
Why do tree-based models still outperform deep
learning on typical tabular data?

Léo Grinsztajn
Soda, Inria Saclay

leo.grinsztajn@inria.fr

Edouard Oyallon
MLIA, Sorbonne University

Gaël Varoquaux
Soda, Inria Saclay

Abstract

While deep learning has enabled tremendous progress on text and image datasets,
its superiority on tabular data is not clear. We contribute extensive benchmarks of
standard and novel deep learning methods as well as tree-based models such as
XGBoost and Random Forests, across a large number of datasets and hyperparam-
eter combinations. We define a standard set of 48 datasets from varied domains
with clear characteristics of tabular data and a benchmarking methodology account-
ing for both fitting models and finding good hyperparameters. Results show that
tree-based models remain state-of-the-art on medium-sized data (∼10K samples)
even without accounting for their superior speed. To understand this gap, we
conduct an empirical investigation into the differing inductive biases of tree-based
models and neural networks. This leads to a series of challenges which should
guide researchers aiming to build tabular-specific neural network: 1. be robust
to uninformative features, 2. preserve the orientation of the data, and 3. be able
to easily learn irregular functions. To stimulate research on tabular architectures,
we contribute a standard benchmark and raw data for baselines: every point of a
20 000 compute hours hyperparameter search for each learner.

1 Introduction

Deep learning has enabled tremendous progress for learning on image, language, or even audio
datasets. On tabular data, however, the picture is muddier and ensemble models based on decision
trees like XGBoost remain the go-to tool for most practitioners [Sta] and data science competitions
[Kossen et al., 2021]. Indeed deep learning architectures have been crafted to create inductive biases
matching invariances and spatial dependencies of the data. Finding corresponding invariances is hard
in tabular data, made of heterogeneous features, small sample sizes, extreme values.

Creating tabular-specific deep learning architectures is a very active area of research (see section 2).
One motivation is that tree-based models are not differentiable, and thus cannot be easily composed
and jointly trained with other deep learning blocks. Most tabular deep learning publications claim
to beat or match tree-based models, but their claims have been put into question: a simple Resnet
seems to be competitive with some of these new models [Gorishniy et al., 2021], and most of
these methods seem to fail on new datasets [Shwartz-Ziv and Armon, 2021]. Indeed, the lack
of an established benchmark for tabular data learning provides additional degrees of freedom to
researchers when evaluating their method. Furthermore, most tabular datasets available online are
small compared to benchmarks in other machine learning subdomains, such as ImageNet [Ima],
making evaluation noisier. These issues add up to other sources of unreplicability across machine
learning, such as unequal hyperparameters tuning efforts [Lipton and Steinhardt, 2019] or failure
to account for statistical uncertainty in benchmarks [Bouthillier et al., 2021]. To alleviate these
concerns, we contribute a tabular data benchmark with a precise methodology for datasets inclusion
and hyperparameter tuning. This enables us to evaluate recent deep learning models which have

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.



not yet been independently evaluated, and to show that tree-based models remain state-of-the-art
on medium-sized tabular datasets, even without accounting for the slower training of deep learning
algorithms. Furthermore, we show that this performance gap is not mostly due to categorical features,
and does not disappear after tuning hyperparameters.

Impressed by the superiority of tree-based models on tabular data, we strive to understand which
inductive biases make them well-suited for these data. By transforming tabular datasets to modify
the performances of different models, we uncover differing biases of tree-based models and deep
learning algorithms which partly explain their different performances: neural networks struggle to
learn irregular patterns of the target function, and their rotation invariance hurt their performance, in
particular when handling the numerous uninformative features present in tabular data.

Our contributions are as follow: 1. We create a new benchmark for tabular data, with a precise
methodology for choosing and preprocessing a large number of representative datasets. We share
these datasets through OpenML [Vanschoren et al., 2014], which makes them easy to use. 2. We
extensively compare deep learning models and tree-based models on generic tabular datasets in
multiple settings, accounting for the cost of choosing hyperparameters. We also share the raw
results of our random searches, which will enable researchers to cheaply test new algorithms for a
fixed hyperparameter optimization budget. 3. We investigate empirically why tree-based models
outperform deep learning, by finding data transformations which narrow or widen their performance
gap. This highlights desirable biases for tabular data learning, which we hope will help other
researchers to successfully build deep learning models for tabular data.

In Sec. 2 we cover related work. Sec. 3 gives a short description of our benchmark methodology,
including datasets, data processing, and hyper-parameter tuning. Then, Sec. 4 shows our raw results
on deep learning and tree-based models after an extensive random search. Finally, Sec. 5 provides
the results of an empirical study which exhibit desirable implicit biases of tabular datasets.1

2 Related work

Deep learning for tabular data As described by Borisov et al. [2021] in their review of the field,
there have been various attempts to adapt deep learning to tabular data: data encoding techniques to
make tabular data better suited for deep learning [Hancock and Khoshgoftaar, 2020, Yoon et al., 2020],
"hybrid methods" to benefit from the flexibility of neural networks while keeping the inductive biases
of other algorithms like tree-based models [Lay et al., 2018, Popov et al., 2020, Abutbul et al., 2020,
Hehn et al., 2019, Tanno et al., 2019, Chen, 2020, Kontschieder et al., 2015, Rodriguez et al., 2019,
Popov et al., 2020, Lay et al., 2018] or Factorization Machines Guo et al. [2017], tabular-specific
transformers architectures Somepalli et al. [2021], Kossen et al. [2021], Arik and Pfister [2019],
Huang et al. [2020], and various regularization techniques to adapt classical architectures to tabular
data [Lounici et al., 2021, Shavitt and Segal, 2018, Kadra et al., 2021a, Fiedler, 2021]. In this paper,
we focus on architectures directly inspired by classic deep learning models, in particular Transformers
and Multi-Layer-Perceptrons (MLPs).

Comparisons between neural networks and tree-based models The most comprehensive com-
parisons of machine learning algorithms have been published before the advent of new deep learning
methods [Caruana and Niculescu-Mizil, 2006, Fernández-Delgado et al., 2014], or on specific prob-
lems [Sakr et al., 2017, Korotcov et al., 2017, Uddin et al., 2019]. Recently, Shwartz-Ziv and Armon
[2021] evaluated modern tabular-specific deep learning methods, but their goal was more to reveal that
"New deep learning architectures fail to generalize to new datasets" than to create a comprehensive
benchmark. Borisov et al. [2022] benchmarked recent algorithms in their review of deep learning for
tabular data, but only on 3 datasets, and "highlight[ed] the need for unified benchmarks" for tabular
data. Most papers introducing a new architecture for tabular data benchmark various algorithms,
but with a highly variable evaluation methodology, a small number of datasets, and the evaluation
can be biased toward the authors’ model [Shwartz-Ziv and Armon, 2021]. The paper closest to our
work is Gorishniy et al. [2021], benchmarking novel algorithms, on 11 tabular datasets. We provide
a more comprehensive benchmark, with 48 datasets, split across different settings (medium-sized

1Compared to our initial submission, the final version of this paper includes a simple decision tree as a
baseline. In addition, it displays updated figures with minor bug fixes which do not affect our conclusions.

2



/ large-size, with/without categorical features), accounting for the hyperparameter tuning cost, to
establish a standard benchmark.

No standard benchmark for tabular data Unlike other machine learning sub�elds such as
computer vision [Ima] or NLP [Wang et al., 2020], there are no standard benchmarks for tabular data.
There exist generic machine learning benchmarks, but, to the our knowledge, none are speci�c to
tabular data. For instance, OpenML benchmarks CC-18, CC-100, [Bischl et al., 2021] and AutoML
Benchmark [Gijsbers et al., 2019] contain tabular data, but also include images and arti�cial datasets,
which may explain why they have not been used in tabular deep learning papers. In A.6, we compare
in more depth our benchmark to these previous ones.

Understanding the difference between neural networks and tree-based modelsTo our knowl-
edge, this is the �rst empirical investigation ofwhy tree-based models outperform neural networks
on tabular data. Some speculative explanations, however, have been offered [Klambauer et al., 2017,
Borisov et al., 2021]. Kadra et al. [2021a] claims that searching across 13 regularization techniques
for MLPs to �nd a dataset-speci�c combination gives state-of-the-art performances. This provides a
partial explanation: MLPs are expressive enough for tabular data but may suffer from a lack of proper
regularization.

3 A benchmark for tabular learning

3.1 48 reference tabular datasets

For our benchmark, we compiled 48 tabular datasets from various domains provided mainly by
OpenML, listed in A.1 and selected via the following criteria:

Heterogeneous columns.Columns should correspond to features of different nature. This excludes
images or signal datasets where each column corresponds to the same signal on different sensors.

Not high dimensional. We only keep datasets with ad=n ratio below 1/10, and withd below 500.
Undocumented datasetsWe remove datasets where too little information is available. We did keep

datasets with hidden column names if it was clear that the features were heterogeneous.
I.I.D. data. We remove stream-like datasets or time series.
Real-world data. We remove arti�cial datasets but keep some simulated datasets. The difference is

subtle, but we try to keep simulated datasets if learning these datasets are of practical importance
(like the Higgs dataset), and not just a toy example to test speci�c model capabilities.

Not too small. We remove datasets with too few features (< 4) and too few samples (< 3 000). For
benchmarks on numerical features only, we remove categorical features before checking if enough
features and samples are remaining.

Not too easy.We remove datasets which are too easy. Speci�cally, we remove a dataset if a simple
model (max of a single tree and a regression, logistic or OLS) reaches a score whose relative
difference with the score of both a default Resnet (from Gorishniy et al. [2021]) and a default
HistGradientBoosting model (from scikit learn) is below 5%. Other benchmarks use different
metrics to remove too easy datasets, like removing datasets perfectly separated by a single decision
classi�er [Bischl et al., 2021], but this ignores varying Bayes rate across datasets. As tree ensembles
are superior to simple trees and logistic regresison [Fernández-Delgado et al., 2014], a close score
for the simple and powerful models suggests that we are already close to the best achievable score.

Not deterministic. We remove datasets where the target is a deterministic function of the data. This
mostly means removing datasets on games like poker and chess. Indeed, we believe that these
datasets are very different from most real-world tabular datasets, and should be studied separately.

3.2 Removing side issues

To keep learning tasks as homogeneous as possible and focus on challenges speci�c to tabular data,
we exclude subproblems which would deserve their own analysis:

Medium-sized training set We truncate the training set to 10,000 samples for bigger datasets. This
allows us to investigate the medium-sized dataset regime. We study the large-sized (50,000) regime,
for which fewer datasets matching our criteria are available, in A.2.

No missing data We remove all missing data from the datasets. Indeed, there are numerous tech-
niques for handling missing data both for tree-based models and neural networks, with varying

3



performances [Perez-Lebel et al., 2022]. In practice, we �rst remove columns containing many
missing data, then all rows containing at least one missing entry.

Balanced classesFor classi�cation, the target is binarised if there are several classes, by taking the
two most numerous classes, and we keep half of samples in each class.

Low cardinality categorical features We remove categorical features with more than 20 items.
High cardinality numerical features We remove numerical features with less than 10 unique val-

ues. Numerical features with 2 unique values are converted to categorical features.

3.3 A procedure to benchmark models with hyperparameter selection

Hyperparameter tuning leads to uncontrolled variance on a benchmark [Bouthillier et al., 2021],
especially with a small budget of model evaluations. We design a benchmarking procedure that jointly
samples the variance of hyperparameter tuning and explores increasingly high budgets of model
evaluations. It relies on random searches for hyper-parameter tuning [Bergstra et al., 2013]. We use
hyperparameter search spaces from the Hyperopt-Sklearn [Komer et al., 2014] when available, from
the original paper when possible, and from Gorishniy et al. [2021] for MLP, Resnet and XGBoost
(see A.3). We run a random search of� 400iterations per dataset, on CPU for tree-based models
and GPU for neural networks (more details in A.3).

To study performance as a function of the numbern of random search iterations, we compute the
best hyperparameter combination on the validation set on thesen iterations (for each model and
dataset), and evaluate it on the test set. We do this 15 times while shuf�ing the random search order
at each time. This gives us bootstrap-like estimates of the expected test score of the best (on the
validation set) model after each number of random search iterations. In addition, we always start
the random searches with the default hyperparameters of each model. In A.7, we show that using
Bayesian optimization instead of random search does not seem to change our results.

Resuable code and benchmark raw data The code used for all the experiments and comparisons
is available at https://github.com/LeoGrin/tabular-benchmark. To help researchers to cheaply add
their own algorithms to the results, we also share at the same link a data table containing results for
all iterations of our 20,000 compute-hour random searches.

3.4 Aggregating results across datasets

We use the test set accuracy (classi�cation) and R2 score (regression) to measure model performance.
To aggregate results across datasets of varying dif�culty, we use a metric similar to the distance to
the minimum (or average distance to the minimum –ADTM– when averaged across datasets), used
in Feurer et al. [2021] and introduced in Wistuba et al. [2015]. This metric consists in normalizing
each test accuracy between 0 and 1 via an af�ne renormalization between the top-performing and
worse-performing models.2 Instead of the worse-performing model, we use models achieving the
10% (classi�cation) or 50% (regression) test error quantile. Indeed, the worse scores are achieved by
outlier models and are not representative of the dif�culty of the dataset. For regression tasks, we clip
all negative scores (i.e below 50% scores) to 0 to reduce the in�uence of very low scores.

3.5 Data preparation

We strive for as little manual preprocessing as possible, applying only the following transformations:

Gaussianized featuresFor neural network training, the features are Gaussianized with Scikit-learn's
QuantileTransformer .

Transformed regression targetsIn regression settings, target variables are log-transformed when
their distributions are heavy-tailed (e.g house prices, see A.1). In addition, we add as an hyperpa-
rameter the possibility to Gaussienize the target variable for model �t, and transform it back for
evaluation (via ScikitLearn's TransformedTargetRegressor and QuantileTransformer).

OneHotEncoder For models which do not handle categorical variables natively, we encode categor-
ical features using ScikitLearn's OneHotEncoder.

2This method is also close to the method used by Caruana and Niculescu-Mizil [2006], the difference being
that the latter uses an arti�cial baseline (predicting the most common class) as the zero score.

4



4 Tree-based models still outperform deep learning on tabular data.

4.1 Models benchmarked

For tree-based models, we choose 3 state-of-the-art models used by practitioners: Scikit Learn's Ran-
domForest, GradientBoostingTrees (GBTs) (or HistGradientBoostingTrees when using categorical
features), and XGBoost [Chen and Guestrin, 2016]. We benchmark the following deep models:

MLP : a classical MLP from Gorishniy et al. [2021]. The only improvement beyond a simple MLP
is using Pytorch'sReduceOnPlateaulearning rate scheduler.

Resnet : as in Gorishniy et al. [2021], similar toMLP with dropout, batch/layer normalization, and
skip connections.

FT_Transformer : a simple Transformer model combined with a module embedding categorical
and numerical features, created in Gorishniy et al. [2021]. We choose this model because it was
benchmarked in a convincing way against tree-based models and other tabular-speci�c models. It
can thus be considered a “best case” for Deep learning models on tabular data.

Only numerical features

Classi�cation (16 datasets) Regression (19 datasets)

Both numerical and categorical features
Classi�cation (7 datasets) Regression (17 datasets)

Figure 1:Benchmark on medium-sized datasets, top only numerical features; bottom: all features.
Dotted lines correspond to the score of the default hyperparameters, which is also the �rst random
search iteration. Each value corresponds to the test score of the best model (on the validation set)
after a speci�c number of random search iterations, averaged on 15 shuf�es of the random search
order. The ribbon corresponds to minimum and maximum scores on these 15 shuf�es.

5



SAINT : a Transformer model with an embedding module and an inter-samples attention mechanism,
proposed in Somepalli et al. [2021]. We include this model because it was the best performing
deep model in Borisov et al. [2021], and to investigate the impact of inter-sample attention, which
performs well on tabular data according to Kossen et al. [2022].

4.2 Results

Fig. 1 give benchmark results for different types of datasets (appendix A.2 gives results as a function
of computationtime). We emphasize that the variance quanti�cation in these �gures should be
interpreted carefully, as it is made by shuf�ing the order of a same random search: for a large number
of random search iterations, it may not represent the actual variance after this number of step.

Tuning hyperparameters does not make neural networks state-of-the-art Tree-based models
are superior for every random search budget, and the performance gap stays wide even after a large
number of random search iterations. This does not take into account that each random search iteration
is generally slower for neural networks than for tree-based models (see A.2).

Categorical variables are not the main weakness of neural networksCategorical variables
are often seen as a major problem for using neural networks on tabular data [Borisov et al., 2021].
Our results on numerical variables only do reveal a narrower gap between tree-based models and
neural networks than including categorical variables. Still, most of this gap subsists when learning on
numerical features only.

5 Empirical investigation: whydo tree-based models still outperform deep
learning on tabular data?

5.1 Methodology: uncovering inductive biases

We have seen in Sec. 4.2 that tree-based models beat neural networks across a wide range of
hyperparameter choices. This hints to inherent properties of these models which explains their
performances on tabular data. Indeed, the best methods on tabular data share two attributes: they are
ensemble methods, bagging (Random Forest) or boosting (XGBoost, GBTs), and the weak learner
used in these ensembles is adecision tree. The decisive point seems to be the tree aspect: other
boosting and bagging methods with different weak learners exist but are not commonly used for
tabular data. In this section, we try to understand theinductive biasesof decision trees that make
them well-suited for tabular data, and how they differ from the inductive biases of neural networks.
This is equivalent to saying the reverse: which features of tabular data make this type of data easy to
learn with tree-based methods yet more dif�cult with a neural network?

To this aim, we apply various transformations to tabular datasets which either narrow or widen
the generalization performance gap between neural networks and tree-based models, and thus help
us emphasize their different inductive biases. For the sake of simplicity, we restrict our analysis
to numerical variables and classi�cation tasks on medium-sized datasets. Results are presented
aggregated across datasets, and dataset-speci�c results are available in A.4, along with additional
details on our experiments.

5.2 Finding 1: Neural networks are biased to overly smooth solutions

We transform eachtrain set by smoothing the output with a Gaussian Kernel smoother for varying
length-scale values of the kernel (more details are available in A.4). This effectively prevents models
from learning irregular patterns of the target function. Fig. 2 shows model performance as a function
of the length-scale of the smoothing kernel. For small lengthscales, smoothing the target function on
the train set decreases markedly the accuracy of tree-based models, but barely impacts that of neural
networks.

Such results suggest that the target functions in our datasets are not smooth, and that neural networks
struggle to �t these irregular functions compared to tree-based models. This is in line with Rahaman
et al. [2019], which �nds that neural networks are biased toward low-frequency functions. Models
based on decision trees, which learn piece-wise constant functions, do not exhibit such a bias. Our

6



Figure 2: Normalized test accuracy of
different models for varying smoothing
of the target function on the train set.
We smooth the target function through a
Gaussian Kernel smoother, whose covari-
ance matrix is the data covariance, multi-
plied by the (squared) lengthscale of the
Gaussian kernel smoother. A lengthscale
of 0 corresponds to no smoothing (the orig-
inal data). All features have been Gaussi-
enized before the smoothing through Scik-
itLearn's QuantileTransformer. The box-
plots represent the distribution of normal-
ized accuracies across 15 re-orderings of
the random search.

�ndings do not contradict papers claiming bene�ts from regularization for tabular data [Shavitt and
Segal, 2018, Borisov et al., 2021, Kadra et al., 2021b, Lounici et al., 2021], as adequate regularization
and careful optimization may allow neural networks to learn irregular patterns. In A.4, we show some
examples of non-smooth patterns which neural networks fail to learn, both in toy and real-world
settings.

Note also that our observation could also explain the bene�ts of the ExU activation used in the
Neural-GAM paper [Agarwal et al., 2021], and of the embeddings used in Gorishniy et al. [2022]:
the periodic embedding might help the model to learn the high-frequency part of the target function,
and the target-aware binning might make the target function smoother.

5.3 Finding 2: Uninformative features affect more MLP-like neural networks

Tabular datasets contain many uninformative features For each dataset, we drop an increasingly
large fraction of features, according to feature importance (ranked by a Random Forest). Fig. 3 shows
that the classi�cation accuracy of a GBT is not much affected by removing up to half of the features.

Furthermore, the test accuracy of a GBT trained on the removed features (i.e the features below a
certain feature importance threshold) is very low up to 20% of features removed, and quite low until
50%, which suggests that most of these features are uninformative, and not solely redundant.

MLP-like architectures are not robust to uninformative features In the two experiments shown
in Fig. 4, we can see thatremovinguninformative features (4a) reduces the performance gap
between MLPs (Resnet) and the other models (FT Transformers and tree-based models), while
addinguninformative features widens the gap. This shows that MLPs are less robust to uninformative
features, and, given the frequency of such features in tabular datasets, partly explain the results from
Sec. 4.2.

In Fig. 4a, we also remove informative features as we remove a larger fraction of features. Our
reasoning, which is backed by 4b, is that the decrease in accuracy due to the removal of these features
is compensated by the removal of uninformative features, which is more helpful for MLPs than for
other models (we also remove redundant features at the same time, which should not impact our
models)

5.4 Finding 3: Data are non invariant by rotation, so should be learning procedures

Why are MLPs much more hindered by uninformative features, compared to other models? One
answer is that this learner is rotationally invariant in the sense of Ng [2004]: the learning procedure
which learns an MLP on a training set and evaluate it on a testing set is unchanged when applying
a rotation (unitary matrix) to the features on both the training and testing set. On the contrary,
tree-based models are not rotationally invariant, as they attend to each feature separately, and neither
are FT Transformers, because of the initial FT Tokenizer, which implements a pointwise operation. A

7



Figure 3: Test accuracy of a GBT for
varying proportions of removed features,
on our classi�cation benchmark on numer-
ical features. Features are removed in in-
creasing order of feature importance (com-
puted with a Random Forest), and the two
lines correspond to the accuracy using the
(most important) kept features (blue) or the
(least important) removed features (red). A
score of 1.0 corresponds to the best score
across all models and hyperparameters on
each dataset, and 0.0 correspond to random
chance. These scores are averaged across
30 random search orders, and the ribbons
correspond to the 80% interval among the
different datasets.

a. Removing features b. Adding features

Figure 4: Test accuracy changes when removing (a) or adding (b) uninformative features.
Features are removed in increasing order of feature importance (computed with a Random Forest).
Added features are sampled from standard Gaussians uncorrelated with the target and with other
features. Scores are averaged across datasets, and the ribbons correspond to the minimum and
maximum score among the 30 different random search reorders (starting with the default models).

theoretical link between this concept and uninformative features is provided by Ng [2004], which
shows that any rotationallly invariant learning procedure has a worst-case sample complexity that
grows at least linearly in the number of irrelevant features. Intuitively, to remove uninformative
features, a rotationaly invariant algorithm has to �rst �nd the original orientation of the features, and
then select the least informative ones: the information contained in the orientation of the data is lost.

Fig. 5a, which shows the change in test accuracy when randomly rotating our datasets, con�rms
that only Resnets are rotationally invariant. More striking, random rotations reverse the performance
order: neural networks are now above tree-based models and Resnets above FT Transformers. This
suggests that rotation invariance is not desirable: similarly to vision [Ima], there is a natural basis
(here, the original basis) which encodes best data-biases, and which can not be recovered by models
invariant to rotations which potentially mixes features with very different statistical properties. Indeed,
features of a tabular data typically carry meanings individually, as expressed by column names:age,
weight . The link with uninformative features is apparent in 5b: removing the least important half of
the features in each dataset (before rotating), drops the performance of all models except Resnets, but
the decrease is less signi�cant than when using all features.

Our �ndings shed light on the results of Somepalli et al. [2021] and Gorishniy et al. [2022], which
add an embedding layer, even for numerical features, before MLP or Transformer models. Indeed,

8




	Introduction
	Related work
	A benchmark for tabular learning
	48 reference tabular datasets
	Removing side issues
	A procedure to benchmark models with hyperparameter selection
	Aggregating results across datasets
	Data preparation

	Tree-based models still outperform deep learning on tabular data.
	Models benchmarked
	Results

	Empirical investigation: why do tree-based models still outperform deep learning on tabular data?
	Methodology: uncovering inductive biases
	Finding 1: Neural networks are biased to overly smooth solutions
	Finding 2: Uninformative features affect more MLP-like neural networks
	Finding 3: Data are non invariant by rotation, so should be learning procedures

	Discussion and conclusion
	Appendix
	Datasets used
	Numerical classification
	Numerical regression
	Categorical classification
	Categorical regression

	More benchmarks
	Results as a function of random search time
	Large-sized datasets

	More details on benchmark
	More details on experiments
	Finding 1: Neural networks are biased to overly smooth solutions
	Finding 2: Uninformative features affect more MLP-like neural networks
	Finding 3: Data are non invariant by rotation, so should be learning procedures

	Dataset filtering
	Medium datasets
	Large datasets

	Comparison with other benchmarks
	OpenML CC18
	AutoML

	Bayesian optimization
	Discussion on kadraRegularizationAllYou2021
	Which hyperparameters perform well on tabular data?
	Should we run tree-based models longer?
	Should we tune the number of estimators for tree-based models?

	How to use our benchmark?


