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Abstract: 

Background: Ground-level ozone is a major public health issue worldwide. An accurate 

assessment of ozone exposure is necessary. Modeling tools have been developed to tackle this 

issue in large areas. However, these models could present inaccuracies at the local scale. 

Objectives: The objective of this study was i) to assess whether O3 concentrations estimated 

by transnational modeling at the kilometric scale (9 km²) could be improved, ii) to propose a 

potential correction of these downscaled ozone concentrations and iii) to evaluate the 

efficiency and applicability of such a correction. 

Method: The present work was carried out in three phases. First, the performance of a 

transnational modeling platform (PREV’EST) was assessed at 6 geographic points by 

comparison with data from 6 air quality monitoring stations. Performance indicators were 

used for this purpose (MBE (mean bias error), MAE (mean absolute error), RMSE (root mean 

square error), r (Pearson correlation coefficient), and target plots). Second, several corrections 

were developed using MARS (multivariate adaptive regression splines) and integrating 

different sets of variables (mean temperature, relative humidity, rainfall amount, wind speed, 

elevation, and date). Their performance was evaluated. Third, external validation of the 

corrections was conducted using the data from six additional air quality monitoring stations. 

Results: The uncorrected PREV’EST model presented a lack of exactitude and precision. 

These concentrations did not reproduce the interday variability of the measurements, leading 

to a lack of temporal contrast in exposure data. For the best performance enhancement, the 

correction applied improved MBE, MAE, RMSE and r from 14.67, 19.23, 23.18 and 0.67 to 

0.00, 8.00, 10.19 and 0.91, respectively. External validation confirmed the efficiency of the 

corrections at the regional scale. 

Conclusions: We propose a validated and efficient methodology integrating local 

environmental variables. The methodology is adaptable according to the context, needs and 

data available. 

Keywords: Ozone, modeling, improvement, performance, MARS model 
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1. Introduction: 

Outdoor air pollution is a major global public health issue involving both primary and 

secondary pollutants (Lelieveld., 2015; Cohen et al., 2017). Ground-level ozone (O3) is a 

secondary air pollutant which causes adverse human health effects (Brunekreef and Holgate, 

2002; Zhang et al., 2019) that can range from eye and nose irritation to pulmonary and 

cardiovascular system disorders (Henrotin et al., 2010; Marx et al., 2019; Nuvolone et al., 

2018; Zhang et al., 2019). Therefore, it is necessary to assess its spread in the environment 

and human exposure to this pollutant. Tropospheric ozone is particularly challenging to 

characterize in expology because it highly fluctuates in space and time. From 2000 to 2017, 

ozone rose in urbanized areas (with increasing annual ozone-related premature deaths) and 

decreased in rural areas in the EU-28 (Sicard et al., 2021). However, rural areas still remain 

more exposed. In response to climate change, ozone exposure is prone to be exacerbated in 

polluted regions (Lu et al., 2019). Indeed, this photooxidant is formed by photochemical 

reactions initiated in the presence of solar radiation and primary pollutant precursors (NOx, 

volatile organic compounds (VOCs)) (Royal Society (Great Britain), 2008; Wang et al., 

2017). Its distribution depends on numerous environmental parameters, such as solar radiation 

(and, indirectly, temperature), wind speed, relative humidity, and elevation (Ramos et al., 

2018; Royal Society, 2008). It also depends on ozone formation regime, strongly influenced 

by the VOCs-to-NOx ratio (Li et al., 2021). Ozone concentration evaluation is complex due to 

its extreme variability in space and time (diurnal cycle and seasonality) (Castell-Balaguer et 

al., 2012). 

Networks of air quality monitoring stations provide an assessment of population exposure 

and monitor regulatory threshold exceedances. These data are nevertheless insufficient 

because they can offer limited spatial and temporal coverage (Chen et al., 2014; Garcia et al., 

2010). Co-kriging approaches can be applied to interpolate background stations data (Sicard 

et al., 2013) and provide a spatially continuous estimation of ozone levels. Approaches 

combining local regression and residuals kriging can reach high spatial resolution (250 x 

250m) (Sicard et al., 2016).  However, these approaches are tributary to the number and 

spatial distribution of air quality monitoring stations (Wang et al., 2016).  

Land-Use Regression (LUR) and chemical transport models (CTMs) are the most 

commonly used modeling approaches in the long-term assessment of population exposure 

(Joly et al., 2021; Wang et al., 2016).  CTMs such as CHIMERE (Mailler et al., 2017; Menut 

et al., 2013), CMAQ or MOCAGE, provide grid meshes that commonly range from 4 to 12km 
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(U.S. EPA, 2018). However, the grid cell size is proportional to the spatial coverage of the 

model. CTMs covering Europe generally handle resolutions from 12 to 25 km, those covering 

a single country usually use 4 to 10 km resolutions and more rarely can reach ~1 km on some 

complex terrains regions (Schaap et al., 2015). CHIMERE is one of the most popular CTM 

(Thunis et al., 2016) and exploits the outputs of a meteorological model (Weather Research 

and Forecasting (WRF) model, for example) by modeling platforms delivering European, 

national or regional air quality forecasts (Honore et al., 2005; Riviere et al., 2019; Rouil et al., 

2009). PREV’AIR is a modeling platform providing air quality forecasts at European and 

national scales (France) and integrates WRF and CHIMERE models. The data stemming from 

these forecasting platforms are used in exposure risk assessment (Riviere et al., 2019). 

However, regional air quality modeling tools can present biases and inaccuracies (Steven 

Porter et al., 2015). Improvements could be needed prior to using these data for: i) exposure 

assessment (Crooks and Özkaynak, 2014) and ii) better depict both spatial and temporal 

variability of ozone.  

Modeling platforms, as PREV’AIR, require large computational capacity and extensive 

input data (Braun et al., 2017; Wang et al., 2016), but they constantly generate predictions to 

prevent and assess population exposure. We propose a correction of the outputs of a CTM 

predicted at the finest spatial scale, already available, to develop a tool which is more 

accessible, faster-processing, with lower computational cost than ex nihilo implementing LUR 

or CTM, and with better performance.  

The objective of this study was i) to assess whether downscaled O3 concentrations estimated 

by transnational modeling (initial resolution 45 km x 45 km, i.e., 2025 km²) to the kilometric 

scale (9 km²) should be improved, ii) to propose a potential correction of these downscaled 

ozone concentrations and iii) to evaluate the efficiency and applicability of such a correction. 

2. Materials and methods: 

The present work was conducted in three phases. First, the performance of the transnational 

model was assessed by comparison with air quality monitoring data at 6 geographic points. 

Second, several corrections were added to the model, and their performance were re-

evaluated. Third, external validation of the corrections was conducted using the data from six 

additional air quality monitoring stations. 
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2.1 Assessment of the performance of the uncorrected PREV’EST model 

2.1.1. Study site and data sources 

The mesoscale meteorological model, WRF, is already used in numerous air quality modeling 

approaches (Thunis et al., 2016). The CHIMERE model, an Eulerian chemistry-transport 

model, integrated WRF outputs, emission inventories and chemical boundary conditions to 

forecast air quality (Mailler et al., 2017; Menut et al., 2013). The PREV’EST modeling 

platform used in this study is a regional/transnational platform developed and managed by 

ATMO Grand Est (regional air quality monitoring association). Its functioning is analogous to 

PREV’AIR, a modeling platform used at the national and European scales (Honore et al., 

2005; Riviere et al., 2019; Rouil et al., 2009), and integrates the WRF and CHIMERE models. 

PREV’EST integrates Europe PREVAIR’s forecasts into the forecasting mode as boundary 

conditions to improve the modeling by limiting the edge effect. The PREV'EST and 

PREV’AIR modeling platforms are both subjected to daily performance assessments, 

comparing modeled concentrations with measurements (bias, percentage of errors lower than 

a certain level and correlation) (Honore et al., 2005; Rouil et al., 2009). ATMO Grand Est 

also applies corrections on yearly aggregated data.  

The PREV’EST modeling platform generated outputs on three grid meshes of different 

sizes: 45 km x 45 km (over Europe), 15 km x 15 km (over France and adjacent countries), and 

3 km x 3 km (eastern France and the boundary area of France, Germany, Switzerland and 

Luxembourg). The finest grid mesh used in this study covered 274,428 km², or a 194 x 154 

pixel grid of 9 km². The modeling and nesting processes were conducted by ATMO Grand 

Est, who delivered the outputs of the finest grid mesh (3 km x 3 km). We conducted the 

optimization processes (described below) on this finest grid mesh. CHIMERE’s 

parametrization was adapted to this area thanks to the expertise and field knowledge of the 

team who developed and managed this platform (ATMO Grand Est). Each pixel represented a 

basic spatial unit associated with a daily average modeled ozone concentration (called [O3] 

modelled). 

[Figure 1] 

Figure 1: PREV’EST modeling area (for the 3 km x 3 km grid mesh, on the top map) and 

location of the air quality monitoring stations (ATMO BFC) and weather stations (Météo-

France). 
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Six air quality monitoring stations (three urban, two suburban and one rural station) measured 

daily average O3 concentrations (called [O3] measured) in the Franche-Comté region (France) 

from 2008 to 2019 (Figure 1). Each monitoring station was related to the pixel of the 

PREV’EST model on which it is located. These daily measured concentrations were 

considered the gold standard for the O3 concentrations at the local place of the monitoring 

station (Thunis et al., 2016). ATMO Bourgogne-Franche-Comté (ATMO BFC) provided the 

measured data. 

For each of the six stations, the daily discrepancy between modeled and measured 

concentrations was quantified by the differences between daily average O3 concentrations: 

Daily Discrepancy = [O3] modeled – [O3] measured      (1) 

2.1.2. Performance indicators 

The following performance indicators were retained and are described in Appendix 1: mean 

bias error (MBE), mean absolute error (MAE), root mean square error (RMSE) and Pearson 

correlation coefficient (r). MBE quantifies the mean model-measure discrepancy and a 

potential overestimation (MBE>0) or underestimation (MBE<0) of the model (Kato, 2016; 

Martin, 2011). MAE is a precision indicator measuring the mean absolute model-measure 

discrepancy. MAE is higher when the model-measure discrepancies are large and scattered. 

RMSE is also a precision indicator (Abdulelah Al-Sudani et al., 2019; Lesmeister, 2019; 

Sekulic and Kowalski, 1992; Yilmaz et al., 2018) that gives more weight than MAE to high 

model-measure discrepancies (Bouthevillain and Mathis, 1995). RMSE is higher for large 

discrepancies (regardless of the sign, positive or negative) with high variability. The Pearson 

correlation coefficient (r) assesses the linear correlation between modeled and measured 

concentrations. 

In addition to these average performance indicators, target plots were used to represent the 

performance of the model at the station scale. The localization of the station in the circle 

inside the target plot indicates respect to these quality criteria: the vertical axis displays the 

normalized bias (BIASNorm), while the horizontal axis displays the CRMSENorm (normalized 

centered RMSE) value, both normalized by the measurement uncertainty associated with the 

pollutant. An extended description of both the quality criterion and target plots is provided in 

Appendix 1. Target plots were built using R software (‘dartle’ package). 
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2.2. Development and performance assessment of the corrections 

The statistical associations between model-measure discrepancies and environmental 

variables (meteorological variables and elevation) were analyzed using MARS (multivariate 

adaptive regression splines) models (Friedman, 1991; Friedman and Roosen, 1995). 

2.2.1.  Statistical relationship between the discrepancy and environmental variables 

Daily meteorological data were collected from 2008 to 2019 and provided by the French 

meteorological institute (Météo-France). The meteorological parameters were mean 

temperature (Celsius degrees (°C)), rainfall amount (mm), mean relative humidity (expressed 

in percentage (%)), average wind speed at a height of 10 meters (m.s-1), live maximum wind 

speed (m.s-1), and maximum wind speed measured over 10 minutes (m.s-1). The data from the 

nearest weather station were assigned to each air quality monitoring station, minimizing the 

difference in elevation between the meteorological station and air quality monitoring stations. 

The elevation of each air quality monitoring station was recorded by ATMO-BFC. 

The relationships between observed discrepancies and environmental variables were 

analyzed using MARS models (Eq. (2)). MARS models generate a piecewise linear model by 

finding knots (or “turning points”) in the relationship between Y (the variable we want to 

predict) and each of the explanatory variables (Figures A.1 and A.2). 

These models were used as the prediction function of the daily discrepancy according to 

environmental variables (Eq. (2)). The predicted daily discrepancy was then used to correct 

the raw (called “uncorrected”) data. The performance of the corrected O3 concentrations was 

assessed by the process described in Section 2.1.2. 

Daily observed discrepancy = f(T°, RA, RH, WS, elevation, date)    (2) 

where T° is the mean temperature, RA is the rainfall amount, RH is the mean relative 

humidity, and WS is the wind speed variables. 

Different sets of explanatory variables were iteratively used to assess the relevance of 

integrating some variables less frequently recorded (e.g., RH and WS) (Table 1): four weather 

factors (4-WF correction, every meteorological variable and the date), two weather factors 

and elevation (2-WF elevation correction, mean temperature, rainfall amount, elevation and 

the date) and two weather factors (2-WF correction, mean temperature, rainfall amount and 

the date). 

[Table 1] 
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The model-measure discrepancy predicted by MARS was then used to calculate corrected 

modeled O3 concentrations as follows: 

Daily [O3] corrected = daily [O3] modelled - predicted daily discrepancy   (3) 

A positive discrepancy reflected an overestimation by the uncorrected PREV’EST model, 

and conversely, a negative discrepancy corresponded to an underestimation. 

The efficiency of each correction was assessed using the performance indicators described in 

Section 2.1.2. (MBE, MAE, RMSE, r, and target plots) on the daily [O3] corrected values. 

2.2.2. Modeling approaches 

Four modeling approaches of increasing complexity were developed (Table 1). The global 

approach included the data of the six stations during a 12-year period. The annual approach 

included the 6 stations together but was separately conducted for each of the 12 years (one 

independent model per year, n = 12). The territorial approach included the data of the 12 years 

but was separately conducted for each of the six stations (one independent model per station, 

n = 6). In the territorial and annual approach, one independent model was performed per year 

and per station (n = 6 x 12) (Table 1). The predictions of all these models were recompiled to 

calculate the performance indicators and to keep these modeling approaches comparable 

(Figure A.3). Indeed, although we split the dataset (per year and/or per station), we kept the 

same number of statistical units (22,640 “discrepancies” used to train the models). 

2.3.) External validation of the corrections 

External validation was conducted to ensure that this methodology could be applied to a 

regional territory and not only to the six stations considered to train the model. Six additional 

air quality monitoring stations (location presented in Figure A.4) were used in this phase. 

These stations have temporarily measured O3 concentrations. However, the additional stations 

were subject to the same quality approach as the six previous stations. The processes 

described in Sections 2.2.1 and 2.2.2 were applied for the periods when the additional stations 

were active. Finally, the efficiency of each correction (and for each approach) was assessed 

using the performance indicators described in Section 2.1.2. The quality of the correction was 

assessed by the difference between the corrected O3 concentration and measured O3 

concentration (Eq. (4)). 

([O3] modeled - predicted daily discrepancy using the function in Eq. (2)) - [O3] measured  (4) 

The corrected O3 concentration was defined by: 

([O3] modeled - predicted discrepancy using the function in Eq. (2))    (5) 
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All statistical treatments were performed with R software (version 4.0.3), and the MARS 

models were implemented with the ‘earth’ package. 

3) Results and Discussion 

3.1) Evaluation of uncorrected PREV’EST model performance 

The discrepancy between the uncorrected kilometric scale modeling and the local 

measurements was substantial (+14.67 µg m-3 (SD = 17.9)). This discrepancy was nonlinearly 

structured according to some environmental parameters, particularly temperature (Figure 

A.5). Table 2 presents the average performance indicators reflecting the general performance 

averaged among all stations. The average performance of the uncorrected PREV’EST model 

(Table 2) suggested a need for improvement of both exactitude (MBE = +14.67 µg m-3) and 

precision (RMSE = 23.18 µg m-3, MAE = 19.23 µg m-3) to be used in exposure assessment at 

the local scale. According to the literature, the national model PREV’AIR had a very 

comparable performance to the study PREV’EST model (Meleux and Ung, 2020). 

[Table 2] 

The performance of the uncorrected PREV’EST model was also separately estimated for 

the six air quality monitoring stations (Figure 2). The stations are not centered on the 

horizontal axis (Figure 2). They are also positioned in the left part of the target plot, which 

indicates a lack of correlation between uncorrected PREV’EST data and measurements 

(Janssen et al., 2017). The PREV’EST model also overestimated the ozone concentrations, as 

seen previously (Table 2, MBE = 14.67 µg m-3). The stations are differently distributed on the 

vertical axis (bias axis) (Figure 2): the PREV’EST model overestimated the global data but 

more (Station C) or less (Stations D and E) according to the station. 

 

[Figure 2] 

Figure 2: Target plots of the uncorrected PREV’EST modeling. 

Different letters represent the different air quality monitoring stations. 

According to the current guidelines, the performance of the uncorrected PREV’EST model 

could be qualified as good. However, this model, already well calibrated, presented faults: a 

lack of precision and exactitude (a tendency to overestimate differentially according to the 

station). 
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3.2) Evaluation of the performance of the corrections 

The average performance indicators presented in Table 2 were calculated by compiling the 

predictions of the models according to the different corrections proposed. The mean bias error 

(MBE) was drastically reduced regardless of the correction applied (initial value: 14.67; range 

of MBE after correction: 0.00 to 0.04 µg m-3) (Table 2). This indicated an improvement in the 

exactitude of the modeled ozone concentrations. The MBE values varied very little between 

the corrections and were thus not discriminant to identifying the best correction. 

According to the other indicators (MAE, RMSE, and r), the 4-WF correction could be 

considered the most efficient, followed by the 2-WF elevation correction and then the 2-WF 

correction, regardless of the approach considered. The refinement of the type of approach led 

to a gradual improvement in performance indicators (i.e., decrease of MBE, MAE and RMSE 

and increase of r). The territorial and annual approach coupled to the 4-WF correction could 

be seen as the most efficient (MAE = 8.00 µg m-3, RMSE = 10.19 µg m-3, and r = 0.91). 

Taking into account the specificities of the site of each station provided a more precise 

correction. 

Figure 3 allowed us to explore the potential difference in the performance of the corrections 

between the six stations. We observed an improvement in the performance of the modeled 

ozone concentrations (Figure 3) compared with uncorrected PREV’EST (Figure 2). All 

stations displayed a null bias and were closer to the target center after correction. A 

differential bias persisted with the 4-WF correction in the global and annual approaches 

(Figure 3). The differential bias could be damaging when the exposure assessment is 

simultaneously conducted in different areas. The 2-WF elevation correction allowed for the 

suppression of this differential bias. The integration of the elevation in the global model with 

the 2-WF elevation correction offers the opportunity to consider the local characteristics of 

the sites of each station. Moreover, elevation is well known in the literature to be a key factor 

in ozone distribution (Brönnimann et al., 2000; Chevalier et al., 2007; Ezcurra et al., 2013). A 

study conducted by Martin (2010) revealed some lack of precision in a comparable model (a 

regional application of the PREV’AIR modeling platform, AIRES). Martin (2010) suggested 

refining the spatial resolution of the model to better consider topography. This lack of local 

precision could be offset by the integration of local meteorological data and elevation. 

Moreover, the elevation is easily available over large territories thanks to digital elevation 

models. Other modeling methods, as LUR or (co)-kriging, integrate the digital elevation 

models, land use, population density, etc., and provide finer resolution. These methods 
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present some advantages: the ability to characterize small spatial scale variability, ease to use, 

and require far fewer computational resources than CTMs (Braun et al., 2017; Wang et al., 

2016). However, they use internal data to validate the model through a cross-validation 

process (Ma et al., 2020) which can overestimate the predictive ability of the model (Wang et 

al., 2013). LUR focuses on spatial variation (Ren et al., 2020) and can fail to depict the 

temporal variation of ozone (Ma et al., 2020). CTMs rely on topography, emissions, 

meteorology, and physicochemical processes. They provide a well captured spatio-temporal 

ozone variability and a large spatial coverage (Wang et al., 2016). Nevertheless, they present 

coarser grid mesh and require large computational capacity and extensive input data (Braun et 

al., 2017), reducing their accessibility. 

[FIGURE 3] 

Figure 3: Target plots of the uncorrected PREV’EST modeling, global approach 4-WF and 2-

WF elevation corrections, annual approach 4-WF and 2-WF elevation corrections, territorial 

approach 4-WF correction and territorial and annual approach 4-WF correction target plots. 

Different letters represent the different air quality monitoring stations. 

 

In terms of application, if we consider a correction dedicated to numerous stations or a 

regional projection, the 2-WF elevation correction in the annual approach should be favored. 

This correction suppressed the differential bias between stations and is easily applicable. 

Some meteorological variables (such as wind speed) were not recorded by most of the 

weather stations. Our 2WF-elevation correction used common and few variables. 

The territorial and territorial and annual approaches had the best performance (Figure 3). 

From an operational point of view, these approaches could be used to locally correct the 

exposure data for a few stations and their surrounding areas. The implementation of the 

territorial and annual approach is very efficient but time-consuming. The territorial approach 

could be chosen instead of the territorial and annual approach to reach a very satisfactory 

performance faster. In any case, the territorial (and annual) approach should be applied with 

caution because the area around a station on which the model is reliable is unknown and 

hardly definable. External validation will allow the determination of whether these territorial 

corrections could be extended to other areas while remaining reliable or not. 

Figure 4 shows the time series of the concentrations measured, uncorrected and corrected, 

using the annual 2-WF elevation correction. These corrected concentrations provided better 
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interday variability than uncorrected PREV’EST data. The latter did not reproduce the 

interday variability of the measurements and smoothed the curve of exposure assessment data. 

This led to a lack of contrast in exposure data and could make the identification of a harmful 

effect of acute O3 exposure difficult. The day-to-day contrast is essential to identify ozone 

peaks (Ren et al., 2020) which appear as a key element in the occurrence of health effects (Di 

et al., 2017). Such a phenomenon has already been observed in air quality modeling (Hogrefe 

et al., 2004). Hogrefe and his collaborators (2004) suggested that a regional scale resolution 

was insufficient to well represent ozone variations in the short term (daily, interday, and 

intraday variations). The methodology proposed in this study offers a potential solution to this 

lack of precision and variability in the short-term assessment of ozone levels at the regional 

scale.  

Considering the spatial variability of ozone, by definition, a grid cell displays a 

homogenous exposure level. The assessed level is the same for all individuals living in the 

same grid cell. This could lead to under or overestimation at the individual scale. However, 

we could apply the methodology presented in this article to models with finer spatial 

resolution, to better capture the spatial variability of ozone. 

[Figure 4] 

Figure 4: Daily mean ozone concentrations measured, modeled by uncorrected PREV’EST 

modeling and corrected by the annual 2-WF elevation correction, during 2018 at Station A. 

 

3.3. External validation 

In this validation, 14,846 statistical units (number of discrepancies modeled) were implied. 

The corrections of ozone concentrations led to an improvement of every average indicator 

(Table 3). The initial value of MBE, MAE, RMSE and r were 14.83, 17.63, 21.35 and 0.74, 

respectively; and their ranges after correction, according to the correction, were 0.04 to 4.87, 

9.48 to 12.76, 12.11 to 16.11 and 0.75 to 0.85, respectively (Table 3). All average indicators 

converged to identify the annual approach with the 4-WF correction as the most efficient. 

However, the territorial and territorial and annual approaches were only applied to the models 

of two stations (A and D among the six available stations) because of the locations of these 

stations (Figure A.4). 

[Table 3] 

As already observed in the internal validation, the target plots presented in Figure 5 

displayed a differential bias among stations in the 4-WF correction, which was reduced by the 
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2-WF elevation correction. This latter correction could be seen as the most efficient and 

flexible in this external validation. 

This external validation confirmed the main points of the observed performance of the 

different corrections assessed. If the user desires to apply a correction with fewer spatial 

constraints, the annual approach will give the best performance. The correction to be favored 

could be the 4-WF correction because it presented the best average performance (Table 3). 

However, the 2-WF elevation correction presented a lower differential bias among stations 

(Figure 5) and very satisfactory average performance (Table 3). This correction was more 

flexible and required fewer variables that were commonly recorded by most of the weather 

stations. The 2-WF correction showed an equivalent average performance but lower 

performance at the station scale. 

 

[FIGURE 5] 

Figure 5: External validation: uncorrected PREV’EST modeling, annual approach 4-WF 

correction, annual approach 2-WF elevation correction, and annual and territorial approach 4-

WF and 2-WF correction target plots.      

 Different letters represent the different air quality monitoring stations. 

4 Strengths of the methodology and comparison with existing methodologies 

The main strengths of this methodology are its efficiency in improving the precision and 

exactitude of exposure data, its ability to recover a good contrast in these data, and its 

transposability in other regions. Furthermore, this methodology is adaptable according to the 

context, needs and data available. The quantification of the benefit of the correction especially 

using external data represents a complete and powerful validation process. Indeed, kriging 

methods or LUR models commonly use cross-validation which can overestimate the 

predictive ability of the model (Wang et al., 2013). Our approach allows also to better 

estimate the ozone concentration peaks, which are of great importance in daily exposure 

assessment and could be underestimated by other modeling approaches. 

MARS models have been used instead of other classical models (such as generalized 

additive models (GAMs) and artificial neural networks (ANNs)) because they present a better 

performance, the possibility to introduce interactions between variables and the ability to 

capture complex nonlinear relationships between variables (Bordignon et al., 2002; Leathwick 

et al., 2006; Martin, 2011). MARS models are simple to apply and interpret, and require a 

short calculation time. 
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MARS models have already been efficaciously used to locally model atmospheric pollutant 

concentrations (García Nieto et al., 2015; García Nieto and Álvarez Antón, 2014; Roy et al., 

2018). To our knowledge, they have never been used to adjust a pre-existing and well-

established air quality model. Guillas et al. (2008) used model diagnostic and correction 

(MDC) integrating variables associated with wind speed, precipitation amounts and the 

diurnal cycle to predict the discrepancy and correct ozone concentrations. However, this 

approach only used linear regressions. This was not suitable for our data because of the 

nonlinear relationship between our discrepancy and our environmental variables. 

5. Conclusion: 

We identified a lack of exactitude and precision of transnational modeling downscaled at 

the kilometric scale compared with local measurements. We proposed a validated and 

efficient methodology, integrating local environmental variables, to remedy this and 

demonstrated its broader applicability. This methodology can be transferable to other areas, 

applicable to variable ranges of concentration and periods, and requires only a few 

environmental variables. This procedure is also flexible according to the context, needs and 

data available. Our approach allows us to improve the ozone exposure assessment. This is a 

more accessible tool, faster-processing, lower-cost than computing LUR or CTM, externally 

validated, and which better captures ozone peaks that can be associated with health effects (Di 

et al., 2017). The quantification of the benefit of the correction, especially using external data, 

constitutes a complete and powerful validation process. In the context of climate change, such 

an improvement will be of paramount importance for impact assessment of ozone exposure, 

including on wildlife (Sanderfoot and Holloway, 2017) or vegetation (Proietti et al., 2021). 
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[Figure 1] 

Figure 1: PREV’EST modeling area (for the 3 km x 3 km grid mesh, on the top map) and 

location of the air quality monitoring stations (ATMO BFC) and weather stations (Météo-

France). 

 

 

[Figure 2] 

Figure 2: Target plots of the uncorrected PREV’EST modeling. 

Different letters represent the different air quality monitoring stations. 

 

[FIGURE 3] 

Figure 3: Target plots of the uncorrected PREV’EST modeling, global approach 4-WF and 2-

WF elevation corrections, annual approach 4-WF and 2-WF elevation corrections, territorial 

approach 4-WF correction and territorial and annual approach 4-WF correction target plots. 

Different letters represent the different air quality monitoring stations. 

 

[FIGURE 4] 

Figure 4: Daily mean ozone concentrations measured, modeled by uncorrected PREV’EST 

modeling and corrected by the annual 2-WF elevation correction, during 2018 at Station A. 

 

 

[FIGURE 5] 

Figure 5: External validation: uncorrected PREV’EST modeling, annual approach 4-WF 

correction, annual approach 2-WF elevation correction, and annual and territorial approach 4-

WF and 2-WF correction target plots.      

 Different letters represent the different air quality monitoring stations. 

 













Title: Improvement of downscaled ozone concentrations from the transnational scale to the 

kilometric scale: need, interest and new insights 

Table 1: MARS modeling approaches and corrections 

1The territorial and, the territorial and annual approaches did not include a 2WF-elevation 
correction because the elevation was steady (only one station considered per model). 

2 4WF: correction including 4 weather factors (Temperature (T°), Relative Humidity (RH), 
Rainfall Amounts (RA), Wind speed parameters (WS)) and the date; 2WF – elevation: 
correction including 2 weather factors (T°, RA), the date and the elevation; 2WF: correction 
including 2 weather factors (T°, RA), and the date. 

3 Theoretically we should have 72 models but the station E opened only in 2013 and the 
station B opened only in 2010. 

Type of approach 
Kind of 

correction applied2 

Number of 

models per 

approach 

Number of models 

per kind of correction 

Global 

4WF 

3 

1 

2WF-elevation 1 

2WF 1 

Annual 

4WF 

36 

12 

2WF-elevation 12 

2WF 12 

Territorial1 
4WF 

12 
6 

2WF 6 

Territorial and annual1 
4WF 

1303 
653 

2WF 653 

Total  179 
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Table 2: Average performance indicators of the different approaches and corrections 

Kind of correction applied MBEa MAEa RMSEa rb 

Uncorrected PREV’EST 14.67 19.23 23.18 0.67 

Global 4WF correction 0.00 10.78 13.64 0.84 

Global 2WF-elevation correction 0.00 11.37 14.32 0.81 

Global 2WF correction 0.03 12.21 15.34 0.78 

Annual 4WF correction 0.02 9.40 11.92 0.87 

Annual 2WF-elevation correction 0.01 10.04 12.67 0.85 

Annual 2WF correction 0.04 10.81 13.60 0.83 

Territorial 4WF correction 0.00 9.41 11.96 0.88 

Territorial 2WF correction 0.00 10.92 13.76 0.83 

Territorial and annual 4WF correction 0.01 8.00 10.19 0.91 

Territorial and annual 2WF correction 0.02 9.52 12.05 0.87 

a Mean bias error (MBE), mean absolute error (MAE) and root mean square error (RMSE) 

should be minimized to reflect better a performance. 

b r: Pearson correlation coefficient should be maximized to reach better a performance. 
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Table 3: Average performance indicators calculated for the external validation.  

  MBE MAE RMSE r 

Uncorrected PREV’EST 14.83 17.63 21.35 0.74 

Global 4WF correction 0.54 10.24 13.00 0.85 

Global 2WF-elevation correction -0.96 11.64 14.70 0.77 

Global 2WF correction -0.23 11.55 14.56 0.78 

Annual 4WF correction 0.51 9.48 12.11 0.85 

Annual 2WF-elevation correction -2.01 10.74 13.59 0.81 

Annual 2WF correction 0.04 10.76 13.61 0.81 

Territorial 4WF correction 4.87 12.26 15.61 0.79 

Territorial 2WF correction 3.67 12.76 16.11 0.75 

Territorial and annual 4WF correction 3.45 11.11 14.29 0.81 

Territorial and annual 2WF correction 3.42 12.31 15.67 0.76 

Number of statistical units (number of discrepancies predicted): 14 846 

The prediction was performed on data of the air quality monitoring station which were not 

integrated into the MARS models for its training (additional stations, n = 6). 

 




