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Résumé

Nous étudions les propriétés de généralisation d’un
algorithme d’auto-apprentissage avec des demi-plans.
L’approche apprend une liste de demi-plans de
manière itérative à partir des données d’apprentis-
sage étiquetées et non étiquetées, dans laquelle chaque
itération se compose de deux étapes : l’exploration et
l’élagage. Dans la phase d’exploration, le demi-plan est
trouvé séquentiellement en maximisant la marge non
signée parmi les exemples non étiquetés, puis en at-
tribuant des pseudo-étiquettes à ceux qui ont une dis-
tance supérieure au seuil actuel. Les exemples pseudo-
étiquetés sont ensuite ajoutés à l’ensemble d’appren-
tissage et un nouveau classifieur est appris. Ce proces-
sus est répété jusqu’à ce qu’il ne reste plus d’exemples
non étiquetés pour le pseudo-étiquetage. Dans la phase
d’élagage, les échantillons pseudo-étiquetés qui ont une
distance au dernier demi-plan supérieure à la marge
non signée associée sont ensuite rejetés. On montre
que l’erreur de classification de la séquence de classi-
ficateurs résultante est bornée et que l’approche semi-
supervisée résultante ne dégrade pas les performances
par rapport au classificateur appris en utilisant unique-
ment l’ensemble d’apprentissage étiqueté initial. Des
expérimentations menées sur une variété de bench-
marks démontrent l’efficacité de l’approche proposée
par rapport aux méthodes de l’état de l’art.

Mots-clef : Apprentissage semi-supervisé, bruit de
Massart.

1 Introduction

In recent years, several attempts have been made to
establish a theoretical foundation for semi-supervised
learning. These studies are mainly interested in the ge-
neralization ability of semi-supervised learning tech-
niques [Rig07, MAH18] and the utility of unlabeled
data in the training process [CC95, SNZ09, LZ11]. The
majority of these works are based on the concept called
compatibility in [BB06], and try to exploit the connec-
tion between the marginal data distribution and the
target function to be learned. The common conclusion
of these studies is that unlabeled data will only be use-
ful for training if such a relationship exists.

The three key types of relations considered in the li-
terature are cluster assumption, manifold assumption,
and low-density separation [Zhu05, CSZ06]. The clus-
ter assumption states that data contains homogeneous
labeled clusters, and unlabeled training examples allow
to recognize these clusters. In this case, the marginal
distribution is viewed as a mixture of class conditional
distributions, and semi-supervised learning has been
shown to be superior to supervised learning in terms
of achieving smaller finite-sample error bounds in some
general cases, and in some others, it provides a fas-
ter rate of error convergence [CC95, Rig07, MAH18,
SNZ09]. In this line, [Ba08] showed that the access
to the marginal distribution over unlabeled training
data would not provide sample size guarantees bet-
ter than those obtained by supervised learning un-
less one assumes very strong assumptions about the
conditional distribution over the class labels. Mani-
fold assumption stipulates that the target function is
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in a low-dimensional manifold. [Niy13] establishes a
context through which such algorithms can be analy-
zed and potentially justified ; the main result of this
study is that unlabeled data may help the learning
task in certain cases by defining the manifold. Finally,
low-density separation states that the decision boun-
dary lies in low-density regions. A principal way, in
this case, is to employ a margin maximization stra-
tegy which results in pushing away the decision boun-
dary from the unlabeled data [CSZ06, ch. 6]. Semi-
supervised approaches based on this paradigm mainly
assign pseudo-labels to high-confident unlabeled trai-
ning examples with respect to the predictions and in-
clude these pseudo-labeled samples in the learning pro-
cess. However, [CK11] investigated empirically the pro-
blem of label noise bias introduced during the pseudo
labeling process in this case and showed that the use of
unlabeled examples could have a minimal gain or even
degrade performance, depending on the generalization
ability of the initial classifier trained over the labeled
training data.

In this paper, we study the generalization ability
of a self-training algorithm with halfspaces that ope-
rates in two steps. In the first step, halfspaces are
found iteratively over the set of labeled and unlabeled
training data by maximizing the unsigned-margin of
unlabeled examples and then assigning pseudo-labels
to those with a distance greater than a found thre-
shold. The pseudo-labeled unlabeled examples are then
added to the training set, and a new classifier is
learned. This process is repeated until there are no
more unlabeled examples to pseudo-label. In the se-
cond step, pseudo-labeled examples with an unsigned-
margin greater than the last found threshold are remo-
ved from the training set.

Our contribution is twofold : (a) we present a first
generalization bound for self-training with halfspaces
in the case where class labels of examples are supposed
to be corrupted by a Massart noise model ; (b) We show
that the use of unlabeled data in the proposed self-
training algorithm does not degrade the performance
of the first halfspace trained over the labeled training
data.

In the remainder of the paper, Section 2 presents
the definitions and the learning objective. In Section 3,
we present in detail the adaptation of the self-training
algorithm for halfspaces. Section 4 presents a bound
over the misclassification error of the classifier out-
putted by the proposed algorithm and demonstrates
that this misclassification error is upper-bounded by
the misclassification error of the fully supervised half-
space. In Section 5, we present experimental results,

and we conclude this work in Section 6.

2 Framework and Notations

We consider binary classification problems where the
input space X is a subset of Rd, and the output space
is Y = {−1,+1}. We study learning algorithms that
operate in hypothesis space Hd = {hw : X → Y} of
centered halfspaces, where each hw ∈ Hd is a Boo-
lean function of the form hw(x) = sign(〈w,x〉), with
w ∈ Rd such that ‖w‖2 ≤ 1.

Our analysis succeeds the recent theoretical advances
in robust supervised learning of polynomial algorithms
for training halfspaces under large margin assumption
[DGT19, MGDS20, DK20], where the label distribu-
tion has been corrupted with the Massart noise model
[MN06]. These studies derive a PAC bound for gene-
ralization error for supervised classifiers that depends
on the corruption rate of the labeled training set and
shed light on a new perspective for analyzing the self-
training algorithm. Similarly, in our analysis, we sup-
pose that self-training can be seen as learning with an
imperfect expert. Whereat at each iteration, labels of
the pseudo-labeled set have been corrupted with a Mas-
sart noise [MN06] oracle defined as :

Definition 2.1 ([MN06] noise oracle). Let C = {f :
X → Y} be a class of Boolean functions over X ⊆ Rd,
with f an unknown target function in C, and 0 ≤ η <
1/2. Let η be an unknown parameter function such that
Ex∼Dx [η(x)] ≤ η, with Dx any marginal distribution
over X . The corruption oracle O(f,Dx, η) works as fol-
low : each time O(f,Dx, η) is invoked, it returns a pair
(x, y) where x is generated i.i.d. from Dx ; y = −f(x)
with probability η(x) and y = f(x) with probability
1− η(x).

Let D denote the joint distribution over X ×Y gene-
rated by the above oracle with an unknown parameter
function η such that Ex∼Dx [η(x)] ≤ η. We suppose
that the training set is composed of ` labeled samples
S` = (xi, yi)1≤i≤` ∈ (X×Y)` and u unlabeled samples
Xu = (xi)`+1≤i≤`+u ∈ X u, where ` << u. Further-
more, we suppose that each pair (x, y) ∈ X ×Y is i.i.d.
with respect to the probability distribution D, we de-
note by Dx the marginal of D on x, and Dy(x) the
distribution of y conditional on x. Finally, for any in-
teger d, let [d] = {0, ..., d}.

2.1 Learning objective

Given S` and Xu, our goal is to find a lear-
ning algorithm that outputs a hypothesis hw ∈
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Hd such that with high probability, the misclassi-
fication error P(x,y)∼D[hw(x) 6= y] is minimized and
to show with high probability that the performance
of such algorithm is better or equal to any hypo-
thesis in Hd obtained from S` only. Here we de-
note by ηw(x) = Py∼Dy(x)[hw(x) 6= y] the conditio-
nal misclassification error of a hypothesis hw ∈ Hd
with respect to D and w∗ the normal vector of
hw∗ ∈ Hd that achieves the optimal misclassification
error ; ηηη∗ = min

w,‖w‖2≤1
P(x,y)∼D[hw(x) 6= y].

By considering the indicator function 1π defined as
1π = 1 if the predicate π is true and 0 otherwise ;
we prove in the following lemma that the probability
of misclassification of halfspaces over examples with
an unsigned-margin greater than a threshold γ > 0 is
bounded by the same quantity 1 > ηηη > 0 that upper-
bounds the misclassification error of these examples.

Lemma 2.1. For all hw ∈ Hd , if there exist ηηη ∈]0, 1[
and γ > 0 such that Px∼Dx [|〈w,x〉| ≥ γ] > 0
and that Ex∼Dx [(ηw(x)− ηηη)1|〈w,x〉|≥γ ] ≤ 0, then

P(x,y)∼D[hw(x) 6= y
∣∣|〈w,x〉| ≥ γ] ≤ ηηη.

Démonstration. For all hypotheses hw in Hd, we know
that the error achieved by hw in the region of margin
γ from w satisfies Ex∼Dx [(ηw(x)− ηηη)1|〈w,x〉|≥γ ] ≤ 0 ;
by rewriting the expectation, we obtain the following
Ex∼Dx [ηw(x)1|〈w,x〉|≥γ ]− ηηηPx∼Dx [|〈w,x〉| ≥ γ] ≤ 0.

We have then
Ex∼Dx [ηw(x)1|〈w,x〉|≥γ ]

Px∼Dx [|〈w,x〉|≥γ]
≤ ηηη and the result

follows from the equality :

P(x,y)∼D[hw(x) 6= y
∣∣|〈w,x〉| ≥ γ] =

Ex∼Dx [ηw(x)1|〈w,x〉|≥γ ]

Px∼Dx [|〈w,x〉|≥γ]
.

Suppose that there exists a pair (w̃, γ̃) minimizing :

(w̃, γ̃) ∈ argmin
w∈Rd,γ≥0

Ex∼Dx [ηw(x)1|〈w,x〉|≥γ ]

Px∼Dx [|〈w,x〉| ≥ γ]
. (1)

By defining η̃ as :

η̃ = inf
w∈Rd,γ≥0

Ex∼Dx [ηw(x)1|〈w,x〉|≥γ ]

Px∼Dx [|〈w,x〉| ≥ γ]
.

The following inequality holds :

η̃ ≤ inf
w∈Rd

Ex∼Dx [ηw(x)1|〈w,x〉|≥0]

Px∼Dx [|〈w,x〉| ≥ 0]
= ηηη∗.

This inequality paves the way for the following claim,
which is central to the self-training strategy described
in the next section.

Claim 2.2. Suppose that there exists a pair
(w̃, γ̃) satisfying the minimization problem
(1) with Px∼Dx [|〈w̃,x〉| ≥ γ̃] > 0 , then
P(x,y)∼D[hw̃(x) 6= y

∣∣|〈w̃,x〉| ≥ γ̃] ≤ ηηη∗.

Démonstration. The requirements of Lemma 2.1 are
satisfied with (w, γ) = (w̃, γ̃) and η = η̃. This claim is
then proved using the conclusion of Lemma 2.1 toge-
ther with the fact that η̃ ≤ η∗.

The claim above demonstrates that for examples ge-
nerated by the probability distribution D, there exists
a region in X on either side of a margin γ̃ to the deci-
sion boundary defined by w̃ solution of (Eq. 1) ; where
the probability of misclassification error of the corres-
ponding halfspace in this region is upper-bounded by
the optimal misclassification error η∗. This result is
consistent with semi-supervised learning studies that
consider the margin as an indicator of confidence and
search the decision boundary on low-density regions
[Joa99, GB05, AUL09].

2.2 Problem resolution

We use a block coordinate minimization method
for solving the optimization problem (1). This stra-
tegy consists in first finding a halfspace with para-
meters w̃ that minimizes Eq. (1) with a threshold
γ = 0, and then by fixing w̃, finds the threshold γ̃
for which Eq. (1) is minimum. We resolve this problem
using the following claim, which links the misclassifi-
cation error ηw and the perceptron loss `p(y, hw(x)) :
Y × Y → R+; `p(y, hw(x)) = −y〈w,x〉1y〈w,x〉≤0.

Claim 2.3. For a given weight vector w, we have :

Ex∼Dx [|〈w,x〉| × ηw(x)] = E(x,y)∼D[`p(y, hw(x))] (2)

Démonstration. For a vector w fixed, we have that :
E(x,y)∼D[`p(y, hw(x))] = E(x,y)∼D[−y〈w,x〉1y〈w,x〉≤0].
As we are considering misclassification errors,
i.e., −y〈w,x〉1y〈w,x〉≤0 = 1y〈w,x〉≤0|〈w,x〉|,
it comes that E(x,y)∼D[`p(y, hw(x))] =
E(x,y)∼D[|〈w,x〉|Py∼Dy(x)

[−y〈w,x〉 > 0]]. The result
then follows from the definition of the misclassification
error, i.e., ηw(x) = Py∼Dy(x)

[−y〈w,x〉 > 0].

This claim shows that the minimization of the ge-
neralization error with `p is equivalent to minimi-
zing Ex∼Dx [|〈w,x〉|ηw(x)]. Hence, the minimization of
Ex∼Dx [`p(y, hw(x))] cannot result in bounded misclas-
sification error, as the distribution of margins |〈w,x〉|
might vary widely between samples in X . In the fol-
lowing lemma, we show that it is possible to achieve
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bounded misclassification error under margin condition
and L2-norm constraint.

Lemma 2.4. For a fixed distribution D, let
R = max

x∼Dx

‖x‖2 and γ > 0, let w̃ and w̄ be defined

as follows :

w̃ = argmin
w,||w||2≤1

Ex∼Dx [|〈w,x〉|ηw(x)
∣∣|〈w,x〉| ≥ γ]

w = argmin
w,||w||2≤1

Ex∼Dx [ηw(x)
∣∣|〈w,x〉| ≥ γ].

We then have :
γ

R
Ex∼Dx [ηw̃(x)

∣∣|〈w̃,x〉| ≥ γ] ≤

Ex∼Dx [ηw(x)
∣∣|〈w,x〉| ≥ γ]

≤ Ex∼Dx [ηw̃(x)
∣∣|〈w̃,x〉| ≥ γ].

Démonstration. From the condition |〈w̃,x〉| ≥ γ in the
expectation, we have :

γEx∼Dx [ηw̃(x)
∣∣|〈w̃,x〉| ≥ γ] ≤
Ex∼Dx [|〈w̃,x〉|ηw̃(x)

∣∣|〈w̃,x〉| ≥ γ],

applying the definition of w̃ to the right-hand side of
the above inequality gives :

γEx∼Dx [ηw̃(x)
∣∣|〈w̃,x〉| ≥ γ] ≤
Ex∼Dx [|〈w,x〉|ηw(x)

∣∣|〈w,x〉| ≥ γ],

using the Cauchy–Schwarz inequality and the defini-
tion of R, we get :

γEx∼Dx [ηw̃(x)
∣∣|〈w̃,x〉| ≥ γ] ≤

R Ex∼Dx [ηw(x)
∣∣|〈w,x〉| ≥ γ],

then from the definition of w, we know :

R Ex∼Dx [ηw(x)
∣∣|〈w,x〉| ≥ γ] ≤

R Ex∼Dx [ηw̃(x)
∣∣|〈w̃,x〉| ≥ γ],

dividing the two inequalities above by R gives the re-
sult.

Lemma 2.4 guarantees that the approximation of the
perceptron loss to the misclassification error is more ac-
curate for examples that have a comparable distance
to the halfspace. This result paves the way to our im-
plementation of the self-learning algorithm.

3 Self-Training with Halfspaces

Given S` and Xu drawn i.i.d. from a dis-
tribution D corrupted with O(f,Dx, η

(0)). Algo-
rithm 1 learns iteratively a list of halfspaces Lm =

Algorithm 1. Self-Training with Halfspaces

Input : S` = (xi, yi)1≤i≤`, Xu = (xi)`+1≤i≤n,
p : number of threshold tests set to 5.

Set k ← 0, S(k) = S`, U(k) = Xu, w = |S(k)|
p ,

L = [].
while |S(k)| ≥ ` do

Let w a random vector in Rd such that
‖w‖2 ≤ 1, and let the cost function defined
R̂S(k)(w) = 1

|S(k)|
∑

(x,y)∈S(k) [`p(y, hw(x))]

Run projected SGD on R̂S(k)(w) to obtain
w(k) such that ‖w(k)‖2 ≤ 1.
Order S(k) by decreasing order of margin from
w(k).
Set a window of indices I = [w, 2w, ..., pw],
find t = argmin

i∈I

1

|S(k)
≥i |

∑
(x,y)∈S(k)

≥i
1h

w(k) (x)6=y.

Set γ(k) to the margin of the sample at posi-
tion I[t].
Let U(k) = {x ∈ Xu

∣∣|〈w(k),x〉| ≥ γ(k)}.
if |U(k)| > 0 then

S
(k)
u = {(x, y)

∣∣x ∈ U(k) ∧ y =

sign(〈w(k),x〉)}
S(k+1) ← S(k) ∪ S

(k)
u

Xu ← Xu \U(k)

else
L = L ∪ [(w(k), γ(k))]
S(k+1) = {(x, y) ∈ S(k)

∣∣|〈w(k),x〉| < γ(k)}
end if
Set k ← k + 1, w = |S(k)|

p
end while
Output : Lm = [(w(1), γ(1)), ..., (w(m), γ(m))]

[(w(1), γ(1)), ..., (w(m), γ(m))] with each round consis-
ting of exploration and pruning steps.

The goal of the exploration phase is to discover
the halfspace with the highest margin on the set of
unlabeled samples that are not still pseudo-labeled.
This is done by first, learning a halfspace that mi-
nimizes the empirical surrogate loss of RD(w) =
E(x,y)∼D[`p(y, hw(x))] over a set of labeled and already

pseudo-labeled examples S(k) from S` and Xu :

min
w
R̂S(k)(w) =

1

|S(k)|
∑

(x,y)∈S(k)

`p(y, hw(x)) (3)

s.t. ||w||2 ≤ 1

At round k = 0, we have S(0) = S`. Once the half-
space with parameters w(k) is found, a threshold γ(k),
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defined as the highest unsigned-margin in S(k), is set
such that the empirical loss over the set of examples
in S(k) with unsigned-margin above γ(k), is the lo-

west. In the pseudo-code of the algorithm, S
(k)
≥i refers

to the subset of examples in S(k) having an unsigned
margin greater or equal to ω × i. Unlabeled examples
x ∈ Xu that are not pseudo-labeled are assigned labels,
i.e., y = sign(〈w(k),x〉) iff |〈w(k),x〉| ≥ γ(k). These
pseudo-labeled examples are added to S(k) and remo-
ved from Xu, and a new halfspace minimizing Eq. (3)
is found. Examples in S(k) are supposed to be mis-
classified by the oracle O(f,Dx, η

(k)) following Defini-
tion 2.1 with the parameter function η(k) that refers to
the conditional probability of corruption in S(k) defined
as η(k)(x) = P

y∼S(k)
y (x)

[f(x) 6= y] ≤ η(k).

Once the halfspace with parameters w(k) and thre-
shold γ(k) are found such that there are no more unla-
beled samples having an unsigned-margin larger than
γ(k), the pair (w(k), γ(k)) is added to the list Lm, and
samples from S(k) having an unsigned-margin above
γ(k) are removed (pruning phase). Remind that γ(k) is
the largest threshold above which the misclassification
error over S(k) increases.

To classify an unknown example x, the prediction of
the first halfspace with normal vector w(i) in the list
Lm, such that the unsigned-margin |〈w(i),x〉| of x is
higher or equal to the corresponding threshold γ(i), is
returned. By abuse of notation, we note that the pre-
diction for x is Lm(x) = hw(i)(x). From Claim 2.2, we
know that the misclassification error of this halfspace
on the region where x lies is bounded by the optimal
misclassification error η∗. If no such halfspace exists,
the observation is classified using the prediction of the
first classifier hw(1) that was trained over all the labe-
led and the pseudo-labeled samples without pruning ;
i.e., Lm(x) = hw(1)(x).

4 Corruption noise modeling
and Generalization guarantees

In the following, we relate the process of pseudo-
labeling to the corruption noise model O(f,Dx, η

(k))
for all pseudo-labeling iterations k in Algorithm 1, then
we present a bound over the misclassification error
of the classifier Lm outputted by the algorithm and
demonstrate that this misclassification error is upper-
bounded by the misclassification error of the fully su-
pervised halfspace.

Claim 4.1. Let S(0) = S` be a labeled set drawn i.i.d.
from D = O(f,Dx, η

(0)) and U(0) = Xu an initial

unlabeled set drawn i.i.d. from Dx. For all iterations
k ∈ [K] of Algorithm 1 ; the active labeled set S(k) is
drawn i.i.d. from D = O(f,Dx, η

(k)) where the corrup-
tion noise distribution η(k) is bounded by :

∀k ∈ [K], Ex∼Dx [η(k)(x)
∣∣x ∈ S(k)] ≤ max

j∈[K]
η(j)

Proof. We know that ∀k ∈ [K],S(k) ⊆ S(0) ∪⋃k−1
i=0 S

(i)
u , where S

(i)
u is the set of pseudo-labeled pairs

of examples x from U(i), S
(i)
u = ∅ for the iterations

i ∈ [K] when no examples are pseudo-labeled. Then
the noise distribution η(k) satisfies for all k ∈ [K] :

Ex∼Dx [η(k)(x)1x∈S(k) ] = Ex∼Dx [η(k)(x)1x∈S(k)∩S(0) ]+

k−1∑
i=0

Ex∼Dx [η(k)(x)1
x∈S(k)∩S(i)

u
].

If we condition on x ∈ S(k), we obtain for all k ∈ [K] :

Ex∼Dx [η(k)(x)
∣∣x ∈ S(k)] =

P[x ∈ S(0)
∣∣x ∈ S(k)]Ex∼Dx [η(0)(x)

∣∣x ∈ S(k) ∩ S(0)]+

k−1∑
i=0

P[x ∈ S(i)
u

∣∣x ∈ S(k)]Ex∼Dx [ηw(i)(x)
∣∣x ∈ S(k) ∩ S(i)

u ],

this equation shows the initial corruption of the la-
beled set S(0) = S` in addition to the noise injected
by each classifier hw(k) at each round k when pseudo-
labeling occurs. Now that we have modeled the pro-
cess of pseudo-labeling, the result is straightforward
considering the fact that Ex∼Dx [η(0)(x)] ≤ η(0);∀k ∈
[K],Ex∼Dx [ηw(k)(x)] ≤ η(k); and,

Px∼Dx [x ∈ S(0)
∣∣x ∈ S(k)]+

k−1∑
i=0

Px∼Dx [x ∈ S(i)
u

∣∣x ∈ S(k)]

= Px∼Dx [x ∈ S(0) ∪
k−1⋃
i=0

S(k)
u

∣∣x ∈ S(k)] ≤ 1. �

We can now state our main contribution that bounds
the generalization error of the classifier Lm outputted
by Algorithm 1 with respect to the optimal misclassi-
fication error η∗ in the case where projected SGD is
used for the minimization of Eq. (3). Note that in this
case the time complexity of the algorithm is polyno-
mial with respect to the dimension d, the upper bound
on the bit complexity of examples, the total number of
iterations, and the upper bound on SGD steps.
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Theorem 4.2. Let S` be a set of i.i.d. samples of
size ` drawn from a distribution D = O(f,Dx, η

(0)) on
Rd × {−1,+1}, where f is an unknown concept func-
tion and η(0) an unknown parameter function bounded
by 1/2, let Xu be an unlabeled set of size u drawn i.i.d.
from Dx. Algorithm 1 terminates after K iterations,
and outputs a non-proper classifier Lm of m halfspaces
such that with high probability :

P(x,y)∼D[Lm(x) 6= y] ≤ η∗ + max
k∈I

ε(k) + πK+1,

where I is the set of rounds k ∈ [K] at which the half-
spaces were added to Lm, ε(k) is the projected SGD
convergence error rate at round k, and πK+1 a negli-
gible not-accounted mass of Dx.

The proof of Theorem 4.2 is based on the following
property of projected SGD.

Lemma 4.3 (From [Duc16]). Let R̂ be a convex
function of any type. Consider the projected SGD
iteration, which starts with w(0) and computes for
each step. w(t+ 1

2 ) = w(t) − α(t)g(t); w(t+1) =
argmin

w:||w||2≤1
||w − w(t+ 1

2 )||2. Where g(t) is a stochastic

subgradient such that Ex∼Dx [g(w,x)] ∈ ∂R̂(w) =
{g : R̂(w′) ≥ R̂(w) + 〈E[g],w′ − w〉 for all w′} and
Ex∼Dx [||g(w,x)||22] ≤M2. For any ε, δ > 0 ; if the pro-
jected SGD is executed T = Ω(log(1/δ)/ε2) times with

a step size α(t) = 1
M
√
t
, then for w̄ = 1

T

∑T
t=1 w(t), we

have with probability at least 1−δ that Ex∼Dx [R̂(w̄)] ≤
min

w,‖w‖2≤1
Ex∼Dx [R̂(w)] + ε.

Proof of Theorem 4.2. We consider the steps of Al-
gorithm 1. At iteration k of the while loop, we consider
the active training set S(k) consisting of examples not
handled in previous iterations.

We first note that the algorithm terminates after at
most K iterations. From the fact that at every iteration
k, we discard a non-empty set from S(k) when we do not
pseudo-label or from U(k) when we pseudo-label, and
that the empirical distributions S` and Xu are finite
sets. By the guarantees of Lemma 4.3, running SGD
(step 4) on R̂S(k) for T = Ω(log(1/δ)/ε2) steps, we
obtain a weight vector w(k) such that with probability
at least 1− δ :

Ex∼Dx [R̂S(k)(w(k))] ≤
min

w,‖w‖2≤1
Ex∼Dx [R̂S(k)(w)] + ε(k),

from Claim 2.3, we derive with high probability :

Ex∼Dx [|〈w(k),x〉|ηw(k)(x)] ≤
min

w,‖w‖2≤1
Ex∼Dx [|〈w,x〉|ηw(x)] + ε(k).

Then the margin γ(k) is estimated minimizing Eq. (1)
given w(k), following Lemma 2.4 with R(k) =
max
x∼Dx

‖x‖2 the radius of the truncated support of the

marginal distribution Dx at iteration k, we can as-

sume that γ(k)

R(k) ≈ 1, ∀k ∈ [K], one may argue
that the assumption is unrealistic knowing that the
sequence of (γ(k))mk=1 decreases overall, but as we
show in the supplementary, we prove in Theorem B.1
that under some convergence guarantees of the pairs
{(w(k),w(k+1))}m−1k=1 , one can show that the sequence
{R(k)}mk=1 decreases as a function of γ(k) respectively
to k. As a result, we can derive with high probability :

Ex∼Dx [ηw(k)(x)
∣∣|〈w(k),x〉| ≥ γ(k)] ≤

min
w,‖w‖2≤1

Ex∼Dx [ηw(x)
∣∣|〈w,x〉| ≥ γ(k)] + ε(k).

From the statement of Claim 2.2 and giving the pair
(w(k), γ(k)), we obtain with high probability that at
round k :

P(x,y)∼D[hw(k)(x) 6= y
∣∣|〈w(k),x〉| ≥ γ(k)] ≤ ηηη∗ + ε(k). (4)

When the while loop terminates, we have ac-
counted m ≤ K halfspaces in the list Lm satis-
fying Eq. (4). For all k ∈ I, every classifier hw(k)

in Lm has guarantees on an empirical distribution
mass of at least κ̃ = min

k∈I
Px∼S(k) [|〈w(k),x〉| ≥ γ(k)] ;

the DKW (Dvoretzky-Kiefer-Wolfowitz) inequality
[DKW56] implies that the true probability mass κ =
min
k∈I

Px∼Dx [|〈w(k),x〉| ≥ γ(k)] of this region is at least

κ̃ −
√

log 2
δ

2|S(n)| with probability 1 − δ, where n =

argmin
k∈I

Px∼S(k) [|〈w(k),x〉| ≥ γ(k)].

The pruning phase in the algorithm ensures that these
regions are disjoint for all halfspaces in Lm, it follows
that using the Boole–Fréchet inequality [Boo15] on the
conjunctions of Eq. (4) overall rounds k ∈ [I], implies
that Lm classifies at least a (1 − mκ)-fraction of the
total probability mass of D with guarantees of Eq. (4)
with high probability, let πK+1 = Px∼Dx [x ∈ S(K+1)]
be the probability mass of the region not accounted
by Lm. We argue that this region is negligible from
the fact that |S(K+1)| < ` and `� u, such that setting
ε = max

k∈I
ε(k)+πK+1 provides the result. �

6



In the following, we show that the misclassification
error of the classifier Lm output of Algorithm 1 is at
most equal to the error of the supervised classifier ob-
tained over the labeled training set S`, when using the
same learning procedure. This result suggests that the
use of unlabeled data in Algorithm 1 does not degrade
the performance of the initial supervised classifier.

Theorem 4.4. Let S` be a set of i.i.d. samples of
size ` drawn from a distribution D = O(f,Dx, η

(0)) on
Rd × {−1,+1}, where f is an unknown concept func-
tion and η(0) an unknown parameter function bounded
by 1/2, let Xu be an unlabeled set of size u drawn i.i.d.
from Dx. Let Lm be the output of Algorithm 1 on in-
put S` and Xu, and let hw(0) be the halfspace of the
first iteration obtained from the empirical distribution
S(0) = S`, there is a high probability that :

P(x,y)∼D[Lm(x) 6= y] ≤ P(x,y)∼D[hw(0)(x) 6= y]

Démonstration. Let k be the iteration at which the
first pair (w(1), γ(1)) is added to Lm. The first pru-
ning phase in Algorithm 1 results in a set S(k) ⊆
S` ∪

⋃k−1
i=1 S

(i)
u . Claim 4.1 ensures that the probabi-

lity of corruption in the pseudo-labeled set
⋃k−1
i=1 S

(i)
u

is bounded by max
j∈[k]

η(j) ≤ η∗ + ε.

In other words, the weight vector w(1) is obtained from
an empirical distribution that includes both the initial
labeled set S` and a pseudo-labeled set from Xu. Parti-
cularly, if this pseudo-labeled set is not empty, then its
pseudo-labeling error is nearly optimal, which implies
that P(x,y)∼D[hw(1)(x) 6= y] ≤ P(x,y)∼D[hw(0)(x) 6= y].

Ultimately, Lm classifies a large fraction of the pro-
bability mass of D with nearly optimal guarantees (e.i.,
Eq. (4) in proof of Theorem 4.2) and the rest using
hw(1) with an error of misclassification at most equal
to P(x,y)∼D[hw(0)(x) 6= y].

5 Empirical Results

We compare the proposed approach to state-of-the-
art strategies developed over the three fundamental
working assumptions in semi-supervised learning over
ten publicly available datasets. We shall now describe
the corpora and methodology.

Datasets. We mainly consider benchmark data
sets from [CSZ06]. Some of these collections such
as baseball-hockey, pc-mac and religion-atheism are

binary classification tasks extracted from the 20-
newsgroups data set.

data set d −1 +1 `+ u test
one-two 64 177 182 251 108

banknote 4 762 610 919 453
odd-even 64 906 891 1257 540
pc-mac 3868 982 963 1361 584

baseball-hockey 5724 994 999 1395 598
religion-atheism 7829 1796 628 1696 728

spambase 57 2788 1813 3082 1519
weather 17 43993 12427 37801 18619

delicious2 500 9610 6495 12920 3185
mediamill2 120 15969 27938 30993 12914

Table 1 – data set statistics, −1 and +1 refer to the
size of negative and positive class respectively, and test
is the size of test set.

We used tf-idf representation for all textual data
sets above. spambase is a collection of spam e-mails
from the UCI repository [DG17]. one-two, odd-even are
handwritten digits recognition tasks originally from op-
tical recognition of handwritten digits database also
from UCI repository, one-two is digits ”1” versus ”2” ;
odd-even is the artificial task of classifying odd ”1, 3,
5, 7, 9” versus even ”0, 2, 4, 6, 8” digits. weather is a
data set from Kaggle which contains about ten years of
daily weather observations from many locations across
Australia, and the objective is to classify next-day rain
target variable. We have also included data sets from
extreme classification repository [BDJ+16] mediamill2
and delicious2 by selecting the label which gives the
best ratio in class distribution. The statistics of these
data sets are given in Table 1.

Baseline methods. We implemented the halfspace
or Linear Threshold Function (LTF) using TensorFlow
2.0 in python aside with Algorithm 1 1 (Lm), we ran a
Support Vector Machine (SVM) [CV95] with a linear
kernel from the LIBLINEAR library [FCH+08] as ano-
ther supervised classifier. We compared results with
a semi-supervised Gaussian naive Bayes model (GM)
[CSZ06] from the scikit-learn library. The working hy-
pothesis behind (GM) is the cluster assumption sti-
pulating that data contains homogeneous labeled clus-
ters, which can be detected using unlabeled training
samples. We also compared results with label propa-
gation (LP) [ZG02] which is a semi-supervised graph-
based technique. We used the implementation of LP
from the scikit-learn library. This approach follows the

1. For research purposes, the code will be freely available.
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Table 2 – Mean and standard deviations of accuracy on test sets over the 20 trials for each data set. The best
and the second-best performance are respectively in bold and underlined. ↓ indicates statistically significantly
worse performance than the best result, according to a Wilcoxon rank-sum test (p < 0.01) [Wol12].

Dataset ` SVM LTF LP GM ERLR Lm

one-two
10 61.38± 13.71↓ 70.87± 13.24↓ 48.61± 3.98↓ 75.09± 1.30 53.65± 10.65↓ 77.77± 1.75
50 92.77± 3.05 88.00± 3.24↓ 49.35± 4.20↓ 84.67± 4.98↓ 75.78± 8.74↓ 91.34± 3.21
100 96.15± 1.38 92.50± 1.43↓ 67.82± 12.99↓ 86.52± 3.26↓ 79.25± 6.87↓ 94.62± 2.46

banknote
10 57.50± 7.21↓ 69.40± 5.53↓ 55.98± 2.00↓ 69.04± 4.60↓ 56.71± 4.53↓ 77.24± 3.81
50 61.67± 4.86↓ 82.31± 2.13↓ 56.28± 1.89↓ 75.48± 5.30↓ 65.95± 2.01↓ 85.64± 5.36
100 71.65± 6.24↓ 89.38± 3.24 57.20± 2.19↓ 77.56± 4.34↓ 70.95± 3.24↓ 90.82± 3.31

odd-even
10 53.45± 4.80↓ 58.20± 4.71↓ 50.37± 1.95↓ 60.69± 7.48 50.40± 2.21↓ 63.21± 7.51
50 64.75± 5.65↓ 76.84± 2.99↓ 50.37± 1.95↓ 62.67± 5.82↓ 53.17± 4.80↓ 80.61± 3.10
100 75.89± 6.25↓ 77.68± 4.56↓ 53.37± 1.95↓ 64.25± 8.18↓ 59.23± 6.28↓ 84.58± 2.12

pc-mac
10 51.00± 3.22↓ 54.92± 2.00↓ 50.93± 1.59↓ 54.76± 3.42↓ 50.14± 2.06↓ 57.75± 3.19
50 58.85± 5.09↓ 61.78± 2.86↓ 50.83± 2.08↓ 58.78± 4.31↓ 49.71± 1.99↓ 64.31± 3.55
100 64.57± 4.42↓ 67.98± 2.37 50.76± 2.26↓ 62.49± 1.88↓ 50.36± 2.19↓ 68.15± 5.66

baseball-hockey
10 51.57± 2.98↓ 55.41± 3.16↓ 56.53± 5.18 49.86± 1.77↓ 49.88± 1.89↓ 56.47± 5.50
50 58.66± 6.90↓ 69.29± 4.32 50.11± 1.84↓ 66.76± 5.40↓ 50.16± 1.90↓ 72.85± 6.52
100 68.40± 4.65↓ 76.25± 2.41↓ 49.97± 1.82↓ 71.12± 5.06↓ 50.35± 1.89↓ 79.48± 4.36

religion-atheism
10 67.30± 6.95 57.30± 4.89↓ 67.59± 6.36 60.67± 16.37↓ 71.95± 5.03 64.25± 7.24↓

50 74.61± 1.62 71.79± 1.98↓ 67.43± 6.05↓ 69.16± 7.88 74.16± 1.88 72.47± 2.00
100 74.66± 1.59 73.67± 1.76 62.84± 19.33↓ 70.45± 4.39↓ 73.21± 1.75 73.77± 1.82

spambase
10 61.20± 5.15↓ 57.80± 5.29↓ 60.82± 0.84↓ 74.41± 6.64 53.38± 11.23↓ 68.92± 5.83↓

50 62.59± 9.42↓ 74.99± 6.04 61.15± 0.86↓ 78.25± 2.62 53.63± 9.86↓ 76.13± 3.08
100 69.43± 10.19↓ 80.07± 4.08 61.24± 10.26↓ 79.08± 2.83↓ 58.21± 6.34↓ 81.93± 2.46

weather
10 74.85± 0.51 68.09± 1.73↓ 75.49± 0.34 75.02± 2.79 40.35± 17.29↓ 75.08± 4.18
50 75.79± 0.28 75.30± 3.85 77.99± 0.31 75.68± 2.78 41.55± 27.39↓ 75.34± 3.80
100 77.99± 0.25 76.27± 3.64 77.99± 0.25 74.92± 1.92 46.00± 24.87↓ 77.28± 2.99

delicious2
10 51.83± 9.88 50.59± 2.65↓ 60.02± 0.61 49.41± 3.83↓ 51.83± 10.42↓ 51.08± 1.80↓

50 60.04± 0.62 54.78± 2.57↓ 60.00± 0.59 48.35± 1.31↓ 53.48± 8.66↓ 55.37± 3.33↓

100 58.88± 3.70 56.04± 1.83↓ 59.87± 0.67 48.92± 0.94↓ 54.43± 7.27↓ 56.54± 1.87↓

mediamill2
10 62.54± 2.62↓ 60.98± 6.85↓ 36.35± 0.15↓ 63.92± 1.71 47.24± 14.08↓ 64.31± 3.14
50 63.64± 0.15↓ 60.88± 7.45↓ 36.36± 0.15↓ 65.98± 3.32 58.58± 11.88↓ 65.41± 4.83
100 63.64± 0.15↓ 64.26± 4.79 36.37± 0.15↓ 67.34± 0.73 63.64± 0.16↓ 67.80± 2.21

manifold assumption that the decision boundary is lo-
cated on a low-dimensional manifold and that unlabe-
led data may be utilized to identify it. We also included
entropy regularized logistic regression (ERLR) propo-
sed by [GB05] from [Kri17]. This approach is based
on low-density separation that stipulates that the de-
cision boundary lies on low-density regions. In the im-
plementation of [Kri17], the initial supervised classifier
is a logistic regression that has a similar performance
to the SVM classifier. We tested these approaches with
relatively small labeled training sets ` ∈ {10, 50, 100},
and because labeled information is scarce, we used the
default hyper-parameters for all approaches.

Experimental setup. In our experiments, we have
randomly chosen 70% of each data collection for trai-
ning and the remaining 30% for testing. We randomly
selected sets of different sizes (i.e., ` ∈ {10, 50, 100})

from the training set as labeled examples ; the remai-
ning was considered as unlabeled training samples. Re-
sults are evaluated over the test set using the accuracy
measure. Each reported performance value is the ave-
rage over the 20 random (labeled/unlabeled/test) sets
of the initial collection. All experiments are carried out
on a machine with an Intel Core i7 processor, 2.2GhZ
quad-core, and 16Go 1600 MHz of RAM memory.

Analysis of results. Table 2 summarizes the results.
We used boldface (resp. underline) to indicate the hi-
ghest (resp. the second-highest) performance rate, and
the symbol ↓ indicates that performance is significantly
worse than the best result, according to a Wilcoxon
rank-sum test with a p-value threshold of 0.01 [Wol12].
From these results, it comes out that the proposed ap-
proach (Lm) consistently outperforms the supervised
halfspace (LTF). This finding is in line with the result
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of Theorem 4.4. Furthermore, compared to other tech-
niques, Lm generally performs the best or the second-
best. We also notice that in some cases, LP, GM, and
ERLR outperform the supervised approaches, SVM
and LTF (i.e., GM on spambase for ` ∈ {10, 50}), but in
other cases, they are outperformed by both SVM and
LTF (i.e., GM on religion-atheism). These results sug-
gest that unlabeled data contain useful information for
classification and that existing semi-supervised tech-
niques may use it to some extent. They also highlight
that the development of semi-supervised algorithms
following the given assumptions is necessary for lear-
ning with labeled and unlabeled training data but not
sufficient. The importance of developing theoretically
founded semi-supervised algorithms exhibiting the ge-
neralization ability of the method can provide a better
understanding of the usefulness of unlabeled training
data in the learning process.

6 Conclusion

In this study, we present a first bound over the mis-
classification error of a self-training algorithm that ite-
ratively finds a list of halfspaces from partially labeled
training data. Each round consists of two steps : ex-
ploration and pruning. The exploration phase’s pur-
pose is to determine the halfspace with the largest
margin and assign pseudo-labels to unlabeled observa-
tions with an unsigned-margin larger than the discove-
red threshold. The pseudo-labeled instances are then
added to the training set, and the procedure is re-
peated until there are no more unlabeled instances to
pseudo-label. In the pruning phase, the last halfspace
with the largest threshold is preserved, ensuring that
there are no more unlabeled samples with an unsigned-
margin greater than this threshold and pseudo-labeled
samples with an unsigned-margin greater than the spe-
cified threshold are removed. Our findings are based on
recent theoretical advances in robust supervised lear-
ning of polynomial algorithms for training halfspaces
under large margin assumptions with a corrupted la-
bel distribution using the Massart noise model. We ul-
timately show that the use of unlabeled data in the
proposed self-training algorithm does not degrade the
performance of the initially supervised classifier. As fu-
ture work, we are interested in quantifying the real gain
of learning with unlabeled and labeled training data
compared to a fully supervised scheme.
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