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Why do tree-based models still outperform deep learning on typical tabular data?

While deep learning has enabled tremendous progress on text and image datasets, its superiority on tabular data is not clear. We contribute extensive benchmarks of standard and novel deep learning methods as well as tree-based models such as XGBoost and Random Forests, across a large number of datasets and hyperparameter combinations. We define a standard set of 48 datasets from varied domains with clear characteristics of tabular data and a benchmarking methodology accounting for both fitting models and finding good hyperparameters. Results show that tree-based models remain state-of-the-art on medium-sized data (∼10K samples) even without accounting for their superior speed. To understand this gap, we conduct an empirical investigation into the differing inductive biases of tree-based models and neural networks. This leads to a series of challenges which should guide researchers aiming to build tabular-specific neural network: 1. be robust to uninformative features, 2. preserve the orientation of the data, and 3. be able to easily learn irregular functions. To stimulate research on tabular architectures, we contribute a standard benchmark and raw data for baselines: every point of a 20 000 compute hours hyperparameter search for each learner.

Introduction

Deep learning has enabled tremendous progress for learning on image, language, or even audio datasets. On tabular data, however, the picture is muddier and ensemble models based on decision trees like XGBoost remain the go-to tool for most practitioners [Sta] and data science competitions [START_REF] Kossen | Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning[END_REF]. Indeed deep learning architectures have been crafted to create inductive biases matching invariances and spatial dependencies of the data. Finding corresponding invariances is hard in tabular data, made of heterogeneous features, small sample sizes, extreme values.

Creating tabular-specific deep learning architectures is a very active area of research (see section 2). One motivation is that tree-based models are not differentiable, and thus cannot be easily composed and jointly trained with other deep learning blocks. Most tabular deep learning publications claim to beat or match tree-based models, but their claims have been put into question: a simple Resnet seems to be competitive with some of these new models [START_REF] Gorishniy | Revisiting Deep Learning Models for Tabular Data[END_REF], and most of these methods seem to fail on new datasets [START_REF] Shwartz | Tabular Data: Deep Learning is Not All You Need[END_REF]. Indeed, the lack of an established benchmark for tabular data learning provides additional degrees of freedom to researchers when evaluating their method. Furthermore, most tabular datasets available online are small compared to benchmarks in other machine learning subdomains, such as ImageNet [Ima], making evaluation noisier. These issues add up to other sources of unreplicability across machine learning, such as unequal hyperparameters tuning efforts [START_REF] Lipton | Troubling Trends in Machine Learning Scholarship: Some ML papers suffer from flaws that could mislead the public and stymie future research[END_REF] or failure to account for statistical uncertainty in benchmarks [START_REF] Bouthillier | Accounting for Variance in Machine Learning Benchmarks[END_REF]. To alleviate these concerns, we contribute a tabular data benchmark with a precise methodology for datasets inclusion and hyperparameter tuning. This enables us to evaluate recent deep learning models which have not yet been independently evaluated, and to show that tree-based models remain state-of-the-art on medium-sized tabular datasets, even without accounting for the slower training of deep learning algorithms. Furthermore, we show that this performance gap is not mostly due to categorical features, and does not disappear after tuning hyperparameters.

Impressed by the superiority of tree-based models on tabular data, we strive to understand which inductive biases make them well-suited for these data. By transforming tabular datasets to modify the performances of different models, we uncover differing biases of tree-based models and deep learning algorithms which partly explain their different performances: neural networks struggle to learn irregular patterns of the target function, and their rotation invariance hurt their performance, in particular when handling the numerous uninformative features present in tabular data.

Our contributions are as follow: 1. We create a new benchmark for tabular data, with a precise methodology for choosing and preprocessing a large number of representative datasets. We share these datasets through OpenML [START_REF] Vanschoren | OpenML: Networked science in machine learning[END_REF], which makes them easy to use. 2. We extensively compare deep learning models and tree-based models on generic tabular datasets in multiple settings, accounting for the cost of choosing hyperparameters. We also share the raw results of our random searches, which will enable researchers to cheaply test new algorithms for a fixed hyperparameter optimization budget. 3. We investigate empirically why tree-based models outperform deep learning, by finding data transformations which narrow or widen their performance gap. This highlights desirable biases for tabular data learning, which we hope will help other researchers to successfully build deep learning models for tabular data.

In Sec. 2 we cover related work. Sec. 3 gives a short description of our benchmark methodology, including datasets, data processing, and hyper-parameter tuning. Then, Sec. 4 shows our raw results on deep learning and tree-based models after an extensive random search. Finally, Sec. 5 provides the results of an empirical study which exhibit desirable implicit biases of tabular datasets.1 

Related work

Deep learning for tabular data As described by [START_REF] Borisov | Deep Neural Networks and Tabular Data: A Survey[END_REF] in their review of the field, there have been various attempts to adapt deep learning to tabular data: data encoding techniques to make tabular data better suited for deep learning [START_REF] Hancock | Survey on categorical data for neural networks[END_REF]Khoshgoftaar, 2020, Yoon et al., 2020], "hybrid methods" to benefit from the flexibility of neural networks while keeping the inductive biases of other algorithms like tree-based models [START_REF] Lay | Random Hinge Forest for Differentiable Learning[END_REF][START_REF] Popov | Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data[END_REF][START_REF] Abutbul | DNF-Net: A Neural Architecture for Tabular Data[END_REF][START_REF] Thomas | End-to-End Learning of Decision Trees and Forests[END_REF][START_REF] Tanno | Adaptive Neural Trees[END_REF][START_REF] Chen | Attention augmented differentiable forest for tabular data[END_REF][START_REF] Kontschieder | Deep Neural Decision Forests[END_REF][START_REF] Rodriguez | Interpretable Reinforcement Learning via Differentiable Decision Trees[END_REF][START_REF] Popov | Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data[END_REF][START_REF] Lay | Random Hinge Forest for Differentiable Learning[END_REF] or Factorization Machines [START_REF] Guo | DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[END_REF], tabular-specific transformers architectures [START_REF] Somepalli | SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training[END_REF], [START_REF] Kossen | Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning[END_REF], [START_REF] Sercan | TabNet: Attentive Interpretable Tabular Learning[END_REF], [START_REF] Huang | TabTransformer: Tabular Data Modeling Using Contextual Embeddings[END_REF], and various regularization techniques to adapt classical architectures to tabular data [START_REF] Lounici | Muddling Label Regularization: Deep Learning for Tabular Datasets[END_REF][START_REF] Shavitt | Regularization Learning Networks: Deep Learning for Tabular Datasets[END_REF], Kadra et al., 2021a[START_REF] Fiedler | Simple Modifications to Improve Tabular Neural Networks[END_REF]. In this paper, we focus on architectures directly inspired by classic deep learning models, in particular Transformers and Multi-Layer-Perceptrons (MLPs).

Comparisons between neural networks and tree-based models The most comprehensive comparisons of machine learning algorithms have been published before the advent of new deep learning methods [Caruana andNiculescu-Mizil, 2006, Fernández-Delgado et al., 2014], or on specific problems [START_REF] Sherif Sakr | Comparison of machine learning techniques to predict all-cause mortality using fitness data: The Henry ford exercIse testing (FIT) project[END_REF][START_REF] Korotcov | Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets[END_REF][START_REF] Shahadat Uddin | Comparing different supervised machine learning algorithms for disease prediction[END_REF]. Recently, [START_REF] Shwartz | Tabular Data: Deep Learning is Not All You Need[END_REF] evaluated modern tabular-specific deep learning methods, but their goal was more to reveal that "New deep learning architectures fail to generalize to new datasets" than to create a comprehensive benchmark. [START_REF] Borisov | Deep Neural Networks and Tabular Data: A Survey[END_REF] benchmarked recent algorithms in their review of deep learning for tabular data, but only on 3 datasets, and "highlight[ed] the need for unified benchmarks" for tabular data. Most papers introducing a new architecture for tabular data benchmark various algorithms, but with a highly variable evaluation methodology, a small number of datasets, and the evaluation can be biased toward the authors' model [START_REF] Shwartz | Tabular Data: Deep Learning is Not All You Need[END_REF]. The paper closest to our work is [START_REF] Gorishniy | Revisiting Deep Learning Models for Tabular Data[END_REF], benchmarking novel algorithms, on 11 tabular datasets. We provide a more comprehensive benchmark, with 48 datasets, split across different settings (medium-sized / large-size, with/without categorical features), accounting for the hyperparameter tuning cost, to establish a standard benchmark.

No standard benchmark for tabular data Unlike other machine learning subfields such as computer vision [Ima] or NLP [START_REF] Wang | SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems[END_REF], there are no standard benchmarks for tabular data. There exist generic machine learning benchmarks, but, to the our knowledge, none are specific to tabular data. For instance, OpenML benchmarks CC-18, CC-100, [START_REF] Bischl | OpenML Benchmarking Suites[END_REF] and AutoML Benchmark [START_REF] Gijsbers | An Open Source AutoML Benchmark[END_REF] contain tabular data, but also include images and artificial datasets, which may explain why they have not been used in tabular deep learning papers. In A.6, we compare in more depth our benchmark to these previous ones.

Understanding the difference between neural networks and tree-based models To our knowledge, this is the first empirical investigation of why tree-based models outperform neural networks on tabular data. Some speculative explanations, however, have been offered [START_REF] Klambauer | Self-Normalizing Neural Networks[END_REF][START_REF] Borisov | Deep Neural Networks and Tabular Data: A Survey[END_REF]. Kadra et al. [2021a] claims that searching across 13 regularization techniques for MLPs to find a dataset-specific combination gives state-of-the-art performances. This provides a partial explanation: MLPs are expressive enough for tabular data but may suffer from a lack of proper regularization.

3 A benchmark for tabular learning

48 reference tabular datasets

For our benchmark, we compiled 48 tabular datasets from various domains provided mainly by OpenML, listed in A.1 and selected via the following criteria: Heterogeneous columns. Columns should correspond to features of different nature. This excludes images or signal datasets where each column corresponds to the same signal on different sensors. Not high dimensional. We only keep datasets with a d/n ratio below 1/10, and with d below 500. Undocumented datasets We remove datasets where too little information is available. We did keep datasets with hidden column names if it was clear that the features were heterogeneous. I.I.D. data. We remove stream-like datasets or time series. Real-world data. We remove artificial datasets but keep some simulated datasets. The difference is subtle, but we try to keep simulated datasets if learning these datasets are of practical importance (like the Higgs dataset), and not just a toy example to test specific model capabilities. Not too small. We remove datasets with too few features (< 4) and too few samples (< 3 000). For benchmarks on numerical features only, we remove categorical features before checking if enough features and samples are remaining. Not too easy. We remove datasets which are too easy. Specifically, we remove a dataset if a simple model (max of a single tree and a regression, logistic or OLS) reaches a score whose relative difference with the score of both a default Resnet (from [START_REF] Gorishniy | Revisiting Deep Learning Models for Tabular Data[END_REF]) and a default HistGradientBoosting model (from scikit learn) is below 5%. Other benchmarks use different metrics to remove too easy datasets, like removing datasets perfectly separated by a single decision classifier [START_REF] Bischl | OpenML Benchmarking Suites[END_REF], but this ignores varying Bayes rate across datasets. As tree ensembles are superior to simple trees and logistic regresison [START_REF] Fernández-Delgado | Do we Need Hundreds of Classifiers to Solve Real World Classification Problems[END_REF], a close score for the simple and powerful models suggests that we are already close to the best achievable score. Not deterministic. We remove datasets where the target is a deterministic function of the data. This mostly means removing datasets on games like poker and chess. Indeed, we believe that these datasets are very different from most real-world tabular datasets, and should be studied separately.

Removing side issues

To keep learning tasks as homogeneous as possible and focus on challenges specific to tabular data, we exclude subproblems which would deserve their own analysis:

Medium-sized training set We truncate the training set to 10,000 samples for bigger datasets. This allows us to investigate the medium-sized dataset regime. We study the large-sized (50,000) regime, for which fewer datasets matching our criteria are available, in A.2. No missing data We remove all missing data from the datasets. Indeed, there are numerous techniques for handling missing data both for tree-based models and neural networks, with varying performances [START_REF] Perez-Lebel | Benchmarking missing-values approaches for predictive models on health databases[END_REF]. In practice, we first remove columns containing many missing data, then all rows containing at least one missing entry. Balanced classes For classification, the target is binarised if there are several classes, by taking the two most numerous classes, and we keep half of samples in each class. Low cardinality categorical features We remove categorical features with more than 20 items. High cardinality numerical features We remove numerical features with less than 10 unique values. Numerical features with 2 unique values are converted to categorical features.

A procedure to benchmark models with hyperparameter selection

Hyperparameter tuning leads to uncontrolled variance on a benchmark [START_REF] Bouthillier | Accounting for Variance in Machine Learning Benchmarks[END_REF], especially with a small budget of model evaluations. We design a benchmarking procedure that jointly samples the variance of hyperparameter tuning and explores increasingly high budgets of model evaluations. It relies on random searches for hyper-parameter tuning [START_REF] Bergstra | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures[END_REF]. We use hyperparameter search spaces from the Hyperopt-Sklearn [START_REF] Komer | Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn[END_REF] when available, from the original paper when possible, and from [START_REF] Gorishniy | Revisiting Deep Learning Models for Tabular Data[END_REF] for MLP, Resnet and XGBoost (see A.3). We run a random search of ≈ 400 iterations per dataset, on CPU for tree-based models and GPU for neural networks (more details in A.3).

To study performance as a function of the number n of random search iterations, we compute the best hyperparameter combination on the validation set on these n iterations (for each model and dataset), and evaluate it on the test set. We do this 15 times while shuffling the random search order at each time. This gives us bootstrap-like estimates of the expected test score of the best (on the validation set) model after each number of random search iterations. In addition, we always start the random searches with the default hyperparameters of each model. In A.7, we show that using Bayesian optimization instead of random search does not seem to change our results.

Resuable code and benchmark raw data The code used for all the experiments and comparisons is available at https://github.com/LeoGrin/tabular-benchmark. To help researchers to cheaply add their own algorithms to the results, we also share at the same link a data table containing results for all iterations of our 20,000 compute-hour random searches.

Aggregating results across datasets

We use the test set accuracy (classification) and R2 score (regression) to measure model performance.

To aggregate results across datasets of varying difficulty, we use a metric similar to the distance to the minimum (or average distance to the minimum -ADTM-when averaged across datasets), used in [START_REF] Feurer | Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning[END_REF] and introduced in [START_REF] Wistuba | Learning hyperparameter optimization initializations[END_REF]. This metric consists in normalizing each test accuracy between 0 and 1 via an affine renormalization between the top-performing and worse-performing models.2 Instead of the worse-performing model, we use models achieving the 10% (classification) or 50% (regression) test error quantile. Indeed, the worse scores are achieved by outlier models and are not representative of the difficulty of the dataset. For regression tasks, we clip all negative scores (i.e below 50% scores) to 0 to reduce the influence of very low scores.

Data preparation

We strive for as little manual preprocessing as possible, applying only the following transformations:

Gaussianized features For neural network training, the features are Gaussianized with Scikit-learn's QuantileTransformer. Transformed regression targets In regression settings, target variables are log-transformed when their distributions are heavy-tailed (e.g house prices, see A.1). In addition, we add as an hyperparameter the possibility to Gaussienize the target variable for model fit, and transform it back for evaluation (via ScikitLearn's TransformedTargetRegressor and QuantileTransformer). OneHotEncoder For models which do not handle categorical variables natively, we encode categorical features using ScikitLearn's OneHotEncoder.

4 Tree-based models still outperform deep learning on tabular data.

Models benchmarked

For tree-based models, we choose 3 state-of-the-art models used by practitioners: Scikit Learn's Ran-domForest, GradientBoostingTrees (GBTs) (or HistGradientBoostingTrees when using categorical features), and XGBoost [START_REF] Chen | XGBoost: A Scalable Tree Boosting System[END_REF]. We benchmark the following deep models:

MLP : a classical MLP from [START_REF] Gorishniy | Revisiting Deep Learning Models for Tabular Data[END_REF]. The only improvement beyond a simple MLP is using Pytorch's ReduceOnPlateau learning rate scheduler.

Resnet : as in [START_REF] Gorishniy | Revisiting Deep Learning Models for Tabular Data[END_REF], similar to MLP with dropout, batch/layer normalization, and skip connections.

FT_Transformer : a simple Transformer model combined with a module embedding categorical and numerical features, created in [START_REF] Gorishniy | Revisiting Deep Learning Models for Tabular Data[END_REF]. We choose this model because it was benchmarked in a convincing way against tree-based models and other tabular-specific models. It can thus be considered a "best case" for Deep learning models on tabular data. 
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Regression (17 datasets)

Figure 1: Benchmark on medium-sized datasets, top only numerical features; bottom: all features. Dotted lines correspond to the score of the default hyperparameters, which is also the first random search iteration. Each value corresponds to the test score of the best model (on the validation set) after a specific number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon corresponds to minimum and maximum scores on these 15 shuffles.

SAINT : a Transformer model with an embedding module and an inter-samples attention mechanism, proposed in [START_REF] Somepalli | SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training[END_REF]. We include this model because it was the best performing deep model in [START_REF] Borisov | Deep Neural Networks and Tabular Data: A Survey[END_REF], and to investigate the impact of inter-sample attention, which performs well on tabular data according to [START_REF] Kossen | Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning[END_REF].

Results

Fig. 1 give benchmark results for different types of datasets (appendix A.2 gives results as a function of computation time). We emphasize that the variance quantification in these figures should be interpreted carefully, as it is made by shuffling the order of a same random search: for a large number of random search iterations, it may not represent the actual variance after this number of step.

Tuning hyperparameters does not make neural networks state-of-the-art Tree-based models are superior for every random search budget, and the performance gap stays wide even after a large number of random search iterations. This does not take into account that each random search iteration is generally slower for neural networks than for tree-based models (see A.2).

Categorical variables are not the main weakness of neural networks Categorical variables are often seen as a major problem for using neural networks on tabular data [START_REF] Borisov | Deep Neural Networks and Tabular Data: A Survey[END_REF].

Our results on numerical variables only do reveal a narrower gap between tree-based models and neural networks than including categorical variables. Still, most of this gap subsists when learning on numerical features only.

5 Empirical investigation: why do tree-based models still outperform deep learning on tabular data?

Methodology: uncovering inductive biases

We have seen in Sec. 4.2 that tree-based models beat neural networks across a wide range of hyperparameter choices. This hints to inherent properties of these models which explains their performances on tabular data. Indeed, the best methods on tabular data share two attributes: they are ensemble methods, bagging (Random Forest) or boosting (XGBoost, GBTs), and the weak learner used in these ensembles is a decision tree. The decisive point seems to be the tree aspect: other boosting and bagging methods with different weak learners exist but are not commonly used for tabular data. In this section, we try to understand the inductive biases of decision trees that make them well-suited for tabular data, and how they differ from the inductive biases of neural networks. This is equivalent to saying the reverse: which features of tabular data make this type of data easy to learn with tree-based methods yet more difficult with a neural network?

To this aim, we apply various transformations to tabular datasets which either narrow or widen the generalization performance gap between neural networks and tree-based models, and thus help us emphasize their different inductive biases. For the sake of simplicity, we restrict our analysis to numerical variables and classification tasks on medium-sized datasets. Results are presented aggregated across datasets, and dataset-specific results are available in A.4, along with additional details on our experiments.

Finding 1: Neural networks are biased to overly smooth solutions

We transform each train set by smoothing the output with a Gaussian Kernel smoother for varying length-scale values of the kernel (more details are available in A.4). This effectively prevents models from learning irregular patterns of the target function. Fig. 2 shows model performance as a function of the length-scale of the smoothing kernel. For small lengthscales, smoothing the target function on the train set decreases markedly the accuracy of tree-based models, but barely impacts that of neural networks.

Such results suggest that the target functions in our datasets are not smooth, and that neural networks struggle to fit these irregular functions compared to tree-based models. This is in line with Rahaman et al. [2019], which finds that neural networks are biased toward low-frequency functions. Models based on decision trees, which learn piece-wise constant functions, do not exhibit such a bias. Our We smooth the target function through a Gaussian Kernel smoother, whose covariance matrix is the data covariance, multiplied by the (squared) lengthscale of the Gaussian kernel smoother. A lengthscale of 0 corresponds to no smoothing (the original data). All features have been Gaussienized before the smoothing through Scik-itLearn's QuantileTransformer. The boxplots represent the distribution of normalized accuracies across 15 re-orderings of the random search.

findings do not contradict papers claiming benefits from regularization for tabular data [START_REF] Shavitt | Regularization Learning Networks: Deep Learning for Tabular Datasets[END_REF][START_REF] Borisov | Deep Neural Networks and Tabular Data: A Survey[END_REF][START_REF] Kadra | Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data[END_REF][START_REF] Lounici | Muddling Label Regularization: Deep Learning for Tabular Datasets[END_REF], as adequate regularization and careful optimization may allow neural networks to learn irregular patterns. In A.4, we show some examples of non-smooth patterns which neural networks fail to learn, both in toy and real-world settings.

Note also that our observation could also explain the benefits of the ExU activation used in the Neural-GAM paper [START_REF] Agarwal | Neural Additive Models: Interpretable Machine Learning with Neural Nets[END_REF], and of the embeddings used in [START_REF] Gorishniy | On Embeddings for Numerical Features in Tabular Deep Learning[END_REF]: the periodic embedding might help the model to learn the high-frequency part of the target function, and the target-aware binning might make the target function smoother.

Finding 2: Uninformative features affect more MLP-like neural networks

Tabular datasets contain many uninformative features For each dataset, we drop an increasingly large fraction of features, according to feature importance (ranked by a Random Forest). Fig. 3 shows that the classification accuracy of a GBT is not much affected by removing up to half of the features.

Furthermore, the test accuracy of a GBT trained on the removed features (i.e the features below a certain feature importance threshold) is very low up to 20% of features removed, and quite low until 50%, which suggests that most of these features are uninformative, and not solely redundant.

MLP-like architectures are not robust to uninformative features In the two experiments shown in Fig. 4, we can see that removing uninformative features (4a) reduces the performance gap between MLPs (Resnet) and the other models (FT Transformers and tree-based models), while adding uninformative features widens the gap. This shows that MLPs are less robust to uninformative features, and, given the frequency of such features in tabular datasets, partly explain the results from Sec. 4.2.

In Fig. 4a, we also remove informative features as we remove a larger fraction of features. Our reasoning, which is backed by 4b, is that the decrease in accuracy due to the removal of these features is compensated by the removal of uninformative features, which is more helpful for MLPs than for other models (we also remove redundant features at the same time, which should not impact our models)

5.4 Finding 3: Data are non invariant by rotation, so should be learning procedures

Why are MLPs much more hindered by uninformative features, compared to other models? One answer is that this learner is rotationally invariant in the sense of [START_REF] Andrew | Feature selection, L 1 vs. L 2 regularization, and rotational invariance[END_REF]: the learning procedure which learns an MLP on a training set and evaluate it on a testing set is unchanged when applying a rotation (unitary matrix) to the features on both the training and testing set. On the contrary, tree-based models are not rotationally invariant, as they attend to each feature separately, and neither are FT Transformers, because of the initial FT Tokenizer, which implements a pointwise operation. A Features are removed in increasing order of feature importance (computed with a Random Forest). Added features are sampled from standard Gaussians uncorrelated with the target and with other features. Scores are averaged across datasets, and the ribbons correspond to the minimum and maximum score among the 30 different random search reorders (starting with the default models).

theoretical link between this concept and uninformative features is provided by [START_REF] Andrew | Feature selection, L 1 vs. L 2 regularization, and rotational invariance[END_REF], which shows that any rotationallly invariant learning procedure has a worst-case sample complexity that grows at least linearly in the number of irrelevant features. Intuitively, to remove uninformative features, a rotationaly invariant algorithm has to first find the original orientation of the features, and then select the least informative ones: the information contained in the orientation of the data is lost.

Fig. 5a, which shows the change in test accuracy when randomly rotating our datasets, confirms that only Resnets are rotationally invariant. More striking, random rotations reverse the performance order: neural networks are now above tree-based models and Resnets above FT Transformers. This suggests that rotation invariance is not desirable: similarly to vision [Ima], there is a natural basis (here, the original basis) which encodes best data-biases, and which can not be recovered by models invariant to rotations which potentially mixes features with very different statistical properties. Indeed, features of a tabular data typically carry meanings individually, as expressed by column names: age, weight. The link with uninformative features is apparent in 5b: removing the least important half of the features in each dataset (before rotating), drops the performance of all models except Resnets, but the decrease is less significant than when using all features.

Our findings shed light on the results of [START_REF] Somepalli | SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training[END_REF] and [START_REF] Gorishniy | On Embeddings for Numerical Features in Tabular Deep Learning[END_REF], which add an embedding layer, even for numerical features, before MLP or Transformer models. Indeed, Here, the classification benchmark on numerical features was used. All features are Gaussianized before the random rotations. The scores are averaged across datasets, and the boxes depict the distribution across random search shuffles. Right: the features are removed before data rotation.

this layer breaks rotation invariance. The fact that very different types of embedding seem to improve performance suggests that the sheer presence of an embedding which breaks the invariance is a key part of these improvements. We note that a promising avenue for further research would be to find other ways to break rotation invariance which might be less computationally costly than embeddings.

Discussion and conclusion

Limitation Our study leaves open many questions for future work, such as: which other inductive biases of tree-based models explain their performances on tabular data? Our benchmarks could be extended in numerous ways:

• Similar analysis for different settings, such as small datasets, or very large datasets.

• Comparing the same algorithms on a new task, multi-class classification, which is a common task for tabular datasets. • Investigating different metrics, especially metrics evaluating the probabilistic predictions on classification tasks [as in [START_REF] Caruana | An empirical comparison of supervised learning algorithms[END_REF]]. • Study how both tree-based models and neural networks cope with specific challenges such as missing data or high-cardinality categorical features, thus extending to neural networks prior empirical work [START_REF] Cerda | Similarity encoding for learning with dirty categorical variables[END_REF][START_REF] Cerda | Encoding high-cardinality string categorical variables[END_REF][START_REF] Perez-Lebel | Benchmarking missing-values approaches for predictive models on health databases[END_REF].

Another interesting path for future work would be to study the specific benefits of deep learning brings over tree-based models, for instance by studying the usefulness of the embeddings learnt by Neural networks for downstream tasks.

Conclusion

While each publication on learning architectures for tabular data comes to different results using a different benchmarking methodology, our systematic benchmark, going beyond the specificities of a handful of datasets and accounting for hyper-parameter choice, reveals clear trends. On such data, tree-based models more easily yield good predictions, with much less computational cost. This superiority is explained by specific features of tabular data: irregular patterns in the target function, uninformative features, and non rotationally-invariant data where linear combinations of features misrepresent the information. Beyond these conclusions, our benchmark is reusable, allowing researchers to use our methodology and datasets for new architectures, and to easily compare them to those we explored via the shared benchmark raw results. We hope that this benchmark will stimulate tabular deep-learning research and foster more thorough empirical evaluation of contributions. We describe below all datasets used in our benchmarks, along with the link to the original dataset, as well as a new OpenML link to the transformed datasets used for our benchmarks. All datasets considered for the benchmarks, as well as the reason for their selection or their exclusion, are available at this link: https://docs.google.com/spreadsheets/d/ 159UsoK3q2x-wXKoYEY-zHlZhiIcDgjCFbDW69QMmUnk/edit?usp=sharing or on the Github repo; however, the authoritative list of datasets used for the present study and its figures is the list below. Instructions on how to use these datasets to benchmark your own algorithms are available at A.10.

A Results Looking at the results as a function of random search time rather than random search iterations makes tree-based models superiority even more striking. Neural networks and tree-based models were close for some benchmarks after a small number of iterations, but for the same amount of time spent on random search, tree-based models scores are always high above neural networks.
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Figure 7: Time benchmark on medium-sized datasets, with both numerical and categorical features. The first random search iteration corresponds to default hyperparameters. Each value corresponds to the test score of the best model (on the validation set) after a specific time spent doing random search, averaged on 15 shuffles of the random search order. The ribbon corresponds to the minimum and maximum scores on these 15 shuffles.

A.2.2 Large-sized datasets

We extend our benchmark to large-scale datasets: in Figures 8,9, 10 and 11, we compare the results of our models on the same set of datasets, in large-size (train set truncated to 50,000 samples) and medium-size (train set truncated to 10,000 samples) settings.

We only keep datasets with more than 50,000 samples and restrict the train set size to 50,000 samples (vs 10,000 samples for the medium-sized benchmark). Unfortunately, this excludes a lot of datasets, which makes the comparison less clear. However, it seems that, in some cases, increasing the train set size reduces the gap between neural networks and tree-based models. We leave a rigorous study of this trend to future work. In A.5.2, we study how many datasets each step of the datasets filtering process remove, and find that no single step is responsible for the difficulty of gathering a large number of large-scaled datasets. Only datasets with more than 50,000 samples were kept, and the train set size was truncated to either 10,000 samples or 50,000 samples. Dotted lines correspond to the score of the default hyperparameters, which is also the first random search iteration. Each value corresponds to the test score of the best model (on the validation set) after a specific number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon corresponds to the minimum and maximum scores on these 15 shuffles. 

Large sized train set
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Large sized train set

Figure 10: Comparison of accuracies on 3 classification tasks for different train set sizes, with both numerical and categorical features. Only datasets with more than 50,000 samples were kept, and the train set size was truncated to either 10,000 samples or 50,000 samples. Dotted lines correspond to the score of the default hyperparameters, which is also the first random search iteration. Each value corresponds to the test score of the best model (on the validation set) after a specific number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon corresponds to the minimum and maximum scores on these 15 shuffles. 

Large sized train set

Figure 11: Comparison of R2 scores on 9 regression tasks for different train set sizes, with both numerical and categorical features. Only datasets with more than 50,000 samples were kept, and the train set size was truncated to either 10,000 samples or 50,000 samples. Dotted lines correspond to the score of the default hyperparameters, which is also the first random search iteration. Each value corresponds to the test score of the best model (on the validation set) after a specific number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon corresponds to the minimum and maximum scores on these 15 shuffles.

A.3 More details on benchmark

Train / Validation / Test split We take 70% of samples for the train set (or the percentage which corresponds to the maximum train set size if 70% is too high). Of the remaining 30%, we take 30% for the validation set, and 70% for the test set. The validation and test sets are truncated to 50,000 samples for speed. Note that the validation set is only used to select the best performing hyperparameter combination during the random search, and is distinct from the validation set used for early stopping (which is part of the train set).

Number of folds

For each dataset and hyperparameters combination, we vary the number of folds used for our algorithms evaluation depending on the number of testing samples:

• If We have more than 6000 samples, we evaluate our algorithms on 1 fold.

• If we have between 3000 and 6000 samples, we evaluate our algorithms on 2 folds.

• If we have between 1000 and 3000 samples, we evaluate our algorithms on 3 folds. • If we have less than 1000 testing samples, we evaluate our algorithms on 5 folds.

Every algorithm and hyperparameters combination is evaluated on the same folds.

Hardware For all our benchmarks and experiments, we use the hardware below. The hardware was chosen based on availability, with Neural Networks always running on GPU and tree-based models running on CPU.

GPUs: NVIDIA Quadro RTX 6000, NVIDIA TITAN Xp, NVIDIA A100, NVIDIA V100, NVIDIA Tesla T4, NVIDIA A40, NVIDIA TITAN RTX, NVIDIA TITAN V CPUs: AMD EPYC 7742 64-Core Processor, AMD EPYC 7702 64-Core Processor, Intel(R) Xeon(R) CPU E5-2660 v2, Intel(R) Xeon(R) Gold 6226R CPU Hyperparameters space Hyperparameters spaces are based on Hyperopt-sklearn [START_REF] Komer | Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn[END_REF] when available, from [START_REF] Gorishniy | Revisiting Deep Learning Models for Tabular Data[END_REF] and from [START_REF] Borisov | Deep Neural Networks and Tabular Data: A Survey[END_REF]. We made some changes when combining sources, or when the original distribution was not compatible with Weight and Biases sweeps. Furthermore, contrary to Hyperopt-sklearn, we do not tune the number of estimators for tree-based models, but set it to a constant high value (250 for random forest, following [START_REF] Thais | How Many Trees in a Random Forest?[END_REF], 1000 for gradient boosting models) and use early stopping for gradient boosting trees models. We study the impact of this change in A.9.2. The maximum numbers of estimators we choose are small and quite often reached: this is done on purpose, to compare fast tree-based models to slower neural networks. In A.9.1, we study the performance gain we obtain when running our tree-based models for longer.

Default parameters for tree-based models are ScikitLearn's defaults. All neural networks are run for 300 epochs, with early stopping and checkpointing (the best model on the validation set is kept). Early stopping patience is 40 for MLP, Resnet, and FT Transformer, 20 for GradientBoostingTrees and XGBoost, and 10 for SAINT. For model using early stopping, 20% of the training dataset is used as validation set.

Other details To run the random searches, we use the "sweep" functionality of Weight and Biases [START_REF] Biewald | Experiment Tracking with Weights and Biases[END_REF].

Dataset by dataset

We show all unnormalized benchmark results dataset by dataset: Figure 12, 13, 14 and 15 for the medium-size setting, and Figure 16 and 17 for the large-size setting. 

Regression

Figure 16: Unormalized benchmark results for large scale datasets, for numerical features only. 

A.4 More details on experiments

In this section, we give more details on the choices we made when creating our experiments. As results may sometimes be easier to interpret before aggregation across datasets, we also show the results of each experiment on each dataset.

A.4.1 Finding 1: Neural networks are biased to overly smooth solutions Smoothing We use a Gaussian smoothing Kernel

K(x * , x) = exp - 1 2 (x * -x) T Σ -1 (x * -x)
with Σ the estimated empirical covariance multiplied by the "squared lengthscale". The transformed target on the train set becomes: 

Ỹ (X i ) = N j=1 K (X i , X j ) Y (X j ) N j=1 K (X i , X j ) with (X 1 , ..X N )

More details

• We restrict all datasets to their 5 most important features (according to a RandomForest feature importance ranking). This makes the smoothing easier, as kernel smoothing can be hard in high-dimension, while keeping enough features to produce interesting results. • We estimate the covariance matrix of these features through ScikitLearn's MinCovDet, which is more robust to outliers than the empirical covariance.

Raw results are shown in Figure 18 dataset by dataset.

Examples of irregular patterns Figure 19 shows the decision boundaries of a default MLP and a default RandomForest on the 2 most important features of the electricity dataset. The RandomForest achieve a perfect training accuracy and a test accuracy (85%) higher than the MLP (80%). The features are Gaussienied and we show a zoomed-in part of the feature space. In this part, we can see that the RandomForest is able to learn irregular patterns on the x axis (which corresponds to the date feature) that the MLP does not learn. We show this difference for default hyperparameters but it seems to us that this is a typical behavior of neural networks, and it is actually hard, albeit not impossible, to find hyperparameters to successfully learn these patterns.

Quantitative analysis

We run the following linear regression in R, using the same data than those used in the corresponding plot (using the normalized test score of best model (on the validation set) after 60 random search iterations).

lm ( m e a n _ t e s t _ s c o r e ~d a t a s e t + model_name + l e n g t h s c a l e + model_name * l e n g t h s c a l e ) }

We show the results rounded to the third decimal, with the coefficients for each dataset not displayed for lisibility. The results match our plots: increasing the lengthscale decreases performances (statistically) significantly more for tree based models, (the interaction term between the modelname variable and the lengthscale variable is significantly more negative for tree-based models). Features are removed in increasing order of feature importance (computed with a Random Forest), and the two lines correspond to the accuracy using the (most important) kept features (blue) or the (least important) removed features (red). Scores are normalized between 0 (random chance) and 1 (best score among all hyperparameters). These scores are averaged across 30 random search orders, and the ribbons correspond to the minimum and maximum values among these 30 orders. Same experiment than Fig. 3, shown for each dataset. Note that axes do not always start at zero.

Uninformative features affect more MLP-like neural networks Raw results are shown in Figure 21 (uninformative features added) and Figure 22 (uninformative features removed).

Quantitative analysis

We run the following linear regressions in R, using the same data than those used in the corresponding plot (using the normalized test score of best model (on the validation set) after 20 random search iterations). We show the results rounded to the third decimal, with the coefficients for each dataset not displayed for lisibility.

The results match our plots:

• The decrease in performance when removing uninformative features is (statistically) significantly more negative for tree-based models (the interaction term model_name * prop_remove is (statistically) significantly negative).

• The decrease in performance when adding uniformative features is (statistically) significantly more negative for Resnets than for FT Transformer, whereas tree-based models' decrease is not (statistically) significantly different. We show the results rounded to the third decimal, with the coefficients for each dataset not displayed for lisibility.

The results match our plots: rotating the datasets decreases tree-based models' performance more than neural networks', and rotations' impact is attenuated if 50% of features have been removed. All these effects are statistically significant. 

A.5 Dataset filtering

We show here each step of the dataset selection process, as explained in 3, as Sankey diagrams. This can be useful to understand which step removes the biggest number of datasets from our benchmarks.

A.5.1 Medium datasets

Details The left side of the Sankey plot starts from the set of datasets composed of all OpenML datasets plus datasets we found on our own, restricted to those with more than 3K samples and 3 features before filtering. As discussed in A.2.2, we found it hard to gather numerous large-scale (> 50K samples) datasets.

The following plots show that this is not due to a single restriction used for our benchmark, but to a Details The left side of the Sankey plot starts from the set of datasets composed of all OpenML datasets plus datasets we found on our own, restricted to those with more than 50K samples and 3 features before filtering. In this section, we study the differences between the set of datasets we selected for our benchmarks with the set selected by previous benchmarks, namely the CC18 benchmark [START_REF] Bischl | OpenML Benchmarking Suites[END_REF] and the AutoML benchmark [START_REF] Gijsbers | An Open Source AutoML Benchmark[END_REF]. While the these benchmarks' selection procedures are quite similar to ours, we highlight below a few differences below. Importantly, these small differences in the selection procedure makes for very large difference in the set of datasets selected. As can be seen on the table below, the biggest source of difference between the CC-18 and AutoML benchmarks and ours is that these include many small-scale datasets3 , and to a lesser extent that they contain a large number of "easy" (according to our criterion) datasets.

We believe that our benchmarks present some advantages compared to these previous benchmarks:

• Our benchmark is clearly about tabular data, and we restrict our datasets to ones which exhibit clear tabular characteristics, by removing datasets without heterogeneous columns, or deterministic game-based datasets. This allows to interpret performance on our benchmark as performance on typical tabular datasets, and to leverage our benchmark to study inductive biases well-suited to tabular data. While previous benchmarks don't necessarily contain a lot of non-heterogeneous datasets like images, we think that not having a benchmark clearly about tabular data discourage its use by tabular data researchers, as it adds an unfortunate degree of freedom in the choice of which datasets to remove.

• We strive to have a more homogeneous number of samples between our different datasets (3K-10K). We believe this makes our benchmark easier to interpret, and allows to give a more definitive answer in a common setting. Furthermore, this prevent datasets with a small test set from making the evaluation noisier.

• The way we assess the difficulty of datasets is stricter than for previous benchmark, as we try to account for the different of different datasets, by removing datasets where sophisticated algorithms (Resnet and GradientBoostingTree) do not significantly outperform Logistic Regression. As tree-based methods have been shown to be superior to Logistic Regression [START_REF] Fernández-Delgado | Do we Need Hundreds of Classifiers to Solve Real World Classification Problems[END_REF] in our setting, a close score for these two types of models indicates that we might already be close to the best achievable score. This allows us to remove datasets which are too noisy to differentiate between two learning algorithms. All in all, this allows us to remove a lot of datasets which would not contribute meaningfully to our comparison, and in turn makes our benchmark much faster to run for other researchers.

• Despite being stricter in our datasets selection than previous benchmarks, we still manage to gather 45 datasets (which are large enough to have a precise evaluation on), by looking for datasets across various sources.

A.6.1 OpenML CC18

We start by highlighting a few important difference differences between the CC18 benchmark and ours. More information on CC18 criteria are available at https://docs.openml.org/benchmark/.

• The difficulty of the dataset (used to remove too easy datasets) is not assessed in the same way: the creators of CC18 remove datasets for which a decision tree can reach 100% accuracy, while we remove datasets where sophisticated algorithms (Resnet and GradientBoostingTree) significantly outperforms Logistic Regression.

• CC-18 only contains classification datasets.

• Constraints on dataset size are less strict for CC18 (500 and 100000)

• There are some images datasets in CC18, while we only select datasets with heterogeneous features.

• Deterministic datasets (e.g game-based datasets like 'poker') are allowed in CC18.

• CC-18 contains multi-class classification problems.

Comparing our classification benchmarks to CC18, we find that 12 / 15 datasets for our numerical benchmark and 6 / 7 datasets for our categorical benchmark are not in CC18. Indeed, only 3 / 72 datasets from CC18 are used in our benchmarks. Below we show the reasons we didn't select CC18 datasets. 

A.6.2 AutoML

We start by highlighting a few important difference differences between the AutoML benchmark and ours. More information on AutoML criteria are available at the archived link https://web.archive.org/web/20200916061348/https://openml.github. io/automlbenchmark/benchmark_datasets.html, but the criteria for dataset selection are less clear than for CC18.

• It is not clear if there is an objective criterion for dataset difficulty for the AutoML benchmark, as they strive to remove easy datasets, but empirically a lot of datasets from AutoML benchmarks are "too easy" according to our criterion. • Constraints on dataset size are less strict for AutoML.

• While the creators of AutoML try to limit the number of image datasets, there are some images datasets, while we only select datasets with heterogeneous features. • While the creators of AutoML try to limit the number of artificial datasets, there are some artificial datasets. • The AutoML benchmark contains multi-class classification problems.

To compare our set of datasets to those of AutoML, we use the up-to-date benchmark for classification (benchmark 271 on OpenML) and regression (benchmark 269 on OpenML). Classification 4 / 71 datasets from the AutoML classification benchmark (full updated version) are used in our classification benchmarks, which means 11 / 15 datasets from our numerical classification benchmark and 7 / 7 datasets from our categorical classification come from other sources. Below we show the reasons we didn't select AutoML datasets. A.9.1 Should we run tree-based models longer?

In the main section of this paper, we chose a maximum number of estimators (1000) and patience (20) for tree based models such that these models are significantly faster than their neural networks counterparts. However, the maximum number of 1000 is often reached, meaning that we train these models short of convergence. In Figures 36 and38, we compare the performance of our tree-based models with tree-based models ran with a higher number of maximum estimators (40K instead of A.9.2 Should we tune the number of estimators for tree-based models?

In Figures 39 and40, we study the usefulness of tuning the number of estimators of tree-based models (as done in Hyperopt-sklearn), by comparing two settings. In the first setting, denoted as tune, we tune the number of trees, and do not use early stopping. The distribution used for tuning this parameter are those from Hyperopt-sklearn, namely:

• RandomForest: LogUniform(9.5, 3000.5) • GradientBoostingTree: LogUniform(10.5, 1000.5) • XGBoost: Uniform(100, 6000)

In the second setting, we set the number of estimators to a high number for each model, and use early stopping for GradientBoostingTree and XGboost, with a "patience" of 20 and a default tolerance, and a maximum number of 1000 estimators. For RandomForest, we do not use early stopping and set the number of estimators to 250.

Results

The results we obtain in both settings seem relatively similar, and very close for XGboost.

Tuning the number of estimators seems to harm the random search performance for Random Forests a little but improve it for the "best reached" prediction for GradientBoostingTrees (though it harm performance with a small hyperparameter search budget). We find this latter observation surprising, and would like to investigate further. Note that this observation does not disappear when using a maximal number of estimators of 40K (instead of 1K) and a patience of 100 (instead of 20).
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 2 Figure 2: Normalized test accuracy of different models for varying smoothing of the target function on the train set.We smooth the target function through a Gaussian Kernel smoother, whose covariance matrix is the data covariance, multiplied by the (squared) lengthscale of the Gaussian kernel smoother. A lengthscale of 0 corresponds to no smoothing (the original data). All features have been Gaussienized before the smoothing through Scik-itLearn's QuantileTransformer. The boxplots represent the distribution of normalized accuracies across 15 re-orderings of the random search.

Figure 4 :

 4 Figure 4: Test accuracy changes when removing (a) or adding (b) uninformative features.Features are removed in increasing order of feature importance (computed with a Random Forest). Added features are sampled from standard Gaussians uncorrelated with the target and with other features. Scores are averaged across datasets, and the ribbons correspond to the minimum and maximum score among the 30 different random search reorders (starting with the default models).

a.Figure 5 :

 5 Figure 5: Normalized test accuracy of different models when randomly rotating our datasets.Here, the classification benchmark on numerical features was used. All features are Gaussianized before the random rotations. The scores are averaged across datasets, and the boxes depict the distribution across random search shuffles. Right: the features are removed before data rotation.
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 6 Figure6: Time benchmark on medium-sized datasets, with only numerical features. The first random search iteration corresponds to default hyperparameters. Each value corresponds to the test score of the best model (on the validation set) after a specific time spent doing random search, averaged on 15 shuffles of the random search order. The ribbon corresponds to the minimum and maximum scores on these 15 shuffles.

Figure 8 :

 8 Figure8: Comparison of accuracies on 5 classification tasks for different train set sizes, with only numerical features. Only datasets with more than 50,000 samples were kept, and the train set size was truncated to either 10,000 samples or 50,000 samples. Dotted lines correspond to the score of the default hyperparameters, which is also the first random search iteration. Each value corresponds to the test score of the best model (on the validation set) after a specific number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon corresponds to the minimum and maximum scores on these 15 shuffles.
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 17 Figure 17: Unormalized benchmark results for large-scale datasets, for both numerical and categorical features.

  the training set covariates and (Y 1 , ..., Y N ) the training set original targets.
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 1819 Figure 18: Test accuracy of different models for varying smoothing of the target function on the train set. We smooth the target function through a Gaussian Kernel smoother, whose covariance matrix is the data covariance, multiplied by the (squared) lengthscale of the Gaussian kernel smoother. A lengthscale of 0 corresponds to no smoothing (the original data). All features have been Gaussienized before the smoothing through ScikitLearn's QuantileTransformer. The boxplots represent the distribution of accuracies across 15 re-orderings of the random search. Same experiment than Fig. 2, shown for each dataset without score normalization
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 20 Figure20: Test accuracy of a GBT for varying proportions of removed features. Features are removed in increasing order of feature importance (computed with a Random Forest), and the two lines correspond to the accuracy using the (most important) kept features (blue) or the (least important) removed features (red). Scores are normalized between 0 (random chance) and 1 (best score among all hyperparameters). These scores are averaged across 30 random search orders, and the ribbons correspond to the minimum and maximum values among these 30 orders. Same experiment than Fig.3, shown for each dataset. Note that axes do not always start at zero.
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 25 Figure 25: Dataset filtering process for the numerical regression benchmark
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 28 Figure 26: Dataset filtering process for the numerical classification benchmark
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 2930 Figure 29: Dataset filtering process for the numerical regression benchmark on large datasets
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  Unormalized benchmark results for regression tasks on numerical features only. Medium-sized setting. Negative values are truncated to zero to make the plots easier to read. Unormalized benchmark results for regression tasks on both categorical and numerical features. Medium-sized setting. Negative values are truncated to zero to make the plots easier to read.
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Figure 14: Unormalized benchmark results for classification tasks on both categorical and numerical features. Medium-sized setting.

  Test accuracy changes when adding uninformative features. Added features are sampled from standard Gaussians uncorrelated with the target and with other features. Ribbons correspond to the minimum and maximum score among the 30 different random search reorders (starting with the default models). Same experiment that in Figure4(b), shown for each dataset without score normalization. Test accuracy changes when removing uninformative features. Features are removed in increasing order of feature importance (computed with a Random Forest). Ribbons correspond to the minimum and maximum score among the 30 different random search reorders (starting with the default models). Same experiment that in Figure4(a), shown for each dataset without score normalization. Test accuracy of different models when randomly rotating our datasets, with 50% features removed. All features are Gaussianized before the random rotations. The removed features are the least important half (according to a RandomForest), and are removed before the rotation. The scores are averaged across datasets, and the boxes depict the distribution across random search shuffles. Same experiment that in 5 (Right), shown for each dataset without score normalization.Quantitative analysis We run the following linear regression in R, using the same data than those used in the corresponding plot (using the normalized test score of best model (on the validation set) after 20 random search iterations). lm ( m e a n _ t e s t _ s c o r e ~d a t a s e t + model_name + r o t a t i o n + f e a t u r e s _ r e m o v e d + r o t a t i o n * model_name + r o t a t i o n * f e a t u r e s _ r e m o v e d ) , with features_removed and rotation being indicator variables indicating if 50% of features where removed and if the dataset was randomly rotated.
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	prop_added model_nameGradientBoostingTree:prop_added -0.007 -0.101 model_nameRandomForest:prop_added -0.014 0.76 0.78 0.80 0.82 0.80 0.85 0.90 0.95	0.01 0.015 0.015	-9.737 -0.49 -0.967	0 0.624 0.334
	model_nameResnet:prop_added Rotation No Rotation		No Rotation	-0.156 Rotation	0.015	-10.641 0
	A.4.3 Finding 3: Data are non invariant by rotation, so should be learning procedures GradientBoostingTree RandomForest FT Transformer Resnet
	Details Random rotation were computed using Scipy's [Virtanen et al., 2020]
	stats.special_ortho_group.rvs.	
	Raw results are shown in Figure 23 (with all features) and Figure 24 (with 50% features) dataset by
	dataset.				

Figure 23: Test accuracy of different models when randomly rotating our datasets. All features are Gaussianized before the random rotations. The scores are averaged across datasets, and the boxes depict the distribution across random search shuffles. Same experiment that in 5 (Left), shown for each dataset without score normalization.

  Regression 8 / 32 datasets from the AutoML regression benchmark are used in our regression benchmarks, which means 8 / 19 datasets from our numerical regression benchmark and 4 / 13 datasets from our categorical classification come from other sources. Below we show the reasons we didn't select AutoML datasets.

	names names	rf_importance lin_coef rf_importance lin_coef
	lr learning_rate	0.22	0.26	-0.04 0.01
	d_layers min_child_weight 0.18	0.07	-0.01 -0.04
	d_embedding 0.15 max_depth_2.0	0.05	0.0	0.13
	n_layers reg_alpha	0.14	0.05	-0.1	-0.03
	batch_size n_estimators	0.03	0.03	-0.01 0.01
	lr_scheduler max_depth_4.0	0.01	0.02	0.0	0.27
	subsample		0.02		0.01
	colsample_bytree	0.02		0.0
	max_depth_3.0		0.02		0.21
	reg_lambda		0.01		0.0
	Resnet gamma		0.01		0.0
	max_depth_10.0		0.01		0.35
	names max_depth_11.0		0.01	rf_importance lin_coef 0.35
	lr max_depth_7.0 normalization_layernorm 0.01 max_depth_5.0 0.01 n_layers max_depth_6.0 0.01 d max_depth_8.0 0.01 hidden_dropout max_depth_9.0 0.01 residual_dropout colsample_bylevel 0.01	0.08 0.05 0.04 0.02 0.02 0.01	0.33 0.3 0.32 0.34 0.34 0.0	0.01 0.0 -0.03 0.0 0.01 0.0
	batch_size			0.01		0.0
	optimizer__weight_decay 0.0 GradientBoostingClassifier		0.0
	d_hidden_factor			0.0		0.0
	d_embedding names		0.0 rf_importance lin_coef 0.0
	lr_scheduler learning_rate		0.4	0.0	-0.02	0.0
	n_estimators		0.15		0.09
	max_depth_None	0.14		0.36
	max_depth_4.0		0.04		0.19
	max_depth_3.0 FT Transformer min_samples_leaf 0.01 0.02		0.11 0.0
	names subsample loss_exponential		0.01 0.0		0.0 rf_importance lin_coef 0.0
	lr				0.06	0.0
	residual_dropout d_token RandomForest			0.04 0.03	-0.02 0.0
	n_layers ffn_dropout names		0.02 0.02 rf_importance lin_coef	0.0 0.0
	d_ffn_factor max_depth_None	0.43		0.01 0.54	0.0
	kv_compression max_depth_4.0		0.07		0.01 0.24	-0.01
	optimizer__weight_decay max_depth_3.0 0.03		0.01 0.13	0.0
	attention_dropout min_samples_leaf	0.01		0.01 -0.01	0.0
	lr_scheduler n_estimators		0.01		0.0 0.0	0.0
	kv_compression_sharing_key-value 0.0 max_features_None 0.01 -0.06	0.0
	batch_size bootstrap		0.01		0.0 0.01	0.0
	max_features_log2	0.0		0.04
	Criterion criterion_gini max_features_0.2	0.0 0.0	count	0.0 0.04
	Artificial max_features_sqrt Deterministic Not enough features max_features_0.4 SAINT max_features_0.5 Not heterogeneous names rf_importance lin_coef 0.0 0.04 4 2 0.0 0.05 0.0 0.04 3 max_features_0.6 0.0 0.04 1 Other 1 Too easy 22 Too small after preprocessing 11 Too small before processing 20 Used heads 0.01 0.0 4 lr 0.28 max_features_0.7 0.0 0.03 -0.11 depth 0.15 max_features_0.8 0.0 0.01 -0.07 dim 0.05 max_features_0.9 0.0 -0.01 -0.03 dropout 0.03 0.0 max_features_0.3 0.0 0.05
	batch_size	0.01	0.0	
	val_batch_size 0.0		0.0	
	XGBoost				

Compared to our initial submission, the final version of this paper includes a simple decision tree as a baseline. In addition, it displays updated figures with minor bug fixes which do not affect our conclusions.

This method is also close to the method used by[START_REF] Caruana | An empirical comparison of supervised learning algorithms[END_REF], the difference being that the latter uses an artificial baseline (predicting the most common class) as the zero score.

Note that if a dataset is too small, we only report the rejection criterion as 'Too small', while other criteria might also apply
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A.1.2 Numerical regression OpenML benchmark: https://www.openml.org/search?type=benchmark&study_type= task&sort=tasks_included&id=336 dataset_name n_samples n_features original_link new_link cpu_act 8192.0 21.0 https://www.openml.org/d/197 https://www.openml.org/d/44132 pol 15000.0 26.0 https://www.openml.org/d/201 https://www.openml.org/d/44133 elevators 16599.0 16.0 https://www.openml.org/d/216 https://www.openml.org/d/44134 wine_quality 6497.0 11.0 https://www.openml.org/d/287 https://www.openml.org/d/44136 Ailerons 13750.0 33.0 https://www.openml.org/d/296 https://www.openml.org/d/44137 yprop_4_1 8885.0 42.0 https://www.openml.org/d/416 https://www.openml.org/d/45032 houses 20640.0 8.0 https://www.openml.org/d/537 https://www.openml.org/d/44138 house_16H 22784.0 16.0 https://www.openml.org/d/574 https://www.openml.org/d/44139 delays_zurich_transport 5465575.0 9.0 https://www.openml.org/d/40753 https://www.openml.org/d/45034 diamonds 53940.0 6.0 https://www.openml.org/d/42225 https://www.openml.org/d/44140 Brazilian_houses 10692.0 8.0 https://www.openml.org/d/42688 https://www.openml.org/d/44141 Bike_Sharing_Demand 17379.0 6.0 https://www.openml.org/d/42712 https://www.openml.org/d/44142 nyc-taxi-green-dec-2016 581835.0 9.0 https://www.openml.org/d/42729 https://www.openml.org/d/44143 house_sales 21613.0 15.0 https://www.openml.org/d/42731 https://www.openml.org/d/44144 sulfur 10081.0 6.0 https://www.openml.org/d/23515 https://www.openml.org/d/44145 medical_charges 163065.0 5.0 https://www.openml.org/d/42720 https://www.openml.org/d/44146 MiamiHousing2016 13932.0 14.0 https://www.openml.org/d/43093 https://www.openml.org/d/44147 superconduct 21263.0 79.0 https://www.openml.org/d/43174 https://www.openml.org/d/44148 A.1.3 Categorical classification OpenML benchmark: https://www.openml.org/search?type=benchmark&sort=date& study_type=task&id=334 dataset_name n_samples n_features original_link new_link electricity 38474.0 8.0 https://www.openml.org/d/151 https://www.openml.org/d/44156 eye_movements 7608.0 23.0 https://www.openml.org/d/1044 https://www.openml.org/d/44157 covertype 423680.0 54.0 https://www.openml.org/d/1596 https://www.openml.org/d/44159 albert 58252.0 31.0 https://www.openml.org/d/41147 https://www.openml.org/d/45035 compas-two-years 4966.0 11.0 https://www.openml.org/d/42192 https://www.openml.org/d/45039 default-of-credit-card-clients 13272.0 21.0 https://www.openml.org/d/42477 https://www.openml.org/d/45036 road-safety 111762.0 32.0 https://www.openml.org/d/42803 https://www.openml.org/d/45038 8885.0 255.0 https://www.openml.org/d/422 https://www.openml.org/d/45041 analcatdata_supreme 4052.0 7.0 https://www.openml.org/d/504 https://www.openml.org/d/44055 visualizing_soil 8641.0 4.0 https://www.openml.org/d/688 https://www.openml.org/d/44056 delays_zurich_transport 5465575.0 12.0 https://www.openml.org/d/40753 https://www.openml.org/d/45045 diamonds 53940.0 9.0 https://www.openml.org/d/42225 https://www.openml.org/d/44059 Allstate_Claims_Severity 188318.0 124.0 https://www.openml.org/d/42571 https://www.openml.org/d/45046 Mercedes_Benz_Greener_Manufacturing 4209.0 359.0 https://www.openml.org/d/42570 https://www.openml.org/d/44061 Brazilian_houses 10692.0 11.0 https://www.openml.org/d/42688 https://www.openml.org/d/44062 Bike_Sharing_Demand 17379.0 11.0 https://www.openml.org/d/42712 https://www.openml.org/d/44063 Airlines_DepDelay_1M 1000000.0 5.0 https://www.openml.org/d/42721 https://www.openml.org/d/45047 nyc-taxi-green-dec-2016 581835.0 16.0 https://www.openml.org/d/42729 https://www.openml.org/d/44065 abalone 4177.0 8.0 https://www.openml.org/d/42726 https://www.openml.org/d/45042 house_sales 21613.0 17.0 https://www.openml.org/d/42731 https://www.openml.org/d/44066 seattlecrime6 52031.0 4.0 https://www.openml.org/d/42496 https://www.openml.org/d/45043 medical_charges 163065.0 5.0 https://www.openml.org/d/42720 https://www.openml.org/d/45048 particulate-matter-ukair-2017 394299.0 6.0 https://www.openml.org/d/42207 https://www.openml.org/d/44068 SGEMM_GPU_kernel_performance 241600.0 9.0 https://www.openml.org/d/43144 https://www.openml.org/d/44069

A.7 Bayesian optimization

In this section, we evaluate if using Bayesian optimization instead of random search would change our conclusions. To this aim, we use Weight and Biases' Bayesian optimization algorithm (based on Gaussian processes with Matern kernels, https://github.com/wandb/sweeps/blob/master/ src/sweeps/bayes_search.py), and run our benchmarks on numerical features with this method for 200 steps. In Figures 33 and34, we plot the result of this approach, compared to the random search approach described in 3.3. Note that using Bayesian optimization doesn't allow us to reshuffle evaluation steps, so we only display error bars for random search.

Results

• Using Bayesian optimization doesn't seem to change the ordering of the different models.

• Bayesian optimization does not seem to provide a significant improvement over random search. We emphasize, however, that our experiment is a simple check that using Bayesian Optimization doesn't change our conclusions, and a proper evaluation of Bayesian optimization in this context would require running several runs of Bayesian optimization for each model and each dataset.

A.8 Discussion on [START_REF] Kadra | Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data[END_REF] We observed that tree-based models are superior for every random search budget, and the performance gap stays wide even after a large number of random search iteration. However, this might no longer be true when adding additional regularization techniques to our random search, such as data GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree augmentation. Indeed, Kadra et al. [2021a] find that searching through a "cocktail" of regularization on a Multi-Layer-Perceptron is competitive with XGBoost after half an hour of tuning (for both models), though the datasets considered in their paper are quite different, in particular with the presence of "deterministic" game-inspired datasets in [START_REF] Kadra | Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data[END_REF], on which their method performs very well and contributes markedly to the overall benchmark results.

A.9 Which hyperparameters perform well on tabular data?

Our random search results provide insights into which hyperparameters are important for learning on tabular data. Below we present a measure of hyperparameters importance in our classification benchmark on numerical features.

Methodology Accuracy is normalized (see 3), and negative scores are truncated to zero. For each model, we fit a RandomForest classifier with default hyperparameters to predict these scores from the model's hyperparameters and the dataset, and we compute the feature importance for each of the hyperparameter ("rf_importance"). This gives us a score which represent how much an hyperparameter should be tuned. To measure if an hyperparameter has a positive or negative impact on the performance, we also compute the coefficient of a LinearRegression trained on the same task that the RandomForest ("lin_coef")

Results

The learning rate is by far the most important parameter for neural networks and gradientboosted trees. Note that the linear coefficient is not always very high, which suggests that the learning rate should be tuned for each dataset. For tree-based models, the depth of the trees is another very important parameter, and it seems that deeper trees help, even for gradient-boosted trees. This observation is related to our "Finding 1" 5.2, as deeper trees enable very irregular patterns to be learned.

Below we give the results for each architecture. XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K 0 XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K XGBoost_40K 0 
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Regression (19 datasets)

Figure 35: Benchmark on medium-sized datasets, with only numerical features. We compare gradient boosting models ran for a maximum number of 40K estimators and an early stopping patience of 100 with the same models ran with a maximum of 1K estimators, and a patience of 20. Note that the default setting is run with these respective parameters (40K and 10K) instead of Sklearn's default. 

Regression (13 datasets)

Figure 36: Benchmark on medium-sized datasets, with both numerical and categorical features. We compare gradient boosting models ran for a maximum number of 40K estimators and an early stopping patience of 100 with the same models ran with a maximum of 1K estimators, and a patience of 20. Note that the default setting is run with these respective parameters (40K and 10K) instead of Sklearn's default. 1K) and a higher patience (100 instead of 20). We can see that this slightly improve the per-randomsearch-iteration performance, as well as the best performance reached, of tree-based models (figure 36) albeit at the cost a significantly higher compute time (figure 38). 

Regression (19 datasets)

Figure 37: Time benchmark on medium-sized datasets, with only numerical features. We compare gradient boosting models ran for a maximum number of 40K estimators and an early stopping patience of 100 with the same models ran with a maximum of 1K estimators, and a patience of 20. Note that the default setting is run with these respective parameters (40K and 10K) instead of Sklearn's default. 

Regression (13 datasets)

Figure 38: Time benchmark on medium-sized datasets, with both numerical and categorical features. We compare gradient boosting models ran for a maximum number of 40K estimators and an early stopping patience of 100 with the same models ran with a maximum of 1K estimators, and a patience of 20. Note that the default setting is run with these respective parameters (40K and 10K) instead of Sklearn's default.

GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune GradientBoostingTree_tune All instructions to use our benchmark and reproduce our results are available at our repository: https://github.com/LeoGrin/tabular-benchmark. To ease the use of our benchmark and the reproducibility of our results we provide:

RandomForest

• The selected and transformed datasets as an OpenML suite. All links to the transformed and original datasets are also in A.1. • A CSV file containing the results of all our random searches. It can be used to cheaply benchmark a new method. • The code used to produce our benchmark and our experiments.