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This work addresses the problem of hyperspectral image classification when the number of labeled samples is very small (few shot learning). Our work is based on the recently proposed framework of convolutional transform learning. In this work, we propose a semisupervised version of deep convolutional transform learning. We compare with four recent studies which are tailored for solving the few-shot learning problem in hyperspectral classification. Results show that our method can improve over the state-of-the-art.

INTRODUCTION

In hyperspectral image classification, the usual protocol is to label some samples manually after acquiring the image; this forms the training set. The labeled training data is fed into some classifier (after feature extraction if needed) in order to generate the labels for the remaining unlabeled testing samples. Ideally one would like to manually label as few samples as possible since this is a laborious timeconsuming process that needs expertise.

Deep learning is known to be data hungry. Consequently, initial studies on deep learning [START_REF] Chen | Deep Learning-Based Classification of Hyperspectral Data[END_REF][START_REF] Chen | Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network[END_REF] used more than 80% of the data as a training set; in practice this is infeasible. Over time, deep learning techniques like [START_REF] Liu | Deep Few-Shot Learning for Hyperspectral Image Classification[END_REF][START_REF] Gao | Deep Induction Network for Small Samples Classification of Hyperspectral Images[END_REF] have been able to reduce the data requirement, but even with the new age of deep neural networks (DNN), the number of labeled samples required is usually higher than shallow learning techniques like [START_REF] Karaca | Domain Transform Filter and Spatial-Aware Collaborative Representation for Hyperspectral Image Classification Using Few Labeled Samples[END_REF][START_REF] Xu | Efficient Probabilistic Collaborative Representation-Based Classifier for Hyperspectral Image Classification[END_REF].

Given that DNNs require copious amounts of labeled data for training, the only approach is to augment the number of labeled samples. The standard approach to address this issue had been employing generative models [START_REF] Zhu | Generative Adversarial Networks for Hyperspectral Image Classification[END_REF][START_REF] Wang | Caps-TripleGAN: GAN-Assisted CapsNet for Hyperspectral Image Classification[END_REF] in the recent past and meta-learning [START_REF] Gao | Small sample classification of hyperspectral image using model-agnostic meta-learning algorithm and convolutional neural network[END_REF][START_REF] Gao | Deep Induction Network for Small Samples Classification of Hyperspectral Images[END_REF] in current years. Classical techniques like Gaussian mixture models have also been used for labeled data augmentation [START_REF] Davari | GMM-Based Synthetic Samples for Classification of Hyperspectral Images With Limited Training Data[END_REF]. A thorough review of different data augmentation techniques can be found in [START_REF] Nalepa | Hyperspectral data augmentation[END_REF].

Over the years various deep learning architectures have been employed for the task of hyperspectral image classification. Initial studies used stacked autoencoders [START_REF] Chen | Deep Learning-Based Classification of Hyperspectral Data[END_REF] and deep belief networks [START_REF] Chen | Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network[END_REF] for image classification. Later on, convolutional neural networks (CNN) showed improvement in results [START_REF] Makantasis | Deep supervised learning for hyperspectral data classification through convolutional neural networks[END_REF][START_REF] Jia | Convolutional neural network based classification for hyperspectral data[END_REF]. Later more complex CNNs like ResNet [START_REF] Zhong | Deep residual networks for hyperspectral image classification[END_REF] and DenseNet [START_REF] Bai | SSDC-DenseNet: A Cost-Effective End-to-End Spectral-Spatial Dual-Channel Dense Network for Hyperspectral Image Classification[END_REF] were employed for the said problem. Capsule networks had also been used for hyperspectral classification with varying degrees of success [START_REF] Paoletti | Capsule Networks for Hyperspectral Image Classification[END_REF][START_REF] Yin | Hyperspectral Image Classification Using CapsNet With Well-Initialized Shallow Layers[END_REF]. Even though not a natural choice recurrent neural networks too have been used for hyperspectral image classification [START_REF] Mou | Deep Recurrent Neural Networks for Hyperspectral Image Classification[END_REF]. In the limited scope of this letter, it is not possible to review all deep learning techniques. The interested reader can peruse survey papers [START_REF] Li | Deep Learning for Hyperspectral Image Classification: An Overview[END_REF][START_REF] Audebert | Deep Learning for Classification of Hyperspectral Data: A Comparative Review[END_REF]. The said papers are from two years back and do not include the latest deep learning techniques for hyperspectral image classification based on attention networks [START_REF] Zhu | Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification[END_REF] and graph CNNs [START_REF] Hong | Graph Convolutional Networks for Hyperspectral Image Classification[END_REF].

The unique and interesting aspect about hyperspectral image classification is that the sum of training (labeled) and testing (unlabeled) samples are usually fixed, as discussed at the beginning of this section. This allows for semisupervised learning of the test features [START_REF] Wu | Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification[END_REF] while training the DNN. This work follows the same paradigm.

Our work is based on the framework of convolutional transform learning (CTL) [START_REF] Maggu | Convolutional Transform Learning[END_REF][START_REF] Maggu | Deep Convolutional Transform Learning[END_REF]. CTL overcomes the major shortcomings of CNN since it can learn convolutional filters in an unsupervised fashion. A recent study proposed a supervised version of shallow convolutional transform learning [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF]. In this work, we propose a semi-supervised formulation of convolutional transform learning, where the features for both the labeled and the unlabeled data are learnt during training of the inbuilt classifier. During testing, the features corresponding to the unlabeled training data are input to the learnt classifier.

Since the CTL is a relatively new framework, we will discuss it in depth in Section II; in the recent past, the said framework has been used successfully in other hyperspectral imaging applications [START_REF] Goel | K-Means Embedded Deep Transform Learning for Hyperspectral Band Selection[END_REF][START_REF] Goel | Sparse Subspace Clustering Friendly Deep Dictionary Learning for Hyperspectral Image Classification[END_REF]. This is necessary for understanding our formulation discussed in Section III. The experimental evaluation is detailed in Section IV. The conclusion is discussed in Section V.

II.

BACKGROUND

In convolutional transform learning (CTL) a set of filters are learnt such that when operated on the data they produce the corresponding representations. Formally this is expressed as x the representation of the k th sample after applying the m th convolutional filter. There are a total of K samples and M filters. The symbol '  'denotes a convolutional operation with zero padding.

During training, the filters and the representations are learnt by solving the following optimization problem.
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Here ψ is a regularization on the representation and (μ, λ) is positive. T is defined as →  . The penalty on T is borrowed from transform learning [START_REF] Ravishankar | Online Sparsifying Transform Learning-Part I: Algorithms[END_REF].
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One can see how it is possible to learnt convolutional filters from training data in an unsupervised fashion. CNNs do not have the said penalty on the learnt filters and hence can end up at the trivial solution. Furthermore, without the penalty on T, there is no guarantee that CNNs will learn unique filters.

In matrix-vector form, (2) can be expressed as follows
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where The unsupervised formulation for CTL was proposed in [START_REF] Singh | Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring[END_REF]. Later the label consistency term from [START_REF] Jiang | Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition[END_REF][START_REF] Maggu | Label-Consistent Transform Learning for Hyperspectral Image Classification[END_REF] was added to this formulation to make it supervised [START_REF] Goel | Sparse Subspace Clustering Friendly Deep Dictionary Learning for Hyperspectral Image Classification[END_REF]. This led to the following formulation.
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In ( 4), the last term is the supervision term. Matrix Q consists of one-hot encoded class labels, M is a linear map that projects the representation X to the corresponding class labels. Here η is a positive constant that controls the relative importance of the label consistency term. Note that in [START_REF] Goel | Sparse Subspace Clustering Friendly Deep Dictionary Learning for Hyperspectral Image Classification[END_REF] the problem was multi-label classification and hence this simple label consistency term is sensible.

In [START_REF] Goel | K-Means Embedded Deep Transform Learning for Hyperspectral Band Selection[END_REF] a deeper extension of the unsupervised formulation was proposed leading to deep convolutional transform learning (DCTL). As the name suggests, in the said formulation, multiple convolutional filters were being applied to the samples one after the other to generate the representation. This is expressed as follows,
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Hereabove, Ti refers to the i th layer of convolutional filters. In each layer, the Ti is formed by stacking the filters as columns of a matrix. The formulation ( 5) is shown for 3 layers but can be extended further.

III. PROPOSED FORMULATION

Let us re-iterate the problem of hyperspectral image classification. Once the hyperspectral imagery is captured the task is to label each position / pixel. Let us assume that there are N such positions. The usual protocol is to label a subset of these N (say n) positions manually and train a classifier to label the remaining N-n positions. Whatever the value of n, the total number of positions to be labeled (be it manual or automatic) is always N.

In this work, we propose a semi-supervised formulation where the n labeled samples (corresponding to n positions) will be used for training a classifier. During training, all the representation / features for all the N samples will be generated. At testing, the N-n unlabeled samples will be input to the learnt classifier for labeling.

We add binary cross-entropy (JBCE) loss for supervision instead of the label consistency term to the deep convolutional transform learning formulation. Note that this loss only pertains to the labeled data; for the unlabeled portion of the data only deep convolutional transform learning formulation is applicable. Our semi-supervised formulation can be expressed as,
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Equivalently -
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The subscript 'L' corresponds to labeled and 'U' corresponds to unlabelled. The BCE loss is only being defined on the labeled data. In (6) σ refers to the sigmoid function and Q (as defined before) refers to the one-hot encoded label vectors. In a more comprehensible notation, our semi-supervised formulation (6) can be expressed as the cost of 'supervised + unsupervised' terms as follows:

Here we have shown the formulation for 3 layers. One can see that extending it to more layers is straightforward. The problem ( 6) is solved using any standard gradient descent algorithm. Here, we have used Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. The activation function used is scaled exponential linear unit (SELU). The schematic diagram for 2-layers semisupervised deep convolutional transform learning is shown in Fig. 1. EXPERIMENTAL RESULTS

We evaluate our proposed technique on two benchmark datasets -Indian Pines 1 and Pavia University2 . The standard pre-processing steps are performed on these datasets prior to classification. For both datasets, an extremely challenging experimental protocol from [START_REF] Jia | Collaborative Representation-Based Multiscale Superpixel Fusion for Hyperspectral Image Classification[END_REF] is followed. The number of labeled samples to be considered is 5 per class; the rest are unlabeledthe goal is to label the unlabeled samples. All the experiments were carried out 100 times, using random splits of labeled and unlabeled samples. The arithmetic means of these 100 sets of experiments are reported in this work.

We compare with recent techniques that have been specifically tailored for limited training samples. Deep few-shot learning (DFSL) [START_REF] Liu | Deep Few-Shot Learning for Hyperspectral Image Classification[END_REF] is based on the meta-learning approach. Dual-path Siamese network (DPSN) [START_REF] Huang | Dual-Path Siamese CNN for Hyperspectral Image Classification With Limited Training Samples[END_REF] uses a Siamese network for classification; to augment labeled data it uses a combination of a generative adversarial network. Dual graph convolutional network (DGCN) [START_REF] Maggu | Convolutional Transform Learning[END_REF] uses a graph convolutional network for classification followed by label propagation. The final work that we compare is Intraclass Similarity Structure Representation (ISSR) [START_REF] Wei | Intraclass Similarity Structure Representation-Based Hyperspectral Imagery Classification With Few Samples[END_REF]. In [START_REF] Wei | Intraclass Similarity Structure Representation-Based Hyperspectral Imagery Classification With Few Samples[END_REF] this work a novel label propagation approach is proposed to increase the number of training samples; the augmented data serves as input to a standard deep CNN for classification.

Our proposed network does not consider spatial information; only the spectral information for every pixel 1 https://paperswithcode.com/dataset/indian-pines is input to the network as 1D data. Our proposed work requires the specification of three parameters. We have used the values μ=λ=.1 and η=.5. As for the size of the filters we have used 7x1, 5x1, 3x1; we also tried with four layers but the results deteriorated owing to overfitting and hence we are not showing the results. The comparative results in terms of overall accuracy (OA), average accuracy (AA), and Kappa coefficient are shown in Table I. One can see that our method performs the best in terms of all the metrics. Among the benchmarks DGCN performs the best; in fact, it is better than our fourlayer architecture. The meta-learning based approach DFSL also performs relatively well but not as good as DGCN. DPSN combines several aspects of deep learning and data augmentation but performs worse than DGCN. The performance of ISSR is the worst; it has a separate data augmentation stage and a classification stage; such a piecemeal approach does not perform at par with the other end-to-end architectures. For visual clarity we show the classification results as images in Fig. 2. It corroborates the numerical findings. 

A. Ablation Studies

In the first set of experiments, we analyze the different aspects of our proposed solution. We will see how the results change with depth. We will also see in each depth, how the results vary between semi-supervised and supervised formulations. The former is the proposition of this study and has been discussed in detail. The supervised formulation means that the network is only trained on the labeled samples; the unlabeled samples are not used during training. After training, the learnt filters are used for extracting the features from the input data and subsequent classification. From Tables II and III we see that for the semisupervised formulation the results improve from layers one to three and then dips when one more layer is added. This is probably due to over-fitting. The supervised formulation always yields considerably worse results than the semisupervised one. This is because the volume of data used for training the network is very less leading to over-fitting. Furthermore, for the supervised formulation, the results keep on deteriorating with depth. This too is likely due to over-fitting. With limited data, learning more parameters hampers the generalization ability of the network.

Finally, we show the empirical convergence plots for our proposed algorithm. Owing to limitations in space we only show it for the three-layer architecture. For other layers, the trend is similar. From Fig. 3, one can see that the algorithm convergences in 50 iterations. 

V. CONCLUSION

This work proposes a new approach for hyperspectral image classification when the number of labeled samples are limited. The work is based on convolutional transform learning. A semi-supervised architecture for deep convolutional transform learning is proposed. Comparison with state-of-the-art techniques on few shot learning has shown that our proposed method can improve over rest. We believe there is further scope for improvement. The current work only accounts for spectral information while ignoring spatial information. There can be two possibilities for incorporating spatial information. First, we can consider 2D convolutions on patches / superpixels. Second, we can keep the 1D convolutional filters as it is but incorporate the spatial information via graph regularization.

In terms of methodology, we believe that the framework of deep convolutional transform learning can improve by incorporating metric learning. Recent studies like [38] have shown how it can be incorporated into the deep dictionary learning framework; we believe that similar improvements can be achieved in the deep convolutional transform formulation as well. 
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 3 Fig. 3. Cost vs Iteration. Empirical Convergence Plot for 3 Layer Architecture.
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TABLE I COMPARISON

 I 

	Dataset Metric	ISSR	DPSN	DGCN	DFSL	Proposed
	Pavia	OA	80.09	85.02	88.91	86.24	89.79
		AA	80.26	85.69	89.48	87.41	90.08
		Kappa	.78	.82	.85	.84	0.86
	Indian	OA	70.36	75.32	77.38	75.85	81.02
	Pines	AA	70.95	75.97	77.91	76.30	84.32
		Kappa	.69	.74	.77	.75	0.80

WITH STATE-OF-THE-ART TECHNIQUES

https://paperswithcode.com/dataset/pavia-university