
HAL Id: hal-03723459
https://hal.science/hal-03723459v1

Submitted on 14 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Convolutional K-Means Clustering
Anurag Goel, Angshul Majumdar, Emilie Chouzenoux, Giovanni Chierchia

To cite this version:
Anurag Goel, Angshul Majumdar, Emilie Chouzenoux, Giovanni Chierchia. Deep Convolutional K-
Means Clustering. ICIP 2022 - 29th IEEE International Conference on Image Processing, Oct 2022,
Bordeaux, France. �hal-03723459�

https://hal.science/hal-03723459v1
https://hal.archives-ouvertes.fr

DEEP CONVOLUTIONAL K-MEANS CLUSTERING

Anurag Goel1, 2 Angshul Majumdar1 Emilie Chouzenoux3 Giovanni Chierchia4

1Indraprastha Institute of Information Technology, New Delhi, India
2Delhi Technological University, New Delhi, India

3CVN, Inria, Univ. Paris Saclay, Paris, France
4ESIEE, Paris, France

ABSTRACT

Conventional Convolutional Neural Network (CNN) based
clustering formulations are based on the encoder-decoder
based framework, where the clustering loss is incorporated
after the encoder network. The problem with this approach is
that it requires training an additional decoder network; this,
in turn, means learning additional weights which can lead
to over-fitting in data constrained scenarios. This work in-
troduces a Deep Convolutional Transform Learning (DCTL)
based clustering framework. The advantage of our proposed
formulation is that we do not require learning the additional
decoder network. Therefore our formulation is less prone
to over-fitting. Comparison with state-of-the-art deep learn-
ing based clustering solutions on benchmark image datasets
shows that our proposed method improves over the rest in
challenging scenarios where there are many clusters with
limited samples.

Index Terms— Convolutional Neural Network, K-means
Clustering, Convolutional Transform Learning.

1. INTRODUCTION

In a regular feedforward neural network, the data are pro-
jected by the network to form the representation. Usually,
such a neural network is used for supervised tasks and the
generated features are projected through another network to
the label / output space. While training, the network weights
are learnt by gradient descent / backpropagation. When such
a neural network does not have any output, backpropagation
leads to a trivial solution –network weights are zeroes and
representations are also zeroes. This solution is reached ir-
respective of the cost function; changing it from Euclidean
to Manhattan or KL divergence does not change the trivial
solution.
This is the reason conventional feedforward neural networks
without any output cannot be used for unsupervised repre-
sentation learning. The situation does not change when an
unsupervised clustering loss is incorporated after the unsuper-
vised representation layer. Irrespective of the clustering loss

(K-means, Sparse Subspace, Spectral, etc.) [1], the same triv-
ial solution (network weights are zeroes and representations
are zero) is reached. This is the reason clustering loss cannot
be embedded in a standard feedforward neural network.
To avoid this issue, prior studies on deep learning based
clustering (to be discussed in detail in section II) incorpo-
rated clustering losses into the autoencoder framework. Since
autoencoder is a self-supervised neural network, backpropa-
gation does not lead to the trivial solution and the framework
can be used for unsupervised feature extraction. Embedding
a clustering loss after the representation layer of an autoen-
coder leads to a meaningful non-trivial solution.
However, an autoencoder requires learning twice the number
of network weights compared to a standard feedforward neu-
ral network. This is because they need to learn an encoder and
decoder network; a regular feedforward neural network only
requires learning the encoder portion. The decoder portion
of the autoencoder is not useful for analysis; its sole purpose
is to prevent the trivial solution. The requirement of learning
twice the number of network weights may lead to over-fitting
in data constrained scenarios.
Conversely, one could have used the unsupervised framework
of the restricted Boltzmann machine (RBM) for embedding
clustering losses. These are undirected graphs and do not suf-
fer from the trivial solution. In a sense, RBM is more optimal
than autoencoders since the former needs to learn only half
the number of parameters compared to the latter. However,
the RBM cost function is not mathematically amenable; its
training via contrastive divergence does not have the same
flexibility as that of backpropagation. Strictly speaking, con-
trastive divergence can only optimize the RBM cost function
approximately. This perhaps had been the main deterrent
behind the use of RBM based clustering solutions.
The shortcomings of existing solutions are pertinent to the
Convolutional Neural Network (CNN) as well. Unless there
is an output, CNN ends up in the trivial solution. The only
way to prevent the trivial solution is to have deconvolution
layers, but then the formulation suffers from the possibility
of over-fitting.
In the recent past, we have developed the framework of con-

volutional transform learning (CTL) [2] and deep CTL [3].
This framework is able to learn convolutional filters in an
unsupervised fashion without leading to the trivial solution.
Furthermore, CTL guarantees the uniqueness of the learnt
filters. These advantages of CTL and its deep version makes
them ideal candidates for embedding clustering losses. Here
we have incorporated K-means clustering since it is the most
popular. However, it is possible to incorporate other cluster-
ing losses as well.
The contributions of this work can be summarized as -
• We propose a new formulation for deep convolutional trans-
form learning based K-means clustering that is less prone to
over-fitting compared to existing solutions since we do not
need to learn the deconvolution/decoder layers.
• Our proposed method shows superior clustering perfor-
mance in the challenging scenarios where data comprise of
high number of clusters and low volume of samples.
• The execution speed of our proposed method is of the
same order as that of K-means clustering and is much faster
than the deep learning based clustering approaches compared
against.
The rest of the paper is organised into several sections. A
brief review of various deep learning based clustering formu-
lations is discussed in the next section. Furthermore, as CTL
is a relatively new framework, we will discuss it in depth in
Section 2. This is necessary for understanding our formula-
tion discussed in Section 3. The experimental evaluation is
detailed in Section 4. The conclusion is discussed in Section
5.

2. BACKGROUND

2.1. Deep Learning Based Clustering

In [4], a deep clustering model based on stacked autoencoder
is proposed where the clustering layer is embedded after the
encoder network. This deep embedded clustering model is
trained in piecemeal fashion. Later, [5] proposed the jointly
learnt formulation of the stacked autoencoder embedded with
the sparse subspace clustering. The performance of jointly
learnt formulation [5] is better than the piecemeal technique
[4]. In [6-8], K-means clustering is embedded in the stacked
autoencoder and trained in joint end-to-end fashion. The dis-
tance metric used in K-means clustering is the Student’s t-
distribution kernel in [6] while the standard Euclidean dis-
tance in [7, 8]. In [9], the stacked autoencoder is replaced
with the convolutional autoencoder. In [10], the autoencoder
is embedded with the spectral clustering loss.
In [11], deep matrix factorization, which is deep dictionary
learning with ReLU activation, is proposed and argued that
different layers correspond to different concepts in the data.
A recent work [12] claims improvement over [8] by using
hierarchical K-means; the authors of [12] claim that such a
scheme improves robustness. Another work that proposed a

minor variation to the previous autoencoder based schemes is
[13]; instead of a simple autoencoder, they proposed using a
contractive autoencoder.
We have mentioned before that existing studies that proposed
embedding clustering losses in representation learning, were
based on autoencoders. The only study that overcomes this
issue (over-fitting in autoencoders) is [14]; they only need to
learn the encoder network. The said study manages to bypass
the trivial solution by imposing constraints on the learnt en-
coder network.
We have focused on deep learning based clustering papers
that are algorithmic in nature.

2.2. Deep Convolutional Transform Learning

In convolutional transform learning (CTL) [2] a set of filters
are learnt such that when operated on the data they produce
the corresponding representations. Formally this is expressed
as

tm ∗ x(k) = z(k)m ,∀m ∈ {1, ..,M}and∀k ∈ {1, ..,K} (1)

Here x(k) denotes the kth input sample, tm the mth convolu-
tional filter and zm

(k) the representation of kth sample after
applying the mth convolutional filter. There are a total of K
samples and M filters. The symbol ‘*’ denotes a convolu-
tional operation with zero padding.
During training, the filters and the representations are learnt
by solving the following optimization problem.

min
(tm)m,(z

(k)
m)m,k

K∑
k=1

M∑
m=1

(∥tm ∗ x(k) − z(k)m ∥22 + ψ(z(k)m))

+λ{∥T∥2F − logdet(T)}
(2)

Here λ is a positive constant. T is defined as T = [t1|...|tm].
The log determinant term prevents the trivial solution tm=0,
zm

(k)=0 and also promotes linear independence among the
learnt filters; the other penalty ∥T∥2F prevents degenerate so-
lutions where tm → ∞, z

(k)
m → ∞. The penalty on T is

borrowed from transform learning [15].
One can see how it is possible to learn convolutional filters
from training data in an unsupervised fashion. CNNs do not
have the said penalty on the learnt filters and hence can end
up at the trivial solution. Furthermore, without the penalty on
T, there is no guarantee that CNNs will learn unique filters.
In matrix-vector form, (2) can be expressed as follows

min
T,Z

∥T •X − Z∥2F + ψ(X) + λ{∥T∥2F − logdet(T)} (3)

where X = [x1|...|xK], Z = [z1
(k)|...|zM

(k)]1≤k≤K,

T•X =

t1 ∗ x(1) ... tM ∗ z(1)

...
t1 ∗ x(K) ... tM ∗ z(K)

 and ψ amounts to apply-

ing the penalty term column-wise on matrix X and summing.

In [3], a deeper extension of the unsupervised formulation
was proposed leading to deep convolutional transform learn-
ing (DCTL). As the name suggests, in the said formulation,
multiple convolutional filters were being applied on the sam-
ples one after the other to generate the representation. This is
expressed as follows,

min
T1,T2,T3,Z

∥T3 • (T2 • (T1 •X))− Z∥2F + ψ(Z)

+λ

3∑
i=1

{∥Ti∥2F − logdet(Ti)}
(4)

Here, Ti refers to the ith layer of convolutional filters. In each
layer, the Ti is formed by stacking the filters as columns of a
matrix. The formulation (4) is shown for three layers but can
be extended further.

3. PROPOSED FORMULATION

The schematic diagram of the proposed architecture is shown
in Fig. 1. We embed a K-means clustering loss into the DCTL
formulation. The image is convolved by a set of convolutional
filters (in T1). The resulting feature map is max-pooled fol-
lowed by a scaled exponential linear unit (SELU) activation
function. This constitutes the first stage of the convolutional
layer. The thus obtained feature map is convolved through the
second set of convolutional filters (T2). The resulting feature
map undergoes max-pooling before being input to K-means
clustering.
A piecemeal solution where the features were learnt sepa-
rately via CTL / DCTL and passed onto K-means clustering
separately was shown in [2, 3]. In this work, we propose to
train the clustering embedded DCTL as a single optimization
problem. Mathematically the expression is shown as:

min
T1,T2,Z,H

∥T2 • (T1 •X)− Z∥2F + ψ(Z)

+λ

3∑
i=1

{∥Ti∥2F − logdet(Ti)}

+µ∥Z − ZHT (HHT)−1H∥2F

(5)

Here, H is is the matrix of binary indicator variables hij; hij=1
if xj ∈ cluster i and 0 otherwise. Problem (5) is solved iter-
atively in two parts. In the first part, the H is assumed to be
constant and T1, T2, Z are updated -

P1 : min
T1,T2,Z

∥T2 • (T1 •X)− Z∥2F + ψ(Z)

+λ

3∑
i=1

{∥Ti∥2F − logdet(Ti)}

+µ∥Z − ZHT (HHT)−1H∥2F

(6)

In the second part, T1, T2, Z are assumed to be fixed and H is
updated –

P2 : min
H

∥Z − ZHT (HHT)−1H∥2F (7)

The first part (P1) is solved via ADAM optimizer and the sec-
ond part (P2) is solved via K-means clustering. Solutions to
P1 and P2 are carried out alternately till convergence. By
convergence, we mean a condition when the cluster centers
do not vary significantly in subsequent iterations.

4. EXPERIMENTAL RESULTS

We evaluate our algorithm on three well known image
databases. They are YaleB [20], Extended YaleB [21] and
AR Faces [22]. The YaleB consists of 5760 images of 10 dif-
ferent subjects; each under 576 different lighting conditions.
The Extended YaleB contains 16128 images of 28 subjects
under different poses and illumination conditions. The AR
Faces contains over 4000 images of 126 different subjects.
For all the datasets the dense shift invariant feature trans-
form (DSIFT) features were first extracted; then principal
component analysis (PCA) was used to further reduce the
dimensions to 300. This protocol was followed by several
prior clustering studies [16-19].
We compared our proposed formulation with several bench-
marks including Deep Learning friendly Clustering (DLC)
[7], Deep K-Means (DKM) [8], Deep Clustering with Con-
volutional Autoencoder (DCEC) [9] and AutoEncoded K-
Means (AEKM) [4]. We have also used the K-means algo-
rithm with standard Euclidean distance as distance metric for
comparison.
Normalized Mutual Information (NMI), Adjusted Rand In-
dex (ARI) and Accuracy are used as metrics [5, 14]. We
have used µ=1 and λ=.001 in all the experiments. For all
the experiments, 3 filters of sizes 9x9 have been used in both
the first and second layer of convolutions. The max-pooling
kernel size is 2x2. The results are shown in Table 1. For
YaleB and AR Faces our method yields the best results; for
Extended YaleB our results are a close second. The YaleB
and the AR Face datasets are more challenging compared to
Extended YaleB. This is because the first two have a larger
number of clusters (an order of magnitude higher than Ex-
tended YaleB) and fewer images (an order of magnitude lower
than Extended YaleB). On these two challenging datasets, we
do better than the existing benchmarks. In the relatively sim-
pler case (Extended YaleB) we are doing slightly worse than
DCEC in terms of ARI and NMI but is better in terms of
accuracy. It is interesting to note that, existing deep learning
algorithms are doing worse than the simple K-means for the
more challenging datasets.
The experiments were run on a 64 bit Intel i5 clocked at 1.6
GHz with 16GB of RAM. The operating system is Ubuntu.
All the algorithms were run on Python. The runtime (in
seconds) for various techniques are shown in Table 1 under
Time column. Unsurprisingly K-means is the fastest, our pro-
posed method is in the same order as that of K-means and is
much faster than the rest of the deep learning based clustering
techniques.

Fig. 1. Schematic diagram of the proposed approach

Table 1. Clustering Results
YaleB Extended YaleB ARFaces

Models Accuracy NMI ARI Time Accuracy NMI ARI Time Accuracy NMI ARI Time
K-Means 0.618 0.669 0.448 24 0.098 0.131 0.014 1769 0.146 0.457 0.047 377

DKM 0.338 0.430 0.158 397 0.087 0.125 0.010 7789 0.133 0.449 0.042 1414
DLC 0.386 0.477 0.186 428 0.098 0.151 0.016 5436 0.138 0.455 0.045 1418

AEKM 0.376 0.462 0.169 124 0.103 0.103 0.018 2536 0.137 0.456 0.045 522
DCEC 0.539 0.624 0.377 2112 0.295 0.453 0.173 24367 0.074 0.26 0.02 7008

Proposed 0.649 0.708 0.510 51 0.349 0.448 0.132 2417 0.159 0.463 0.051 757

Table 2. Results From Ablation Studies
YaleB Extended YaleB ARFaces

Metric Prop1L Piece1L Prop2L Piece2L Prop1L Piece1L Prop2L Piece2L Prop1L Piece1L Prop2L Piece2L
Accuracy 0.620 0.588 0.649 0.636 0.146 0.135 0.349 0.320 0.142 0.122 0.159 0.151
NMI 0.686 0.648 0.708 0.691 0.204 0.193 0.448 0.432 0.453 0.434 0.463 0.456
ARI 0.447 0.412 0.510 0.462 0.033 0.031 0.132 0.123 0.044 0.040 0.051 0.048

4.1. Ablation Studies

In this section, we show how the results vary with the num-
ber of layers. We also show how the results vary when the
problem is solved jointly (as proposed) versus the piecemeal
solution; by piecemeal we mean features are generated from
(deep) convolutional transform learning and the features are
separately fed into K-means clustering. The results are shown
in Table 2. The joint solution, be it one layer or two-layer,
yields better results than the piecemeal solution. This is ex-
pected; even in the past, jointly formulated solutions yielded
better results than piecemeal ones. For both the piecemeal
and joint solutions, going deeper helps, that is, the results ob-
tained from two layers are always better than the ones from
one layer.
Finally we show the empirical convergence plot in Fig. 2. We
find that the proposed algorithm converges within 50 itera-
tions. The convergence plot for other depths show a similar
trend.

5. CONCLUSION

We have proposed a convolutional representation learning
based clustering formulation that does not require learning
additional decoder/deconvolutional filters as is required by
all existing approaches. This results in the requirement of
learning fewer parameters, which in turn is less prone to
over-fitting and hence can cluster from fewer data. The im-

Fig. 2. Empirical Convergence Plot

provement in results can be seen in the experiments. Our
method achieves higher clustering scores with fewer samples
and a larger number of clusters compared to the state-of-the-
art deep learning techniques compared against.
In the future, we would like to embed popular clustering tech-
niques like subspace clustering [23], fuzzy C-means cluster-
ing [24] and hierarchical clustering [25] into the framework.

6. ACKNOWLEDGEMENT

E.C. and G.C. acknowledge support from the Agence Na-
tionale de la Recherche of France under MAJIC (ANR-17-
CE40-0004-01) project.

7. REFERENCES

[1] C. Bauckhage, “K-means clustering is matrix factoriza-
tion,” arXiv preprint arXiv:1512.07548, 2015.

[2] J. Maggu, E. Chouzenoux, G. Chierchia and A. Majum-
dar, “Convolutional Transform Learning”, ICONIP, pp.
162-174, 2018.

[3] J. Maggu, E. Chouzenoux, G. Chierchia and A. Ma-
jumdar, “Deep Convolutional Transform Learning”,
ICONIP, pp. 300-307, 2020.

[4] F. Tian, B. Gao, Q. Cui, E. Chen and T. Y. Liu, ”Learn-
ing deep representations for graph clustering,” 28th
AAAI conference on Artificial Intelligence, pp. 1293-
1299, 2014.

[5] X. Peng, S. Xiao, J. Feng, W. Y. Yau and Z. Yi, ”Deep
Sub-space Clustering with Sparsity Prior,” International
Joint Conference on Artificial Intelligence, pp. 1925-
1931, 2016.

[6] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep
embedding for clustering analysis,” International Con-
ference on Machine Learning, pp. 478-487, 2016.

[7] B. Yang, X. Fu, N. D. Sidiropoulos and M. Hong,
“Towards k-means-friendly spaces: Simultaneous deep
learning and clustering,” International Conference on
Machine Learning, pp. 3861-3870, 2017.

[8] M. M. Fard, T. Thonet and E. Gaussier, “Deep k-means:
Jointly clustering with k-means and learning represen-
tations,” Pattern Recognition Letters, vol. 138, pp.185-
192, 2020.

[9] X. Guo, X. Liu, E. Zhu and J. Yin. ”Deep clustering with
convolutional autoencoders.” International Conference
on Neural Information Processing, pp. 373-382, 2017.

[10] X. Yang, C. Deng, F. Zheng, J. Yan and W. Liu,
”Deep Spectral Clustering Using Dual Autoencoder
Network,” IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4061-4070, 2019.

[11] G. Trigeorgis, K. Bousmalis, S. Zafeiriou and B. W.
Schuller, ”A Deep Matrix Factorization Method for
Learning Attribute Representations,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39,
no. 3, pp. 417-429, 2017.

[12] S. Huang, Z. Kang, Z. Xu and Q. Liu, “Robust Deep K-
Means: An Effective and Simple Method for Data Clus-
tering,” Pattern Recognition, p.107996, 2021.

[13] B. Diallo, J. Hu, T. Li, G. A. Khan, X. Liang and Y.
Zhao, “Deep embedding clustering based on contractive
autoencod-er,” Neurocomputing, 433, pp. 96-107, 2021.

[14] X. Peng, J. Feng, J. T. Zhou, Y. Lei and S. Yan, ”Deep
Subspace Clustering,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 12, pp.
5509-5521, Dec. 2020.

[15] S. Ravishankar, B. Wen and Y. Bresler, ”Online Spar-
sifying Transform Learning—Part I: Algorithms,” in
IEEE Journal of Selected Topics in Signal Processing,
vol. 9, no. 4, pp. 625-636, June 2015.

[16] Y. Chen, G. Li and Y. Gu, ”Active Orthogonal Matching
Pur-suit for Sparse Subspace Clustering,” IEEE Signal
Processing Letters, vol. 25, no. 2, pp. 164-168, 2018.

[17] X. Peng, S. Xiao, J. Feng, W. Y. Yau and Z. Yi, “Deep
Subspace Clustering with Sparsity Prior,” IJCAI, pp.
1925-1931, 2016.

[18] J. Maggu, A. Majumdar and E. Chouzenoux, “Trans-
formed Subspace Clustering”, IEEE Transactions on
Knowledge and Data Engineering, vol. 33, no. 4, pp.
1796-1801, 1 2021.

[19] J. Maggu, A. Majumdar, E. Chouzenoux and G. Chier-
chia, “Deeply Transformed Subspace Clustering”, Sig-
nal Processing, vol. 174, 107628, 2020.

[20] http://vision.ucsd.edu/˜leekc/
ExtYaleDatabase/Yale%20Face%
20Database.htm

[21] http://vision.ucsd.edu/˜leekc/
ExtYaleDatabase/ExtYaleB.html

[22] https://www2.ece.ohio\protect\
discretionary{\char\hyphenchar\
font}{}{}state.edu/˜aleix/ARdatabase.
html

[23] R. Vidal, ”Subspace Clustering,” in IEEE Signal Pro-
cessing Magazine, vol. 28, no. 2, pp. 52-68, March
2011.

[24] J. C. Bezdek, R. Ehrlich and W. Full, “FCM: The
fuzzy c-means clustering algorithm,” Computers & geo-
sciences, vol. 10, no. 2-3, pp.191-203, 1984.

[25] F. Murtagh and P. Contreras, “Algorithms for hierarchi-
cal clustering: an overview,” Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, vol. 2,
no. 1, pp.86-97, 2012.

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/Yale%20Face%20Database.htm
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/Yale%20Face%20Database.htm
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/Yale%20Face%20Database.htm
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
https://www2.ece.ohio\protect \discretionary {\char \hyphenchar \font }{}{}state.edu/~aleix/ARdatabase.html
https://www2.ece.ohio\protect \discretionary {\char \hyphenchar \font }{}{}state.edu/~aleix/ARdatabase.html
https://www2.ece.ohio\protect \discretionary {\char \hyphenchar \font }{}{}state.edu/~aleix/ARdatabase.html
https://www2.ece.ohio\protect \discretionary {\char \hyphenchar \font }{}{}state.edu/~aleix/ARdatabase.html

	 Introduction
	 Background
	 Deep Learning Based Clustering
	 Deep Convolutional Transform Learning

	 Proposed Formulation
	 Experimental Results
	 Ablation Studies

	 Conclusion
	 Acknowledgement
	 References

