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Introduction

Combinatorial geometric series [START_REF] Annamalai | Optimized Computing Technique for Combination in Combinatorics[END_REF][START_REF] Annamalai | Novel Computing Technique in Combinatorics[END_REF][START_REF] Annamalai | Annamalai's Binomial Identity and Theorem[END_REF][START_REF] Annamalai | My New Idea for Optimized Combinatorial Techniques[END_REF] is produced by multiple summations of a geometric series as follows:

∑ ∑ ∑ ⋯ 𝑛 𝑖 3 =𝑖 2 ∑ 𝑥 𝑖 𝑟 𝑛 𝑖 𝑟 =𝑖 𝑟-1 𝑛 𝑖 2 =𝑖 1 𝑛 𝑖 1 =0 = ∑ 𝑉 𝑖 𝑟 𝑥 𝑖 𝑛 𝑖=0 . Here, ∑ 𝑉 𝑖 𝑟 𝑥 𝑖 𝑛 𝑖=0
is the combinatorial geometric series.

The binomial coefficient of combinatorial geometric series is given below:

𝑉 𝑟 𝑛 = (𝑟 + 1)(𝑟 + 2)(𝑟 + 3) ⋯ (𝑟 + 𝑛) 𝑛! , (𝑛 ≥ 1, 𝑟 ≥ 0 & 𝑛, 𝑟 ∈ 𝑁),
where 𝑁 = {0, 1, 2, 3, ⋯ } is set of natural numbers including zero element

The traditional binomial coefficient denotes ( 𝑛 𝑟 ) = 𝑛! 𝑟! (𝑛 -𝑟)!

, where 𝑛, 𝑟 ∈ 𝑁.

Let us compare the binomial coefficient 𝑉 𝑥 𝑦 with the traditional binomial coefficient:

Let 𝑧 = 𝑥 + 𝑦. Then, ( 𝑧 𝑥 ) = 𝑧𝐶 𝑥 = 𝑧! 𝑥! 𝑦!
. Here, 𝑉 𝑥 𝑦 = 𝑉 𝑦 𝑥 ⟹ 𝑧𝐶 𝑥 = 𝑧𝐶 𝑦 , (𝑥, 𝑦, 𝑧 ∈ 𝑁).

For example, 𝑉 3 5 = 𝑉 5 3 = (5 + 3)𝐶 3 = (5 + 3)𝐶 5 = 56.

Also, 𝑉 𝑛 0 = 𝑉 0 𝑛 = 𝑛𝐶 0 = 𝑛𝐶 𝑛 = 𝑛! 𝑛! 0! = 1 𝑎𝑛𝑑 𝑉 0 0 = 0𝐶 0 = 0! 0! = 1(∵ 0! = 1).

Binomial Expansion

The following binomial identity [START_REF] Annamalai | Optimized Computing Technique for Combination in Combinatorics[END_REF][START_REF] Annamalai | Novel Computing Technique in Combinatorics[END_REF] is created using the binomial coefficients of the combinatorial geometric series.

𝑉 0 𝑟 + 𝑉 1 𝑟 + 𝑉 2 𝑟 + ⋯ + 𝑉 𝑛 𝑟 = 𝑉 𝑛 𝑟+1 and 𝑉 𝑛 0 + 𝑉 𝑛 1 + 𝑉 𝑛 2 + ⋯ + 𝑉 𝑛 𝑟 = 𝑉 𝑛+1 𝑟 , (∵ 𝑉 𝑛 𝑟 = 𝑉 𝑟 𝑛 ).
From the binomial identity 𝑉 0 𝑟 + 𝑉 1 𝑟 + 𝑉 2 𝑟 + ⋯ + 𝑉 𝑛 𝑟 = 𝑉 𝑛 𝑟+1 , we can derive the following binomial expansions: Similarly, we can continue this process up to r times. The r th binomial expansion is as follows: 

(𝑟). ∑

Conclusion

In this article, a combinatorial geometric series or geometric series with binomial coefficients has been developed using the multiple summations of a geometrics series. The idea is a sort of methodological advance which is useful for researchers working in science, economics, engineering, computation, and management.