions due 
to imitation. In the following, we call them imitation functions. Function F represents 
the imitation of the alert people toward the control one, and is defined as:

(1)
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Fig. 4 Flow diagram for the APC (Alert, Panic and Control) compartment model. The intrinsic transitions are 
represented in solid lines, while the imitation ones in dashed lines
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where ξ(s) =
s2

1+ s2
 , N = N (t) = q(t)+ a(t)+ p(t)+ c(t)+ b(t) , and ε << 1.

Since we are interested in a significant population size, a classical proportional inci-
dence rate is considered (Arino and Van den Driessche 2006; Blackwood and Childs 
2018). Function ξ , represented in Fig. 5, takes into account the assumption that the 
minority tends to adopt by imitation the behavior of the majority.

In the same way we can define the two other imitation functions:

Finally, we supposed that everyday behaviors can be adopted once again after a certain 
time and only starting from a controlled behavior. This transition is taken into account 
by the term −ϕ(t)c in the second equation of system (1). Function ϕ , as function γ , has 
to be chosen according to the nature of the disaster under study. In analogy with func-
tion γ , it is defined as:

The pseudo-daily behavior cannot be adopted before t = τ2 and since t = τ3 this transi-
tion is at its maximum.

It is worth remarking that, by adding up all the equations, we obtain

thus the population is constant in time.
The variables, the functions and the parameters of the APC model are summarized 

in Tables 1, 2 and 3, respectively.
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Fig. 5 Function ξ in the imitation functions F, G and H. This sygmoidal function has been chosen to model 
the fact that the behavior of the majority is the most imitated one
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The APC model on networks

The APC model presented before takes into account only the temporal dynamics of the 
different behavioral categories. However, the territory and its properties play an impor-
tant role on the dynamics of the human behaviors. To include this essential aspect, we 
exploit a mixed approach, based on complex networks and nonlinear differential equa-
tions. First of all, we show how the spatial environment is modeled by a complex network 
adapted to the terrain under study. Then the equations of the APC model on network are 
presented.

Modeling a territory with networks

Our purpose is to study the spatio-temporal dynamics of the different behaviors dur-
ing a catastrophic event in a geographical area. In order to exploit a complex network 

Table 1 Variables of the APC model

Variables Notation

Daily behavior before the catastrophe q(t)

Alert behavior a(t)

Control behavior c(t)

Panic behavior p(t)

Daily behavior after the catastrophe b(t)

Table 2 Fonctions of the APC model

Fonctions Notation

Beginning of the catastrophe γ (t)

Return to a daily behavior ϕ(t)

Imitation between alert and control F

Imitation between alert and panic G

Imitation between panic and control H

Table 3 Parameters of the APC model

Parameters Notation

Intrinsic evolution from alert to control B1

Intrinsic evolution from alert to panic B2

Intrinsic evolution from control to alert B3

Intrinsic evolution from panic to alert B4

Intrinsic evolution from panic to control C1

Intrinsic evolution from control to panic C2

Mortality rates Da , Dp , Dc

Imitation from alert to control α

Imitation from alert to panic β

Imitation from panic to control γp→c

Imitation from control to panic γc→p
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approach, the first step is to divide the territory under study in different sub-areas, 
that will be the nodes of our network. An example of a subdivision of the urban area 
around the Niemeyer Cultural Centre can be found in Fig. 6. The nodes represent a 
region endowed with some specific properties (for instance a surface) and containing 
populations subjected to the panel of behaviors of the APC model (Lanza et al. 2021). 

Fig. 6 Example of a subdivision of the geographical area around the Niemeyer Cultural Centre in Le Havre 
(France). The information on the escape routes chosen by the interviewees (Fig. 3) have guided the selection 
of the sub‑regions. In particular, five sub‑areas, being the nodes of our network, have been identified
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Here physical displacements of people are considered. Therefore, one directed edge 
between two nodes models the fact that people can move from one node to the other.

It is worth remarking that the close tie between the network structure and the geo-
graphical characteristics of the territory under study makes our APC model on network 
very different to the meta-population epidemic models in literature (Arino 2009).

In particular, our network has some properties that directly stem from the fact that 
our nodes represent geographical sub-areas:

• each node i has a surface that we denote Si;
• we suppose that each node i has a maximum capacity, denoted by Nmax

i  , i.e. a 
maximum number of individuals that the node can host. We assume that ρ = 3 
people per m2 is the density beyond which motion begins to stop flowing and pop-
ulation slows down due to its mass (Hermant 2012). Thus, the maximal capacity of 
node i is calculated as 

• Each directed edge has a weight, that is the coupling coefficient. It takes into 
account the fact that an edge represents people displacements between nodes. 
It depends on the properties of the node and on the population that is located 
within, according to the following formula: 

 where:

• Lik is the width of the exit from node i to node k
• 〈vji〉 is the average speed of the population j leaving node i (it is noteworthy that 

this quantity is computed here only with the horizontal components of speed 
vectors)

• Si is the global surface of node i that people leave.

  Figure  7 shows an example of two nodes. the esplanade between the two vol-
cano buildings who has a surface of S1 ≈ 1500 m2 , and the large staircase that 
leads to the Louis Brindeau Street, whose surface is about S2 = 300 m2 . People 
can move from the first node to the second one through a passage whose width is 
L12 = 30 m2 . People in each category of behavior have a different average speed. 
We suppose that people in the alert behavior barely move, since people in an alert 
state are usually in search of information. Moreover, we suppose that the speed of 
individuals in panic is less than the one of individuals in a control behavior. This 
choice has two reasons: firstly among the people in a panic behavior some of them 
could have a freeze response, and secondly others do not always take the right 
route to escape. Therefore, for all 1 ≤ i, k ≤ n , i  = k we have 

Nmax
i = ρSi ≈ 3 Si.

(6)η
j
ik =

Lik�v
j
i�

Si
, 1 ≤ i, k ≤ n, i �= k , j ∈ {a, p, c}

ηaik << η
p
ik < ηcik
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The mathematical equations

Here are our main assumptions for the APC model on network: 

A1:  the network consists of n non-identical nodes, that is the parameters of the APC 
model on each node can be different,

A2:  only linear couplings are considered, i.e. only physical displacements are taken 
into account. In addition, no behavioral transitions are allowed during the 
displacement,

A3:  the network population is constant and equal to N. No population can enter or 
leave the network. On the other hand, the population on each node Ni depends on 
time, since individuals move from one node to another,

A4:  each node k has a maximum capacity, i.e. a maximum number of individuals Nmax
k  

that the node can receive,
A5:  the transitions towards panic can also depend on the density on each node. 

Indeed, we assume that, the more population is in the node, the more it has a ten-
dency to lose control,

A6:  the individuals speed depends on the density in the node. The greater is the den-
sity, the lower is the speed,

A7:  the victims and the population in a daily behavior do not move from one node to 
another one,

A8:  depending on the disaster, we can have nodes that are not directly impacted by 
the hazard and therefore where the population continue to show a daily behavior 

Fig. 7 Example of two nodes. Each node has a surface: here, the first node (in blue) has a surface of 
S1 = 1500m2 , while the second one (represented in red) has a surface of S2 = 300m2 . Moreover, the two 
nodes are adjacent, and the exit from one node to the other is equal here to L = 30 m. This geographical 
information is useful to calculate the coupling coefficients (6)
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even after the occurrence of the disaster. In this case, only the arrival of popula-
tion from the other nodes triggers the APC model on those nodes,

A9:  population can go back to behaviors close to everyday life only on previously 
defined refuge nodes. The presence of people who exhibit again a pseudo-daily 
behavior can help individuals in a panic state to become controlled.

In the following, let us denote by

• Ni = Ni(t) = qi(t)+ ai(t)+ pi(t)+ ci(t)+ bi(t) the number of individuals in the i-
th node at time t.

• N out(i) the out-neighbors set of node i (that is the nodes that are adjacent to node i and 
whose edge starts from i) (West 1996),

• N in(i) the in-neighbors set of node i (that is the nodes that are adjacent to node i and 
whose edge comes into i)

In Fig. 8, an example of network where the out-neighbors and the in-neighbors of a node are 
highlighted is presented.

Thus, the equation for the individuals in the alert behavior of node i ( i = 1, . . . , n ) reads 
as:

The terms in the first line of Eq.  (7) represent the intrinsic and imitation transitions, 
that are already present in the simple APC model (1). Moreover, we have the coupling 
terms that model the fact that individuals in alert behavior can move from one node to 
another. In particular,

(7)
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Fig. 8 Example of network. All the in‑neighbors of node i, noted in the model as N in(i) , are represented in 
blue, while its out‑neighbors nodes belonging to N out(i) are here represented in red
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represents the out-coming flux of node i. The term 1−
Nk

Nmax
k

 in Eq.  (8) takes into 

account that population in node i can move to node k only if node k has not reached its 
maximal capacity (assumption A4). Furthermore, we assume that the average speed is an 
affine function of the density, that is

with wi ∈ [0, 1] . Indeed, the speed of the alert population �vai �
(

wi + 1−
Ni

Nmax
i

)

 is sup-

posed to decrease as the density increases (assumption A6). Moreover, we suppose that, 
when the i-th node is completely full, that is when Ni = Nmax

i  , people inside the node 
move with a speed equal to 〈vai 〉wi.

In the same way,

models the incoming flux and the fact that node i can take in new individuals only if it 
has not yet reached its maximal capacity (assumption A4). The terms

model assumption A8. The dynamics on each node can be triggered both by the hazard 
and by all the population arriving from the adjacent nodes, represented by

since only people in alert, panic and control behaviors can move. Parameter δi ∈ [0, 1] 
is a sort of weight that takes into account which one of these two sources is the one that 
contributes the most to the onset of the APC dynamics on the node. Moreover, the term

takes into account that people in a daily behavior interact with the individuals in the 
alert, panic or control behavior that are already present in the node, and become alerted.

The equations for the individuals in panic and control behaviors have a similar structure, 
that is the terms specific to the transitions already present in the APC model (1) plus the 
coupling terms:
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where

since in the refuge nodes people in panic behavior interact also with the individuals that 
have gone back to a pseudo-normal behavior and become controlled (assumption A9).

In particular, in order to model the assumption A5, that is the fact that the increase of 
the density in one node amplifies the panic behaviors, the intrinsic transition from con-
trol to panic is modified with respect to the same term in the a-spatial APC model (1), as 
follows:

where C̃i
2 =

Ci
2

2
, and Ci

2 is the parameter associated to the intrinsic transition from con-

trol to panic in the a-spatial APC model. This definition permits to link the parameter of 
the a-spatial APC model (1), where the notion of density is not present, and the one of 
the APC model on network. Indeed, Ci

2 can be interpreted as the maximum value that 
we can consider for this transition and we reach it when the node is saturated (that is 
when Ni = Nmax

i ).
Writing down in the same way the equations for people in a daily behavior, for 

the individuals that in the shelters go back to a pseudo-daily behaviors and for vic-
tims, the APC model on a network of n nodes consists in the following 6n equations 
( i = 1, . . . , n):
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with

It is worth noting that the sum of all the equations of system (10) is equal to zero. This 
means that the total population in the network is constant, as stated in A3.

As in the simple APC model (1), we suppose that at t = t0 all the people is in a daily 
behavior. It means that we consider the following initial condition ( i = 1, . . . , n):

(10)
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with 
n

∑

i=1

q0i = N .

Assumption A9 is taken into account by considering ϕi = 0 for all the nodes that are 
not sufficiently far from the impact zone of the disaster and are not labeled as refuge 
nodes. Therefore, in these nodes, since bi(0) = 0 , we have that bi(t) = 0 for all t ≥ t0 , 
that is no one adopts again a pseudo-daily behavior after the beginning of the APC 
dynamics within the node.

Numerical simulations
Description of the scenarios

The extracted information from the interviews fed a set of scenarios based on a popula-
tion of about 1500 individuals. Le Volcan theater is designed to host up to 800 mem-
bers in the audience, without counting the employees. The doors of the theater and the 
library has just closed as well as the restaurant which in the basement. That is why we 
consider a total of 1500 people in the esplanade at the beginning of the simulations.

We assume then that sudden several violent explosions resound. Due to their location 
in the basement, people cannot identify the origin of the blast (industrial accident, col-
lapse of a building or terrorist attacks). This situation leads to high levels of stress among 
the population. The objective of the population is then to leave the esplanade whose spa-
tial configuration is relatively closed and rapidly considered as a potential source of dan-
ger. According to our in situ survey, two paths are preferred by respondents, as shown in 
Fig. 3.

The first one consists of taking the spiral footbridge, whose width is about 2 meters. 
Even if people are aware that this escape path is narrow, it is the closest to the esplanade 
and gives access to a relatively small terrace (see Fig. 1). According to the survey results, 
this alternative was chosen by around 20% of the interviewees (two people over eleven 
have chosen this path), which represents 300 persons that we have located in an area of 
300 m2 next to the spiral footbridge. These elements enable us to design the first scenario 
of the esplanade evacuation.

In a second scenario, which is an alternative to the first one, many people are located 
on the patios of the bars and restaurants located on the terrace. This situation differs 
from the first scenario where there were a very small number of individuals on the ter-
race. Our objective is to analyze if the presence of many people could have a significant 
impact on the evacuation process.

Finally, the third scenario relies on the second path of Fig. 6, which is longer, but whose 
staircase is wider for leaving the basement (30 meters). It gives access to Louis Brindeau 
Street and to the large Place Perret square (see the green area on the top of Fig. 6) that 
offers a broad perspective on the city and enables to more easily identify the origin of the 
explosions. We suppose that the remaining 80% of people, i.e. 1200 individuals located 
on an area of 1200m2 , have chosen this alternative.

In all cases, we considered that the access to the terrace or the square has a reassuring 
effect on the population (satisfaction at having left the basement, better visibility and 
contact with people able to give information about the situation) while a feeling of stress 
prevails in the other areas (basement, footbridge and staircase). Therefore, the terrace 
and Place Perret square are considered as refuge areas.
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Design of the network

The novelty of our approach is that the choice of the topology of the network takes into 
account the real configuration of the place where the surveys were carried out. Moreo-
ver, some of the involved geographical areas exhibit limited capacities to host people, 
therefore some nodes of the network under study—including the refuge nodes—may 
have a small maximum capacity Nmax

k .
The main trajectories chosen by people for evacuating the esplanade have guided us to 

design the networks under study in the different scenarios. In both cases (the two main 
trajectories), a network of three nodes has been designed:

• the first node represents the esplanade in front of Le Volcan theater and the city 
library. It is the same for both trajectories. Indeed, this location is relatively large with 
a high maximal capacity. This capacity has been estimated considering the availa-
ble surface of the area and an averaged maximal density of people. As mentioned 
before, the whole initial population can be divided into two groups according to their 
escaping path choices. One group accounts of 300 people in the first two scenarios 
occupying a surface of 300 m2 , that corresponds to a maximal capacity of 900 people, 
when considering an average maximal density of 3 people per m2 . In the third sce-
nario, we consider an initial population of 1200 people occupying 1200 m2 , that gives 
a maximal capacity of 3600 people.

• The second node corresponds either to the narrow spiral footbridge in path 
1, or to the large staircase in path 2 (see Figs.  1 and 6). The two maximal capaci-
ties are very different in these two cases: in the spiral footbridge, which enables to 
reach the ground level, the surface of the area has been estimated approximately to 
50m2 , therefore it can hold Nmax = 150 persons maximum if we consider 3 p/m2 
as the average density in an evacuation process. In the second path, the staircase is 
very large with a surface evaluated to 300 m2 , so we obtain a maximal capacity of 
Nmax = 900 people at the same time.

• Finally the third node can be considered in each case as a refuge: in the path 1, the 
refuge is on the road level and is a relatively small terrace with many restaurants 
and bars. This is the reason why we consider two scenarios with different initial 
conditions on this node: one with a few people already on the place (5 people) and 
another one with a crowdy place (295 people). Moreover, the place is full of obstacles 
(plant pots, seats,...), this is why we may consider this refuge not so large in terms 
of carrying capacity and we have chosen a maximal capacity of 500 people maxi-
mum in this zone/node. For the path 2 towards Louis Brindeau Street, the situation 
is more convenient because this path ends on a big square whose surface is around 
50 m× 50 m = 2500 m2 . Thus, this square may carry up to 7500 people.

Finally, for the first path we have L1,2 = L2,3 = 2 m, since the footbridge width is about 
2 m wide. For the second one, the staircase is 30 m wide, so we take L1,2 = L2,3 = 30 m.

Several authors assume that the free flow walking speed on a flat surface is on average 
about 1.3  m/s (Hermant 2012; Fruin 1971; Muccini et  al. 2019). This velocity evolves 
according to several factors as the social composition of the crowd, the culture, the den-
sity or the presence of stairs. Indeed, the speed of individuals decreases as the age or the 



Page 20 of 26Lanza et al. Applied Network Science            (2022) 7:17 

density of the crowd increases, or when people have to go upstairs or to go downstairs. 

According to Fruin (1971) the free flow speed on stairs can almost be divided by two 
if we consider upward walking speed on a short stairway. However, this approximation 
does not take into account the level of stress of the population due to an exposition to a 
danger. For instance, during the world trade center attack, people went down the stairs 
at an estimated speed of 0.3 m/s (Blake et al. 2004). Therefore people in high stress (or 
in panic) have a lower speed in average. Furthermore, we assume that the population in 
alert states do not move. Finally, we suppose w1 = w2 = 0.2 , that is, when a node is com-
pletely full, the average speed of the population is equal to 20% of their free flow speed, 
according to the empirical data from the survey paper (Hermant 2012).

For all these reasons, we will consider different speeds and derived coupling coeffi-
cients, which are summarized in Table 4.

Simulation setup

According to the three scenarios explained before and the two paths/networks under 
study, we have chosen the initial conditions summarized in Table 5.

Moreover, for all the scenarios, we suppose that

• the explosion is almost instantaneous and the different nodes experience the event at 
the same time. Thus, τ i0 = 0 and τ i1 = 0.5 , for all i = 1, 2, 3.

• the explosion triggers the behavioral dynamics in node 1, that is δ1 = 1 , while in 
node 2 and 3 the arrival of people from the other nodes plays a role as important as 
the event itself. Thus δ2 = δ3 = 0.5.

• the involved population has a low level of risk culture. The intrinsic transitions 
towards panic are more likely than the ones towards control.

Table 4 Coupling setup. Here two networks are considered, the ones labelled Path 1 and Path 2 in 
Fig. 6

Network Coupling η1,2 Coupling η2,3

Path 1 S1 = 300 m2 ; L1,2 = 2 m; w1 = 0.2

< v >p= 1 m s−1 ; < v >c= 1.3 m s−1

η
p
1,2 = 0.4 ; ηc1,2 = 0.52

S2 = 50m2 ; L2,3 = 2 m; 
w2 = 0.2

< v >p= 0.5 m s−1 ; 
< v >c= 0.65 m s−1

η
p
2,3 = 1.2 ; ηc2,3 = 1.62

Path 2 S1 = 1200 m2 ; L1,2 = 30 m; w1 = 0.2

< v >p= 1 m s−1 ; < v >c= 1.3 m s−1

η
p
1,2 = 1.5 ; ηc1,2 = 1.95

S2 = 300 m2 ; L2,3 = 30 m; 
w2 = 0.2

< v >p= 0.5 m s−1 ; 
< v >c= 0.65 m s−1

η
p
2,3 = 3 ; ηc2,3 = 3.9

Table 5 Initial conditions and node maximal capacities for the three scenarios under study

Scenario Node 1 Node 2 Node 3

Scenario 1 N1(0) = 300 ; Nmax
1 = 900 N2(0) = 5 ; Nmax

2 = 150 N3(0) = 5 ; Nmax
3 = 500

Scenario 2 N1(0) = 300 ; Nmax
1 = 900 N2(0) = 5 ; Nmax

2 = 150 N3(0) = 295 ; Nmax
3 = 500

Scenario 3 N1(0) = 1200 ; Nmax
1 = 1200 N2(0) = 5 ; Nmax

2 = 900 N3(0) = 5 ; Nmax
3 = 7500
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• in the refuge zones people tend to imitate the individuals in control behavior.
• the third node of the networks under study is the only refuge node. Moreover, in the 

refuge nodes people can attain a pseudo-daily behavior only after 50 min. Therefore 
φ1 = φ2 = 0 and τ 32 = 50 and τ 33 = 80 min.

These assumptions lead to the parameter choices in Table 6.

Numerical results and discussion

The numerical results for the three scenarios are represented in Fig. 9. Each column cor-
responds to a scenario. For each scenario, the total population on each node, and the 
number of individuals  in daily, alert, panic, control and pseudo-daily behaviors for each 
node of the network are plotted.

Scenarios 1 and 3

The first scenario shows that the 300 individuals who escaped via the spiral staircase 
(node 2) were all able to take refuge on the terrace (node 3) within 22 min. This evacu-
ation is faster in the third scenario for the 1200 people who fled by the wide staircase 
(30 metres wide), since it lasted about 11 min. In both cases, it takes from 0 to 5 min for 
people of node 1 to understand that they are exposed to a possible danger. Even if the 
evacuation via the spiral staircase is slower, no bottleneck is observed. At most, there are 
45 people, whereas the capacity of the staircase is 150 persons.

Panic behaviors (panic flight, agitation, freezing response, automatic movements) take 
over in both node 1 and node 2. The arrival of individuals in panic on node 3 is visible at 
the beginning of the simulation. Indeed, for about 15 min for scenario 1 and for between 
8–10  min for scenario 3, the arrival of panicked people justifies the fact that there are as 
many controlled people as panicked ones. However, the reassuring information provided 
by the five people present at the beginning on the node 3 and/or a better view of what is 
happening are likely to gradually reassure the population.

Scenario 2

The issue is more problematic in the second scenario. Effectively the terrace is almost 
at its full capacity due to the many people in restaurants and bars. Moreover numerous 
tables, chairs and various obstacles restrict the space for people who try to escape the 
esplanade via the small staircase. In this case, the time to understand that something is 

Table 6 Parameters values for the numerical simulations

Parameters Values Parameters Values Parameters Values

B11 = B21 = B31 0.2 C1
1 = C2

1 = C3
1

0.1 D1
a = D2

a = D3
a

0.001

B12 = B22 = B32 0.25 C1
2 = C2

2 = C3
2

0.15 D1
c = D2

c = D3
c

0.001

B13 = B23 = B33 0.005 B14 = B24 = B34 0.005 D1
p = D2

p = D3
p

0.001

α1
1 = α2

1
0.3 α3

1
0.5 β1

1 = β2
1

0.5

β3
1

0.3 γ 1
c→p = γ 2

c→p
0.5 γ 3

c→p
0.3

γ 3
p→c

0.5 γ 1
p→c = γ 2

p→c
0.3 δ1 1

δ2 = δ3 0.5 τ 10 = τ 20 = τ 30 0 τ 11 = τ 21 = τ 31 0.5

φ1 = φ2 0 τ 32 50 τ 33 80
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going wrong (state of alert) persists less than 5 min, and then a bottleneck appears in the 
footbridge node. This situation is due to the footbridge capacity which is nearly reached 
after about 10 min (about 110 people are in node 2), and even more to the progressive 
saturation of the terrace. The situation in nodes 2 and 3 gives rise to panic phenomena 
classically observed in densely crowdy areas during disaster. The risk is high to observe 
trampling, compression, crushes. The ripple effect is that people on the esplanade are 
also blocked and it takes more than 40 min to evacuate the area next to the narrow foot-
bridge instead of the 22 min observed in the first scenario.

This second scenario is particularly interesting because it highlights a crisis within a 
crisis phenomenon. Indeed, for a part of the population on the esplanade, the terrace 

Fig. 9 Behavioral evolutions for the three scenarios under study. Each column corresponds to a scenario. 
For each scenario, the total population on each node is represented on the first line of the figure. Each of 
the other lines represents a node in the network. For each node of the network, the number of individuals 
in daily, alert, panic, control and pseudo‑daily behaviors are represented. The evacuation of the first node 
towards the larger staircase of the third scenario is faster than the one via the narrow spiral footbridge of 
the first and second scenarios. In the second scenario many people are already present in node 3 at the 
beginning of the event. It yields a persistence of panic and a bottleneck in node 2, and the development of a 
panic situation in node 3. This is different to what happens in the scenarios 1 and 3 where in the refuge node 
3 we have a majority of people in a controlled behavior. All the system parameters are set as in Tables 4, 5 and 
6
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seems to be the best location to take refuge in. We can assume that people arriving from 
the other nodes do not know that the terrace is already crowded and that the capacity 
of this place is nearly reached. This could explain the observed situation of panic pre-
dominance. If these people at the beginning of the simulation had this information, they 
could have chosen the other path.

Discussion

The specificity of our case study is that the density increases sharply when people enter 
the stairs where speed is divided by two. The high density combined with the slackening 
of the flow leads to low average speeds for panicked and controlled people.

Moreover, by comparing scenarios 1 and 2, we remark that the number of individuals 
present at t = 0 in the refuge node 3 has an important role on the dynamics of the whole 
network. If node 3 is quite full of people from the beginning, on the one hand, it can rap-
idly reach its maximum capacity so bottlenecks can occur; on the other hand, due to its 
high density, panic reactions can easily take place. In order to clear up this last phenom-
enon, let us consider what happens in node 3 at t = 40 min, when the APC dynamics on 
the node is well established and none has already returned in a pseudo-daily behavior. In 
particular, let us focus on the proportion of individuals in panic in node 3 at t = 40 min, 
that is

Figure 10 shows p40 as a function of N3(0) , that is the population at t = 0 in node 3. All 
the parameters are here settled as in Scenarios 1 and 2, only N3(0) varies. It is possible to 
see that for small values of N3(0) , the proportion of individuals in panic is low. Thus, in 
this case, node 3 is a proper refuge node and panic is managed. If, at the beginning of the 
catastrophe, node 3 hosts more than 240 individuals, then a crisis in the crisis phenom-
ena can occur and panic gets the upper hand, since the node becomes rapidly full and 
cannot welcome other people who tried to get there.

Furthermore, we remark that in our simulations the two networks are not linked 
whereas the population leaves the same place. This connection between different simple 
networks will be the next step of our work. However, several empirical studies about 
evacuation have shown that rational behaviors are not always observed. Individuals may 
collectively take the same path, while other exits are possible. Firstly because herding or 
imitation behavior occur frequently in exit choices. People behave as a group by putting 
aside their ability to act as individuals, leading some to choose the most congested exit, 
rather than an exit with less people (Saloma and Perez 2007; Lovreglio et al. 2014). Sec-
ondly, because some experiments have shown that people often use familiar exits. For 
Nilsson et al. (2009), a familiar exit can be for example the entrance of a building or the 
ordinary exit.

Finally, we note that, whatever the scenario 1 or 2, the choice of path 1 seems to be a 
wrong decision in both cases, leading eventually to highly hazardous situations because 
of the emergence of panic behaviors on the narrow footbridge. This type of analysis and 
conclusion may be considered as a significant contribution of our simulation model to 
operational staff: it could be efficient to block the way to such hazardous paths and to 

p40 =
p3(t = 40)

N3(t = 40)



Page 24 of 26Lanza et al. Applied Network Science            (2022) 7:17 

drive people towards the safest exits so as to improve the global evacuation process and 
the risk management.

Conclusions
The lack of knowledge about the spatio-temporal dynamics of human behavior faced 
with catastrophic events is still significant. In order to advance further in this research 
field, an interdisciplinary approach, combining in  situ experiments and mathematical 
modeling, has been recently adopted. In this paper, we show how the survey results can 
feed our network mathematical model in order to design numerical simulations of real-
istic scenarios. Here, we focused on the in situ experiment that took place in the urban 
area around the Niemeyer Cultural Centre in Le Havre (France) two years ago. We have 
shown how the territorial configuration and the interviewees’ responses, through their 
specific evacuation paths, guided us in the construction of the network under study. We 
have been therefore brought to consider two separated networks of three nodes, with 
different properties. Based on these networks some simulations have been achieved. 
Results confirm the idea that the maximal capacity of each node and the initial condi-
tions (that is the number of individuals on the node at the onset of the catastrophe) play 
an important role on the sequence of events and on the level of panic behaviors in some 
particular configurations. The main contribution of this approach lies in the predictive 

Fig. 10 Proportion of panic individuals p40 (blue) in node 3 at t = 40 min, as function of the number of 
individuals N3(0) already present in node 3 at t = 0 . All the parameters are here settled as in scenarios 1 and 
2, only N3(0) varies. In particular, scenario 1 is for N3(0) = 5 , while scenario 2 is for N3(0) = 295. Here, the 
maximal capacity of node 3 is Nmax

3 = 500 . If the refuge node is quite full from the beginning, panic reaction 
can get the upper hand
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ability of our simulation tool for evaluating one evacuation path or another in terms of 
hazard potential.

The next steps of this research is to consider bigger networks or specific cases in order 
to evaluate their different potential evacuation paths by simulation. Our perspective 
work is also to pursue the mathematical analysis of the APC model on networks and 
study how parameters influence the dynamics of the whole network.
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