
HAL Id: hal-03723771
https://hal.science/hal-03723771v2

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Painless Transposition of Reproducible Distributed
Environments with NixOS Compose

Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, Olivier Richard

To cite this version:
Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, Olivier Richard. Painless Transposition of
Reproducible Distributed Environments with NixOS Compose. CLUSTER 2022 - IEEE International
Conference on Cluster Computing, Sep 2022, Heidelberg, Germany. pp.1-12. �hal-03723771v2�

https://hal.science/hal-03723771v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Painless Transposition of Reproducible Distributed
Environments with NixOS Compose

Quentin Guilloteau, Jonathan Bleuzen, Millian Poquet, Olivier Richard
Univ. Grenoble Alpes, Inria, CNRS, LIG

38000 Grenoble France
Firstname.Lastname@inria.fr

Abstract—Development of environments for distributed sys-
tems is a tedious and time-consuming iterative process. The
reproducibility of such environments is a crucial factor for
rigorous scientific contributions. We think that being able to
smoothly test environments both locally and on a target dis-
tributed platform makes development cycles faster and reduces
the friction to adopt better experimental practices. To address
this issue, this paper introduces the notion of environment
transposition and implements it in NixOS Compose, a tool that
generates reproducible distributed environments. It enables users
to deploy their environments on virtualized (docker, QEMU) or
physical (Grid’5000) platforms with the same unique description
of the environment. We show that NixOS Compose enables to
build reproducible environments without overhead by comparing
it to state-of-the-art solutions for the generation of distributed
environments (EnOSlib and Kameleon). NixOS Compose actually
enables substantial performance improvements on image building
time over Kameleon (up to 11x faster for initial builds and up to
19x faster when building a variation of an existing environment).

Keywords: Reproducibility; Distributed Systems; System
Image; Deployment; Nix

I. INTRODUCTION

The scientific community as a whole has been traversing
a reproducibility crisis for the last decade. Computer science
does not make an exception. While scientists can accomplish
reproducibility in different manners, it requires additional
work and discipline. In 2015, Collberg et al. [8] studied
the reproducibility of 402 articles published in journals and
conferences on computer systems. Each of those articles linked
the source code used to produce the results. Out of these 402
papers, Collberg et al. could not reproduce 46 %. The causes
were: (i) the source code was unavailable, (ii) the source code
did not compile or run, and (iii) the experiments required
specific hardware.

In this article, we tackle problem (ii) in the context of
distributed systems. We aim to make the entire software stack
involved in a experiment of distributed systems reproducible.
This implies making the compilation and the deployment of
this stack reproducible, allowing one to rerun the experiment
on an identical environment in one week or ten years.

To reach this goal, we exploit the declarative approach
for system configuration provided by the NixOS [12] Linux
distribution. NixOS makes use of a configuration that describes
the environment of the entire system, from user-space to the
kernel. The distribution is itself based on the purely functional

Nix package manager [11]. The definition of packages (or sys-
tem configuration in the case of NixOS) are functions without
side effects, which enables Nix and NixOS to reproduce the
exact same software when the same inputs are given.

We extend this notion of system configuration for distributed
systems in a new tool named NixOS Compose. NixOS Com-
pose enables to define distributed environments and to deploy
them on various platforms that can either be physical (e.g., on
the Grid’5000 testbed [1]) or virtualized (Docker or QEMU
[2]). NixOS Compose exposes the exact same user interface
to define and deploy environments regardless of the targeted
platform. We think that this functionality paired with fast
rebuild time of environments improves user experience, and
we hope that it will help the adoption of experimental practices
that foster reproducibility.

The paper is structured as follows. Section II gives the
state-of-the-art on tools related to the reproducible deploy-
ment of distributed systems, and positions NixOS Compose
in it. Section III presents NixOS Compose, its main concepts,
the external concepts it relies on, and the users’ utilization
workflow for setting up a complete reproducible system and
software stack. Section IV gives technical details on how
NixOS Compose works. Section V presents how NixOS Com-
pose can be used on a complex example that combines several
distributed middlewares. Section VI offers experimental per-
formance results of NixOS Compose against standard state-
of-the-art tools using multiple metrics. Finally, Section VII
concludes the paper with final remarks and perspectives on
reproducible works and environments.

II. STATE OF THE ART

Several terminologies exist on the reproducibility of exper-
iments. In this article we use the terms defined by Feitelson
in [15]. In particular, an experiment is said to be repeatable
if one can rerun it and obtain the same results by using the
original artifacts (scripts and configuration files needed to run
the experiment). If the same can be achieved without using
the original artifacts but by recreating them, the experiment
is said to be replicable. Variation is an orthogonal concept
that can be applied to repeat or replicate an experiment with
a modification of some parameters. Mercier et al. emphasize
in [21] that the production environment (the final one used
to execute the experiment) is not enough to achieve variation

1

in an experiment, as the development environments contain
valuable information for the experiment and are also required.

A. Reproducibility of a local software environment

Several approaches exist to encapsulate a software envi-
ronment. A first solution is to provide virtual machine (VM)
images or containers of the environment. VMs are portable
but induce a virtualization cost at runtime which hinders some
experiments. Containers are much more lightweight but limit
the possible usages (e.g., Docker containers do not encapsulate
the version/configuration of the Linux kernel, while this may
impact how software behaves). Building VMs and containers
in a reproducible fashion can be hard, but tools like Packer
[25] can recreate identical virtualized images (either virtual
machines or containers) from a unique description.

Another approach is to rely on the properties of package
managers. Spack [16] is a package manager used on HPC plat-
forms to share software environments. Spack does not control
all the dependencies by design as it can reuse software already
present and configured on the system, which is detrimental for
reproducibility. Courtes et al. [10] presents purely functional
package managers (Nix [11], Guix [9]) as good candidates
to share complex software environments between users. Both
approaches are very similar but Nix has a more complete
ecosystem as we write these lines, so we only consider Nix in
the remainder of this article.

Each Nix package is defined as a function without side ef-
fects, which means Nix should produce the exact same package
if the function inputs are the same (source code version, build
options, build and runtime dependencies and their versions,
build toolchain and their versions, target architecture). A
software environment is defined as a list of Nix packages.
As Nix can reproduce each package, the entire environment
is reproducible. This partially solves the well known issue of
Dependency Hell as Nix demands to explicit every dependency
and their version to build the package. Nix is limited to user-
space environments, but the environment on the kernel side
matters as well. The NixOS Linux distribution, based on Nix,
solves this issue by describing the entire operating system
(i.e., kernel, softwares, configuration files, services) with a
descriptive Nix expression. The descriptive approach taken by
NixOS greatly simplifies the work of a reproducer wanting to
perform variations of the environment [21].

Perenniality of environments can be hard to achieve on
methods based on the reconstruction of a target software and
every of their dependencies, as some source code can disap-
pear over time. To solve this issue, reconstruction approaches
can use source code from initiatives such as Software Heritage
[29], whose goal is to collect, preserve and share publicly
available software in source code form.

B. Reproducibility of a distributed software environment

Achieving reproducibility in a distributed setting brings
new challenges, as the environments must be deployed on all
the involved machines. A common approach is to somehow
generate full system images, then to deploy them on the

nodes with tools such as Kadeploy [17]. Creating such images
manually can be cumbersome. Tools such as Kameleon [27]
take an imperative approach to build images, as they execute
a pipeline of scripts to create images that contain the desired
environment. Such images are not enough to achieve repro-
ducibility, as scripts must often be executed after the image
has been deployed to set up relations between nodes (e.g., to
mount a custom NFS server among the deployed nodes). These
scripts are often written manually with bash or Python, and
sometimes use helper libraries such as Execo [18]. They may
also be only valid for a single target platform and are often
fragile and difficult to maintain. One solution to avoid this
scripted configuration phase would be to encapsulate part of
it in the images themselves.

The development phase of the images for a distributed
environment is an iterative and time-consuming process. Re-
ducing the duration of the development cycles goes towards
improving the user experience, and we think that this is
very important to reduce the friction to adopt reproducible
experimental practices. Tools such as EnOSlib [7] or Vagrant
[31] go in this direction as they enable users to describe the
configuration of the environment while abstracting the target
platform. EnOSlib takes an imperative approach by defining
the environment with a pipeline of scripts that describes the
provisioning phase and is executed at the beginning of an
experiment to set up the desired software environment. The tar-
get abstraction makes it easier to test the environment locally
before deploying it at full scale. However, reproducibility of
the software stack is not a focus for these solutions, and they
mostly just inherit reproducibility properties of the underlying
platform and technologies. Typically, one probably needs to
combine EnOSlib with tools such as Kameleon to make
sure the kernel is reproducible, and the end user would be
responsible for the reproducibility of the provisioning scripts.

Projects such as NixOps [22], deploy-rs [28] or Disnix(OS)
[3, 4] enable to activate new NixOS configuration on target
machines, but they are limited to machines that already run
NixOS. These technologies only change the running configu-
ration on the machines without rebooting them, which keeps
a state on the machines and is detrimental for reproducibility.

C. Research Gap, Positioning

We believe that there is a necessity to propose a solution to
deploy reproducible environments for a distributed system
with fast development cycles. Figure 1 summarizes the mo-
tivation that has led us to create NixOS Compose. To generate
reproducible environments with the current solutions, users
most often need a configuration file for every platform they
target. NixOS Compose aims at having a single description
of the distributed environment that can be deployed to several
platforms. NixOS Compose relies on Nix and NixOS and thus
inherits their properties to make the environment completely
reproducible. We fully embraced the descriptive approach
for reproducibility reasons and decided to do most of the
configuration at the image build time. Some part of the
configuration must however still be done at runtime via a

2

Deployed (g5k)

image

Environment description (3 times)

Environment description (once)

Vagrant

NixOS Compose

docker-compose Kameleon

Local

docker VM

composition.nix

(1) (3)(2)
C

u
rr

e
n
t

st
a
te

N
ix

O
S
 C

o
m

p
o
se

Deployed (g5k)

image ramdisk

Local

docker VM

Fig. 1. Motivation of NixOS Compose. Currently, to produce a reproducible
environment for each platform, users must maintain a description file for each
target platform. We want NixOS Compose to only use a single description
file (called a composition) that can build reproducible distributed environments
and deploy them to several platforms.

provisioning phase, typically to synchronize services between
different machines.

III. PRESENTATION OF NixOS Compose

This section gives the main concepts and terminology of
NixOS Compose. A software environment is a set of appli-
cations, libraries, configurations and services. We define the
notion of Transposition as the capacity to deploy a uniquely
defined environment on several platforms of different natures.
For example one may want to deploy an environment on local
virtual machines to test and develop, and then want to deploy
onto real machines on a distributed platform with the exact
same description.

A. Concepts of Nix and NixOS

This section presents concepts from Nix and NixOS that are
required for a better understanding of the NixOS Compose tool.

A Nix package is defined by a function taking as input
the sources and dependencies, as well as how to construct
it, and returning the package. Nix fetches or rebuilds the
dependencies and then executes in isolation the commands to
build the package. The packages are then stored and isolated
in a special directory called the Nix Store. The Nix Store is
read-only, which by design makes impossible the alteration of
packages after the build. Figure 2 summarizes the differences
between traditional package manager and Nix. A hash code
of a package inputs (sources, build script, Nix expression) are
associated with each package. This enables the cohabitation of
multiple versions of the same package on the same machine.

A Nix system profile defines the configuration of the system
(packages, initrd, etc.). Among many features, a profile can
define filesystems such as NFS and mount them automatically
at boot time. Figure 3 depicts an example of user profile
containing the Batsim application [14], which requires the
SimGrid [6] library at runtime. A NixOS image can contain

Mirror

Traditional package managers

Nix

Nix Expression

Build script

Cache

001
110

001
110

001
110Build script

(blackbox)

Build
(local)

Nix
Store

Source
(git, tarball...)

Source
(git, tarball...)

Fig. 2. Comparison between traditional package managers and Nix. Tradi-
tional package managers fetch a built version of the package from a mirror,
but information on how they have been built is unknown. In the case of Nix,
the package is described as a Nix function that takes as input the source code
and how to build it. If the package with these inputs has already been built and
is available in the Nix caches (equivalents of mirrors) it is simply downloaded
to the Nix Store. Otherwise, it is built locally and added to the Nix Store.

/home/alice/.nix-profile
/nix/var/nix/profiles/per-user/alice
├── profile -> profile-42-link
├── profile-41-link -> /nix/store/k72d...-user-env
└── profile-42-link -> /nix/store/zfhd...-user-env
/nix/store
├── zfhd...-user-env
│ └── bin
│ └── batsim
├── 0kkz...-batsim-4.1.0
│ └── bin
│ └── batsim
└── 6k6f...-simgrid-3.31
 └── lib
 └── libsimgrid.so.3.31

Fig. 3. Figuration of the Nix Store content when the alice user has installed
a Batsim [14] binary in her profile. As Batsim requires the SimGrid [6] library
at runtime, SimGrid must also be in the store. Packages are stored in their
own subdirectory, but common dependencies are not duplicated as symbolic
links and shared libraries are used.

several profiles and Nix can switch between them by modifying
symbolic links and restarting services via systemd.

B. Concepts of NixOS Compose

NixOS Compose is based on Nix and NixOS to apply the
notion of Transposition to distributed systems. As depicted on
Figure 1, it enables users to have a single definition of their
environment and to deploy it to different platforms. For the
sake of clarity, NixOS Compose concepts will be illustrated on
an example environment that contains k3s [19], a lightweight
version of Kubernetes for the orchestration of containers.

3

Fig. 4. Workflow of NixOS Compose. Local development of the environment is done using light and fast development with containers and virtual machines.
Once the description of the environment (composition) has been tested, deployments on a distributed platform can be done with the exact same interface.

1 { pkgs, ... }:
2 let k3sToken = "df54383b5659b9280aa1e73e60ef78fc";
3 in {
4 nodes = {
5 # Configuration of the server
6 server = { pkgs, ... }: {
7 environment.systemPackages = with pkgs; [
8 k3s gzip # List of the packages to include
9];

10 networking.firewall.allowedTCPPorts = [
11 6443 # Ports to open
12];
13 services.k3s = {
14 # Definition of the k3s service
15 enable = true;
16 role = "server";
17 package = pkgs.k3s;
18 extraFlags = "--agent-token ${k3sToken}";
19 };
20 };
21 # Configuration of the agent
22 agent = { pkgs, ... }: {
23 environment.systemPackages = with pkgs; [
24 k3s gzip
25];
26 services.k3s = {
27 enable = true;
28 role = "agent";
29 serverAddr = "https://server:6443";
30 token = k3sToken;
31 };
32 };
33 };
34 }

Listing 1. NixOS Compose composition file example for k3s [19].

1) Role: A role is a type of configuration associated with
the mission of a node. k3s is a client-server application where
clients are named agents. There would therefore be 2 roles:
one for the server and another for the agents. As all the
agents have the same configuration they can use the same role.
Note that in cases where there is one node per role, the notion
of role and the notion of node overlap.

2) Composition: A composition is a Nix expression de-
scribing the NixOS configuration of every role in the en-

vironment. Listing 1 shows an example of composition for
k3s. Please note that the composition in Listing 1 contains
the nodes keyword on line 4 to define the various roles
(instead of the roles keyword). This is done on purpose
to make NixOS Compose’s syntax retro-compatible with the
syntax used in NixOS tests1 (these tests are part of NixOS and
enable to start virtual machines with QEMU with the defined
environment, and execute a Python script to test the application
inside the environment). The composition in Listing 1 defines
the open port of the server (line 10-12), the available
packages (lines 7-9 and 23-25, packages are k3s and gzip),
as well as the systemd services (lines 13-19 and 26-31). The
k3s service is not defined explicitly in this example, as we
reuse an existing definition that is available in the collection
of Nix expressions called nixpkgs2. For personal applications
users might have to define their own systemd services, which
can be done declaratively via a Nix expression. Nix variables
can be used to avoid information duplication, as seen for the
k3s token (used to manage authentication) defined on line 2
and used to configure both the server (line 18) and the
agents (line 30).

3) Deployment: A deployment assigns a role to every
node. NixOS Compose proposes two ways to define deploy-
ment as YAML files, as illustrated on Listings 2 and 3. The
first way is to define the number of nodes that should be used
for each role (Listing 2). This is convenient when working
on homogeneous nodes for simple deployments. For the sake
of reproducibility, NixOS Compose generates a deterministic
assignment – if the same nodes are reserved and the same
deployment is used, the role of each node remains the same.
The second way to define a deployment is to directly define
the role that each node should take (Listing 3). This is more
suited for complex scenarios, as it enables users to generate
their deployment file depending on their needs.

1https://nixos.org/guides/integration-testing-using-virtual-machines.html
2https://github.com/NixOS/nixpkgs

4

https://nixos.org/guides/integration-testing-using-virtual-machines.html
https://github.com/NixOS/nixpkgs

1 # Users can define the number of nodes per role
2 server: 1
3 agent: 3

Listing 2. Deployment file example for the k3s example with 1 server and 3
agents where the users defined the quantity of nodes per role. The hostnames
are generated by NixOS Compose. In this example there would be 3 agents
with the hostnames agent1, agent2 and agent3.

1 # Users can also define the hostnames per role
2 server: 1
3 agent:
4 - agent1
5 - agent2
6 - agent3

Listing 3. Deployment file example for the k3s example with 1 server and
3 agents where the users defined the hostnames of every node per role.

4) Flavours: A flavour is a target for the deployment of
the environment. This notion includes the (virtual or physical)
platform onto which the deployment should be done, and
also the deployment method that should be used (e.g., full
system image or ramdisk). As we write these lines NixOS
Compose supports the following flavours:

• docker for docker-compose [24] configurations.
• vm-ramdisk for in-memory QEMU virtual machines.
• g5k-image for full system tarball images that can be

deployed on Grid’5000 [1] via Kadeploy [17].
• g5k-ramdisk for initrds that can be quickly de-

ployed in memory without the need to reboot the host
machine on Grid’5000 (via the kexec syscall).

During the development phase of the environment, users
can deploy locally, lightly and quickly with the docker
and vm-ramdisk flavours. At a later stage, users can test
their environment on real nodes from the Grid’5000 testbed
with the g5k-ramdisk, which is convenient for trial-and-
error operations thanks to its fast boot time. Finally, the
environment can be deployed at real scale on Grid’5000 with
the g5k-image flavour. Please note that some flavours have
reproducibility limitations due to the underlying technologies.
For example, controlling the version of the Linux kernel is
impossible when using the docker flavour.

C. Workflow of NixOS Compose

This section presents the workflow of NixOS Compose and
how it enables users to simply transpose their environment
from one platform to another.

1) Local Testing: When developing an environment, users
can work with the docker and vm-ramdisk flavours with
the following workflow:

1. Building the image: nxc build -f docker or nxc
build -f vm-ramdisk

2. Deploy the environment: nxc start. By default,
NixOS Compose takes the last composition built.

3. Connect to the nodes: nxc connect [node name].
This opens a connection to the desired node. If name is
omitted, a terminal multiplexer3 opens with one pane per
node, which is convenient to run commands on the nodes.

3tmux: https://github.com/tmux/tmux

2) Distributed Deployment: Once the environment has been
tested with local flavours, it can be tested in a distributed
system.

1. Building the image: nxc build -f g5k-ramdisk
or nxc build -f g5k-image

2. Reservation of the nodes to use for the deployment:
depends on your platform resource manager. For example
salloc for Slurm [32] or oarsub for OAR [5].

3. Deploy the environment: nxc start.
4. Connect to the nodes: nxc connect [node name].
Figure 4 summarizes the NixOS Compose workflow. NixOS

Compose aims at making the transition between platforms
as seamless as possible. Thus, the workflow in a distributed
setting (Section III-C2) is identical to the workflow in a
local one (Section III-C1). The only difference is that in a
distributed setting, users need to first reserve the resources
before deploying.

IV. TECHNICAL DETAILS OF NixOS Compose

Nix can generate a NixOS configuration from a Nix expres-
sion, including the boot and init phases required to start the
kernel. Nix stores those phases in the Nix Store, which enables
NixOS Compose to call them later on. NixOS Compose works
in two steps: Building and Deployment. The building phase is
done using Nix tools wrapped with Python for the command-
line interface. The deployment is fully done with Python and
mostly consists in the interaction with the different deployment
tools (Kadeploy, docker-compose, QEMU). The Nix part is
around 2000 lines of code, and the Python part around 4000.

The following section (IV-A) details how NixOS Com-
pose manages g5k-ramdisk, the flavour that enables quick
in-memory deployment without the need to reboot host ma-
chines on Grid’5000. Details are omitted for the other flavours,
but please refer to Table I for a summary of the difference in
the building and deployment phases for all supported flavours.

A. Details on the g5k-ramdisk Flavour

1) Construction: NixOS Compose uses Nix to evaluate
the configuration of every role in the composition. Nix then
generates the kernel and the initrd of the profiles.

2) Deployment: NixOS Compose relies on the kexec
Linux system call for this flavour. kexec enables to boot
a new kernel from the currently running one. This skips the
initialization of the hardware usually done by the BIOS, which
avoids an entire reboot of the machines and greatly reduces
the time to boot the new kernel. The kexec commands takes
as input the desired kernel, the kernel parameters and the
initrd. NixOS Compose passes the kernel and initrd
generated in the construction phase to kexec.

As NixOS Compose produces a single image containing the
profiles of all the roles, NixOS Compose needs at deployment
time to tell each node the role it should take. To achieve
this, we pass this information using the kernel parameters
to set up environment variables based on the role. NixOS
Compose also uses the kernel parameters to pass ssh keys and
information about the other hosts (e.g., the /etc/hosts).

5

https://github.com/tmux/tmux

TABLE I
TABLE SUMMARIZING THE DIFFERENT FLAVOURS WITH THEIR BUILDING AND DEPLOYMENT PHASES.

Flavour Phase Comments
Building Deployment

docker Generate a docker-compose
configuration and docker
containers.

Call the docker-compose application with
the right arguments.

Fastest and light but limited in ap-
plication due to virtualization.

vm-ramdisk Generate the kernel and
initrd for the roles of the
composition.

Create a virtual network with Virtual Distributed
Ethernet (VDE) and starts the Virtual Machines
with QEMU.

Fast but takes a lot of memory.
Limited to a couple of VMs on a
laptop.

g5k-ramdisk Generate the kernel and
initrd for the roles of the
composition.

Use kexec to quicky start the new kernel with-
out rebooting. Send the deployment information
through the kernel parameters.

Long to build but fast to deploy.
kexec has reproducibility limita-
tions and consumes a lot of mem-
ory which can be limiting for large
images.

g5k-image Generate a tarball of the image
of the composition.

Use Kadeploy to deploy the image to the nodes.
Send the deployment information through the
kernel parameters.

Longer to build and deploy, but it
has the best reproducibility proper-
ties.

There is however a size limit of 4096 bytes on the kernel
parameters, which prevents us to use this method to send the
deployment information to nodes when users want to deploy a
lot of nodes. To deal with this, NixOS Compose starts a light
HTTP server on the cluster frontend for the duration of the
deployment. We pass the URL of this server using the kernel
parameters. Then, the nodes query this server with wget to
retrieve the information associated with their roles. Note that
the deployed images do not include a HTTP server but only
the wget application to fetch the data. Figure 5 represents
how the nodes get the deployment information based on the
quantity of nodes involved.

V. A COMPLEX EXAMPLE: MELISSA

This section shows how complex distributed environ-
ments can be developed with NixOS Compose by taking the
Melissa [30] framework as an example.

A. Presentation of Melissa

Melissa is a framework to run large-scale sensitivity anal-
yses. Its main specificity is the online processing of data to
limit usage of intermediate file storage, contrary to postmortem
approaches. It can be used in several HPC environments as it is
compatible with two resource managers (RM): Slurm [32] and
OAR [5]. Melissa implements a client/server model where the
clients are simulations that generate and send data to a server
that runs the statistics algorithms.

NixOS Compose enables to deploy a resource manager
(including all the components it requires, e.g., a database),
Melissa, and all the components required by Melissa at run-
time (e.g., a distributed file system).

Frontend
kexec via ssh

deployment-infos

$> INITRD={path_on_NFS}/initrd \
KERNEL={path_on_NFS}/kernel \
kexec -l $KERNEL --initrd=$INITRD ...

Boot

deployment-infosStage1

Context setup
/etc/host

/root/.ssh/

...

Node's boot phases

Init Phase

HTTP server
GET /URL

deployment-infos

Kernel parameters ≤4096 bytes

Frontend
kexec via ssh

deployment-infos

$> INITRD={path_on_NFS}/initrd \
KERNEL={path_on_NFS}/kernel \
kexec -l $KERNEL --initrd=$INITRD ...

Boot

deployment-infosStage1

Context setup
/etc/host

/root/.ssh/

...

Node's boot phases

Init PhaseKernel parameters >4096 bytes

Fig. 5. Mechanism for the nodes to get the deployment information. For a
small number of nodes, the information is passed via the kernel parameters.
For a higher number of nodes, this is not possible due to the size limit on
the kernel parameters (4096 bytes). In this case NixOS Compose starts a
light HTTP server on the frontend and passes its URL to the nodes via the
kernel parameters. The nodes then query this server to retrieve the deployment
information.

In the following example we deploy Melissa with the Slurm
resource manager. Four roles are needed to define the envi-
ronment.

• server: RM server and file system server
• dbd: MariaDB database (accounting for the RM)
• computeNode: worker node
• frontend: node from where initial jobs are submitted

6

1 server = { pkgs, ... }: {
2 imports = [slurmconfig nfsConfigs.server];
3 services.slurm.server.enable = true;
4 systemd.services.slurmctld.serviceConfig = {
5 Restart = "on-failure";
6 RestartSec = 3;
7 };
8 };
9 computeNode = { pkgs, ... }: {

10 imports = [slurmconfig nfsConfigs.client];
11 environment.systemPackages = [
12 melissa melissa-heat-pde
13];
14 services.slurm.client.enable = true;
15 systemd.services.slurmd.serviceConfig = {
16 Restart = "on-failure";
17 RestartSec = 3;
18 };
19 };

Listing 4. Configuration of the server and computeNode roles.

Some roles share parts of their configuration, like server
and computeNode. They both use Slurm but their configu-
ration differs in terms of services, as they respectively enable
the slurm.server and slurm.client services.

Melissa itself also needs to be part of the environment.
Unlike the k3s example shown on Listing 1, Melissa is not
available in nixpkgs and thus needs to be packaged. Listing 5
is a snippet of Melissa’s package definition that notably defines
which source code should be used (lines 5-9) and which
build dependencies should be used (lines 10-13). The build
commands (line 14) are omitted for the sake of readability.

1 { pkgs, ... }:
2 pkgs.stdenv.mkDerivation rec {
3 pname = "melissa-${version}";
4 version = "0.7.1";
5 src = pkgs.fetchgit {
6 url="https://gitlab.inria.fr/melissa/melissa";
7 rev="e6d09...";
8 sha256="sha256-IiJad...";
9 };

10 buildInputs = with pkgs; [
11 cmake gfortran python3 openmpi
12 zeromq pkg-config libsodium
13];
14 # Build phases are omitted
15 }

Listing 5. Snippet of the package definition for Melissa

Similarly, the melissa-heat-pde simulation applica-
tion must also be in the environment (line 12 of Listing
4). Finally, as a distributed filesystem is necessary in this
environment, our composition imports a NFS module for the
roles that need it.

B. Key difficulties

This section emphasizes the advantages of using NixOS
Compose to deploy the Melissa distributed environment.

1) NFS Server: Setting up a NFS server with tools like
Kameleon or EnOSlib is cumbersome. The users would first
need to install the nfs tools on the nodes and define the NFS
server. Then, the users would have to mount the newly defined
server on every client node. These steps can be automated with
scripts but that would be fragile.

1 # Configuration of the NFS server
2 nfsServer = {
3 services.nfs.server.enable = true;
4 services.nfs.server.exports =
5 "/srv/shared *(rw,no_subtree_check,fsid=0,

no_root_squash)";
6 services.nfs.server.createMountPoints = true;
7 };

Listing 6. Definition of the NFS server. It exposes the /srv/shared folder.

1 # Mouting of the NFS server
2 nfsClient = {
3 fileSystems = {
4 "/data" = {
5 device = "server:/";
6 fsType = "nfs";
7 };
8 };
9 };

Listing 7. Mounting of the NFS server for the compute nodes. The local
mounting point is /data.

The declarative definition of NFS with NixOS is based on
systemd services (see Listings 6 and 7). This makes them
easier to define and more robust as they can be restarted until
they perform the mount succesfully in the case of the NFS
server starting after the clients.

2) Resource Manager: Melissa runs on production clusters
managed by resource managers such as Slurm and OAR.
However, experimenting on Melissa’s behavior in different
scenarios requires controlling the resource manager part of
the environment. The installation of such systems is far from
trivial as they include several distributed services that must
interact, and each one of these services require configura-
tion. A composition can be made modular so that users
can descriptively change the resource manager. The same
benefit is achievable for comparison studies of versions of
the Melissa framework, as the Nix function that defines
Melissa can be written in such a way that it takes Melissa’s
source code as a function input.

We have deployed the Melissa composition we have written
with NixOS Compose on 13 nodes with the experimental setup
described in Section VI-A. The deployment took approxi-
mately 2 minutes with the g5k-ramdisk flavour.

C. Melissa Images Content Comparison

NixOS Compose aims to provide the same environment on
different target platforms. This section analyses the content of
the Nix Store in the Melissa images generated for every flavour,
as the Nix Store content represents the software environment
available on the node. The docker flavour is omitted here as
the containers do not have a well-defined specific Nix Store but
mount the Nix Store of the host machine instead.

Figure 6 presents the content of the Nix Store of the
Melissa image for the different flavours. The smaller packages
are gathered under the others-* name. We can see that
the vast majority of the software stack is shared by several
flavours. There is a common 2 GiB set of packages com-
mon to every flavour containing the NixOS definition and
the dependencies of Melissa. The two flavours targeting the
Grid’5000 platform need more packages, for example the

7

gcc (177 MiB)gcc (177 MiB)gcc (177 MiB)

gfortran (166 MiB)gfortran (166 MiB)gfortran (166 MiB)

mariadb (206 MiB)mariadb (206 MiB)mariadb (206 MiB)

nixos (252 MiB)nixos (252 MiB)nixos (252 MiB)

others−common (1047 MiB)others−common (1047 MiB)others−common (1047 MiB)

python3 (94 MiB)python3 (94 MiB)python3 (94 MiB)

firmware (760 MiB)firmware (760 MiB)

glibc (215 MiB)glibc (215 MiB)

others−common−g5k (373 MiB)others−common−g5k (373 MiB)

others−g5k−image (181 MiB)others−g5k−ramdisk (168 MiB)

others−vm−ramdisk (97 MiB)

0

1

2

3

vm−ramdisk g5k−ramdisk g5k−image
Flavours

S
iz

e
[G

iB
]

Common Common G5K Flavour Specific

Content of the Nix Store of the Melissa Image for each Flavour

Fig. 6. Packages present in the Nix Store of the Melissa image for the different
flavours. The colors represent the packages common to the flavours. The
smaller packages are gathered under the others-* name. The docker
flavour is omitted as it mounts the Nix Store of the host machine.

firmware to use the nodes’ hardware. Then for each of the
flavour, there is about 5 % of the total Nix Store size for
packages specific to the flavour. For example, deploying a
g5k-image image requires a complete reboot of the host and
to go through the boot loader, hence the presence of grub in
this image.

VI. EVALUATION

NixOS Compose brings reproducibility guarantees to dis-
tributed environments contrary to state-of-the-art solutions.
The overall goal of this evaluation section is to determine
whether this is done with a significant overhead or not.

A. Experimental Setup

The following experiments have been carried out on the
dahu cluster of the Grid’5000 testbed. This cluster has
machines with 2 Intel Xeon Gold 6130 CPUs with 16 cores
per CPU and 192 Gib of memory. The nodes of this cluster
have SSD SATA Samsung MZ7KM240HMHQ0D3 disks with
a capacity of 240 GB formatted in ext4.

The experiments conducted in this article are repeatable
with variation. Data and analysis scripts are available on
Zenodo4 with the link to the experiments repository.

4https://zenodo.org/record/6568218

B. Comparison to Kameleon

Grid’5000 provides base images for several Linux distri-
butions and versions. Users need to build their own images
if they want to use more complete images. This is usually
done with Kameleon on Grid’5000 — in fact all the images
provided by Grid’5000 are generated by Kameleon recipes.

In this study, we want to compare the performance of NixOS
Compose and Kameleon to build images. We will focus on
the image build time, as well as the size of the generated
images. We also want to evaluate whether caching the Nix
Store enables an interesting build time speedup.

1) Protocol: The following steps are executed in this order.

1. Construction. Build an image from a recipe.
2. Modification. Change the recipe slightly.
3. Reconstruction. Build an image from the new recipe.

We first build a base image with NixOS Com-
pose and Kameleon, measuring its build time and the
size of the generated images. base contains the ba-
sic software needed to conduct a distributed experiment:
grid5000/debian11-x64-nfs for Kameleon as this is
the most convenient and common image for distributed ex-
periments on Grid’5000, and all the packages required by the
flavour for NixOS Compose. Then we add the hello package
to the recipes and build a new image (base + hello) while
measuring the same metrics.

This experiment has been executed using Grid’5000’s NFS
(mounted on /home) or without it (using local disks on
machines mounted on /tmp), in order to compare the per-
formance of the tools depending on the filesystem setup used.

We clear the Nix Store before building the base image, but
not before building base + hello, in order to evaluate the
impact of cached builds on NixOS Compose. Kameleon has
an indirect caching mechanism via the HTTP proxy Polipo
[26]. However, we did not manage to make it work with
Kameleon, and Polipo is no longer maintained as its utility
has become arguable – most of today’s traffic is encrypted,
including fetching packages from mirrors.

2) Results and Comments: As seen on Figure 7, NixOS
Compose substantially outperforms Kameleon in terms of
image build time. When building from an empty cache on local
disks, NixOS Compose is 11x faster than Kameleon. Moreover,
NixOS Compose uses its local cache efficiently, which enables
it to build the image variation 1.7x faster than the initial image
build time when the filesystem is used efficiently (local disks).

Figure 7 also shows that NixOS Compose produces bigger
images than Kameleon. This is mainly because we have not
optimized the content size of the images as we write these
lines — e.g., many firmwares are kept in the images instead
of only the ones needed on Grid’5000 (see Figure 6). Another
reason for this image size comes from our design choice to
prioritize compression speed over compression quality. This
is important for NixOS Compose as image variations should
be built as fast as possible to improve user experience. For
information, we have measured that NixOS Compose takes

8

https://zenodo.org/record/6568218

Construction Time with NFS [s] Construction Time without NFS [s] Image size [Mib]

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750

nxc−g5k−ramdisk

nxc−g5k−image

kameleon

base base + hello

Image Size, Construction and Reconstruction Time for Different Environments with and without NFS

Fig. 7. Performance comparison between Kameleon and NixOS Compose (nxc). A base image is first built, then a new image (base + hello) that
contains the additional hello package is built. As Grid’5000 is the targeted platform of this experiment, images are built with the g5k-ramdisk and
g5k-image flavours. Shown values are averages over 5 repetitions. Error bars represent 99 % confidence intervals.

about 25 s to compress each image, which is a non-negligible
portion of a variation build time (30 - 35 %).

Finally, Figure 7 shows how the filesystem setup impacts
the build time. Here, using an efficient filesystem setup (local
disks) greatly benefits to NixOS Compose as it makes it 4x
faster. This is caused by the many smalls writes done by
Nix in the Nix Store. Filesystem setup has little impact on
Kameleon as it uses local disks by default to generate the
whole image, that is later on copied to the NFS.

C. Comparison to EnOSlib

EnOSlib is a state-of-the-art solution to conduct distributed
experiments. EnOSlib does not claim to be reproducible, but
it inherits the reproducibility of its underlying components. In
this section, our goal is to compare the performance of NixOS
Compose and EnOSlib to set up fully reproducible distributed
environments. In particular, we want to know how much time
is taken for each phase of a deployment.

1) Case Studies: We chose to study the two following dis-
tributed applications that are already implemented in EnOSlib.

• k3s [19] is a lightweight version of Kubernetes.
• flent [23] is a network benchmarking tool.

Our k3s environment consists in two nodes: one k3s server
and one k3s agent. The agent deploys a nginx web server to
the agents. The run part of the experiment simply consists in
querying the webserver to retrieve the nginx web page.

Our flent environment consists in 2 nodes: one server and
one client. The run part of the experiment simply runs the
flent benchmark.

For both case studies, we made sure that NixOS Com-
pose and EnOSlib set up similar environments, and that
they execute the same run part of the experiment after the
deployment and provisioning phases have been done.

2) Protocol: EnOSlib’s approach is mostly based on the
provisioning phase, which executes commands to set up a
desired environment (software, services. . .) on a machine that
is already available. As this limits reproducibility on the kernel
side, we decided to deploy reproducible images on the nodes.
We used the grid5000/debian11-x64-nfs image that
is pre-built by Grid’5000. EnOSlib deploys the image with
Kadeploy, then executes the provisioning phase, and then
execute the run part of the experiment once the environment
is ready.

In NixOS Compose most of the configuration is done inside
the composition and thus in the image. This enables us to
completely skip the provisioning phase for flent. For k3s, our
provisioning phase simply consists in waiting that the web
server becomes available.

For both tools we measure the time to build the image, to
deploy it, to execute the provisioning and to run the experiment
script. We use an empty Nix Store for a fair build time.

3) Results and Comments: As seen on Figure 8, NixOS
Compose’s g5k-ramdisk flavour is faster to deploy than a
full image as it uses kexec and does not require a full reboot.
As expected, we also can see that the solutions with NixOS
Compose have a smaller provisioning time than with EnOSlib.
This is because NixOS Compose includes this as part of this
provisioning in the build and deployment phase.

Please note that EnOSlib does not directly provide the
time taken by the deployment phase, but only provides the
time between the submission and the first command of the
provisioning. That is why the submission and deployment
time (Sub + Deploy) are shown together on Figure 8 both
for EnOSlib and NixOS Compose, for the sake of fairness.

From Figure 8, it seems that packing part of the provisioning
in the image improves the provisioning time without deterio-
rating the deployment time. The only drawbacks are the non-
negligible build times. However, those times can be improved

9

flent k3s

Build Sub + Deploy Provisioning Run Build Sub + Deploy Provisioning Run
0

100

200

300

Phases

T
im

e
[s

]

EnOSlib nxc−g5k−ramdisk nxc−g5k−image

Time Spent in each Phases for Different Approaches with 99% Confidence Intervals (5 repetitions)

Fig. 8. Time spent in the different phases of the deployment of a distributed experiment (build, submission + deploy, provisioning, run). We compare EnOSlib
and NixOS Compose (with the flavours g5k-ramdisk and g5k-image) on two examples: a network benchmarking tool (flent) and a containers’ orchestrator
(k3s). The errors bars represent the confidence intervals at 99 %.

by utilizing the Nix Store as a local cache (see Section VI-B).
Note that NixOS Compose proposes several flavours that can
be executed locally to develop and test the environment. The
cost of the construction of these images is thus amortized
by the numerous quick and light local deployments. Finally,
please also note that the build time of EnOSlib is null on
Figure 8 as a pre-built image is used. However, depending on
their scenario users may need to actually build an image via
another technology (e.g., Kameleon or NixOS Compose).

VII. CONCLUSION AND FUTURE WORK

This article has presented NixOS Compose, a tool that en-
ables the generation of reproducible distributed environments.
We have showed that NixOS Compose deploys the exact
same software stack on various platforms of different natures,
without requiring specific work from users. The software stack
is reconstructible by design, as NixOS Compose inherits its
reproducibility properties from Nix and NixOS. Our experi-
ments showed that NixOS Compose’s reproducibility and plat-
form versatility properties are achieved without deployment
performance overhead in comparison to the existing solutions
Kameleon and EnOSlib.

NixOS Compose is a free software released under the MIT
license. As we write these lines, we think that its maturity level
enables to deploy the distributed environment of many ex-
periments. However, NixOS Compose currently only provides
first-class support for Grid’5000. We would like to support
baremetal and virtualized deployments on other experimental
testbeds such as CloudLab [13] and Chameleon [20].

NixOS Compose enables to build and deploy reproducible
distributed environments. This is crucial for conducting repro-
ducible distributed experiments, but this is only a part of the
bigger picture. We plan to explore how NixOS Compose can
be coupled to other tools that solve other parts of this problem.
EnOSlib is for example well-suited to control the dynamic part
of complex distributed experiments but lacks reproducibility

properties, which makes us think that a well-designed coupling
may be beneficial for practitioners.

The experiments conducted in this article showed that build
caches greatly improves NixOS Compose’s build times, and
that properly using the filesystem is important for its perfor-
mance. From a cluster administration perspective, providing
a shared Nix Store between users would be very interesting
to avoid data duplication and to prevent different NixOS Com-
pose users to build the same packages over and over. There are
many ways to implement a distributed shared Nix Store and
we think that exploring their trade-offs would provide valuable
insights, as reproducibility improvements should not be done
at the cost of a higher resource waste on clusters.

User experience is a crucial factor that must be consid-
ered for reproducible experimental practices to become the
standard. With this in mind, we think that the notion of
Transposition we have defined in this article and implemented
in NixOS Compose is very beneficial. Transposition reduces
the development time of distributed environments, as it enables
users to do most of the trial-and-error parts of this iterative
process with fast cycles, without any reproducibility penalty
on real-scale deployments. However, practitioners that adopt
NixOS Compose are likely to experience a paradigm shift
if they are not already accustomed to Nix’s approach. We
strongly believe that the reproducibility and serenity gains it
brings are worth it.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.
grid5000.fr).

This research was partly supported by the EuroHPC EU
Regale project (g.a. 956560).

The authors would like to thank Matthieu Simonin for the
helpful discussion on EnOSlib.

10

https://www.grid5000.fr
https://www.grid5000.fr

REFERENCES

[1] Daniel Balouek et al. “Adding Virtualization Capabili-
ties to the Grid’5000 Testbed”. In: Cloud Computing
and Services Science. Ed. by Ivan I. Ivanov et al.
Vol. 367. Communications in Computer and Informa-
tion Science. Springer International Publishing, 2013,
pp. 3–20. ISBN: 978-3-319-04518-4. DOI: 10.1007/978-
3-319-04519-1\ 1.

[2] Fabrice Bellard. “QEMU, a fast and portable dynamic
translator.” In: USENIX annual technical conference,
FREENIX Track. Vol. 41. 46. Califor-nia, USA. 2005,
pp. 10–5555.

[3] Sander van der Burg. Disnix. original-date: 2013-06-
24T12:44:47Z. Apr. 2022. URL: https : / / github. com /
svanderburg/disnix (visited on 04/28/2022).

[4] Sander van der Burg. DisnixOS. original-date: 2013-06-
24T14:20:16Z. Mar. 2022. URL: https : / / github. com /
svanderburg/disnixos (visited on 04/28/2022).

[5] N. Capit et al. “A batch scheduler with high level
components”. en. In: CCGrid 2005. IEEE International
Symposium on Cluster Computing and the Grid, 2005.
Cardiff, Wales, UK: IEEE, 2005, 776–783 Vol. 2. ISBN:
978-0-7803-9074-4. DOI: 10 . 1109 / CCGRID . 2005 .
1558641. URL: http : / / ieeexplore . ieee .org /document /
1558641/ (visited on 05/25/2020).

[6] Henri Casanova et al. “Versatile, Scalable, and Accurate
Simulation of Distributed Applications and Platforms”.
In: Journal of Parallel and Distributed Computing 74.10
(June 2014), pp. 2899–2917. URL: http://hal.inria.fr/hal-
01017319.

[7] Ronan-Alexandre Cherrueau et al. “EnosLib: A Library
for Experiment-Driven Research in Distributed Com-
puting”. en. In: IEEE Transactions on Parallel and
Distributed Systems 33.6 (June 2022), pp. 1464–1477.
ISSN: 1045-9219, 1558-2183, 2161-9883. DOI: 10.1109/
TPDS.2021.3111159. URL: https://ieeexplore.ieee.org/
document/9534688/ (visited on 11/22/2021).

[8] Christian Collberg, Todd Proebsting, and Alex M War-
ren. “Repeatability and Benefaction in Computer Sys-
tems Research - A Study and a Modest Proposal”. en.
In: (2015), p. 68.

[9] Ludovic Courtes and Ricardo Wurmus. “Reproducible
and User-Controlled Software Environments in HPC
with Guix”. en. In: Euro-Par 2015: Parallel Pro-
cessing Workshops. Ed. by Sascha Hunold et al.
Vol. 9523. Cham: Springer International Publishing,
2015, pp. 579–591. ISBN: 978-3-319-27307-5 978-3-
319-27308-2. DOI: 10.1007/978- 3- 319- 27308- 2 47.
URL: http : / / link . springer. com/10 .1007 /978- 3- 319-
27308-2 47 (visited on 06/13/2020).

[10] Ludovic Courtès. “Functional Package Management
with Guix”. en. In: arXiv:1305.4584 [cs] (May 2013).
URL: http : / / arxiv . org / abs / 1305 . 4584 (visited on
06/13/2020).

[11] Eelco Dolstra, Merijn de Jonge, and Eelco Visser.
“Nix: A Safe and Policy-Free System for Software
Deployment”. en. In: (2004), p. 14.

[12] Eelco Dolstra and Andres Löh. “NixOS: A Purely
Functional Linux Distribution”. In: SIGPLAN Not. 43.9
(Sept. 2008), pp. 367–378. ISSN: 0362-1340. DOI: 10.
1145/1411203.1411255. URL: https://doi.org/10.1145/
1411203.1411255.

[13] Dmitry Duplyakin et al. “The Design and Operation
of CloudLab”. In: Proceedings of the USENIX Annual
Technical Conference (ATC). July 2019, pp. 1–14. URL:
https://www.flux.utah.edu/paper/duplyakin-atc19.

[14] Pierre-François Dutot et al. “Batsim: a Realistic
Language-Independent Resources and Jobs Manage-
ment Systems Simulator”. In: 20th Workshop on Job
Scheduling Strategies for Parallel Processing. Chicago,
United States, May 2016. URL: https : / / hal . archives -
ouvertes.fr/hal-01333471.

[15] Dror G. Feitelson. “From Repeatability to Reproducibil-
ity and Corroboration”. en. In: ACM SIGOPS Operating
Systems Review 49.1 (Jan. 2015), pp. 3–11. ISSN: 0163-
5980. DOI: 10 . 1145 / 2723872 . 2723875. URL: https :
//dl.acm.org/doi/10.1145/2723872.2723875 (visited on
05/21/2020).

[16] Todd Gamblin et al. “The Spack package manager:
bringing order to HPC software chaos”. en. In: Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis.
Austin Texas: ACM, Nov. 2015, pp. 1–12. ISBN: 978-
1-4503-3723-6. DOI: 10.1145/2807591.2807623. URL:
https : / / dl . acm . org / doi / 10 . 1145 / 2807591 . 2807623
(visited on 11/22/2021).

[17] Yiannis Georgiou et al. “A tool for environment deploy-
ment in clusters and light grids”. In: Proceedings 20th
IEEE International Parallel & Distributed Processing
Symposium. IEEE. 2006, 8–pp.

[18] Matthieu Imbert et al. “Using the EXECO toolbox
to perform automatic and reproducible cloud experi-
ments”. In: 1st International Workshop on UsiNg and
building ClOud Testbeds (UNICO, collocated with IEEE
CloudCom 2013. Bristol, United Kingdom: IEEE, Dec.
2013. DOI: 10.1109/CloudCom.2013.119. URL: https:
//hal.inria.fr/hal-00861886.

[19] K3s: Lightweight Kubernetes. URL: https : / / k3s . io/
(visited on 04/28/2022).

[20] Kate Keahey et al. “Lessons Learned from the
Chameleon Testbed”. In: Proceedings of the 2020
USENIX Annual Technical Conference (USENIX ATC
’20). USENIX Association, July 2020.

[21] Michael Mercier, Adrien Faure, and Olivier Richard.
“Considering the Development Workflow to Achieve
Reproducibility with Variation”. In: SC 2018-Workshop:
ResCuE-HPC. 2018, pp. 1–5.

[22] NixOps. original-date: 2011-10-24T15:49:58Z. Apr.
2022. URL: https://github.com/NixOS/nixops (visited
on 04/28/2022).

11

https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://github.com/svanderburg/disnix
https://github.com/svanderburg/disnix
https://github.com/svanderburg/disnixos
https://github.com/svanderburg/disnixos
https://doi.org/10.1109/CCGRID.2005.1558641
https://doi.org/10.1109/CCGRID.2005.1558641
http://ieeexplore.ieee.org/document/1558641/
http://ieeexplore.ieee.org/document/1558641/
http://hal.inria.fr/hal-01017319
http://hal.inria.fr/hal-01017319
https://doi.org/10.1109/TPDS.2021.3111159
https://doi.org/10.1109/TPDS.2021.3111159
https://ieeexplore.ieee.org/document/9534688/
https://ieeexplore.ieee.org/document/9534688/
https://doi.org/10.1007/978-3-319-27308-2_47
http://link.springer.com/10.1007/978-3-319-27308-2_47
http://link.springer.com/10.1007/978-3-319-27308-2_47
http://arxiv.org/abs/1305.4584
https://doi.org/10.1145/1411203.1411255
https://doi.org/10.1145/1411203.1411255
https://doi.org/10.1145/1411203.1411255
https://doi.org/10.1145/1411203.1411255
https://www.flux.utah.edu/paper/duplyakin-atc19
https://hal.archives-ouvertes.fr/hal-01333471
https://hal.archives-ouvertes.fr/hal-01333471
https://doi.org/10.1145/2723872.2723875
https://dl.acm.org/doi/10.1145/2723872.2723875
https://dl.acm.org/doi/10.1145/2723872.2723875
https://doi.org/10.1145/2807591.2807623
https://dl.acm.org/doi/10.1145/2807591.2807623
https://doi.org/10.1109/CloudCom.2013.119
https://hal.inria.fr/hal-00861886
https://hal.inria.fr/hal-00861886
https://k3s.io/
https://github.com/NixOS/nixops

[23] Overview — Flent: The FLExible Network Tester. URL:
https://flent.org/ (visited on 05/08/2022).

[24] Overview of Docker Compose. en. May 2022. URL:
https : / / docs . docker . com / compose/ (visited on
05/17/2022).

[25] Packer by HashiCorp. en. URL: https://www.packer.io/
(visited on 05/13/2022).

[26] Polipo — a caching web proxy. URL: https://www.irif.
fr/∼jch/software/polipo/ (visited on 05/13/2022).

[27] Cristian Ruiz et al. “Reconstructable Software Appli-
ances with Kameleon”. en. In: ACM SIGOPS Operating
Systems Review 49.1 (Jan. 2015), pp. 80–89. ISSN:
0163-5980. DOI: 10 . 1145 / 2723872 . 2723883. URL:
https : / / dl . acm . org / doi / 10 . 1145 / 2723872 . 2723883
(visited on 06/12/2020).

[28] serokell/deploy-rs. original-date: 2020-09-
28T17:46:15Z. Apr. 2022. URL: https : / / github .
com/serokell/deploy-rs (visited on 04/28/2022).

[29] Software Heritage. en-US. URL: https : / / www .
softwareheritage.org/ (visited on 05/17/2022).

[30] Théophile Terraz et al. “Melissa: Large Scale In Transit
Sensitivity Analysis Avoiding Intermediate Files”. In:
The International Conference for High Performance
Computing, Networking, Storage and Analysis (Super-
computing). Denver, United States, Nov. 2017, pp. 1–14.
URL: https://hal.inria.fr/hal-01607479.

[31] Vagrant by HashiCorp. en. URL: https://www.vagrantup.
com/ (visited on 05/13/2022).

[32] Andy B Yoo, Morris A Jette, and Mark Grondona.
“Slurm: Simple linux utility for resource management”.
In: Workshop on job scheduling strategies for parallel
processing. Springer. 2003, pp. 44–60.

12

https://flent.org/
https://docs.docker.com/compose/
https://www.packer.io/
https://www.irif.fr/~jch/software/polipo/
https://www.irif.fr/~jch/software/polipo/
https://doi.org/10.1145/2723872.2723883
https://dl.acm.org/doi/10.1145/2723872.2723883
https://github.com/serokell/deploy-rs
https://github.com/serokell/deploy-rs
https://www.softwareheritage.org/
https://www.softwareheritage.org/
https://hal.inria.fr/hal-01607479
https://www.vagrantup.com/
https://www.vagrantup.com/

	Introduction
	State of the Art
	Reproducibility of a local software environment
	Reproducibility of a distributed software environment
	Research Gap, Positioning

	Presentation of
	Concepts of and
	Concepts of
	Role
	Composition
	Deployment
	Flavours

	Workflow of
	Local Testing
	Distributed Deployment

	Technical Details of
	Details on the Flavour
	Construction
	Deployment

	A Complex Example: Melissa
	Presentation of
	Key difficulties
	NFS Server
	Resource Manager

	Images Content Comparison

	Evaluation
	Experimental Setup
	Comparison to
	Protocol
	Results and Comments

	Comparison to
	Case Studies
	Protocol
	Results and Comments

	Conclusion and Future Work
	Acknowledgment

