
HAL Id: hal-03723447
https://hal.science/hal-03723447v1

Submitted on 14 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Apprentissage collaboratif pour la réduction des log de
test et la prédiction des anomalies sur les log de

monitoring
Bahareh Afshinpour, Roland Groz, Massih-Reza Amini

To cite this version:
Bahareh Afshinpour, Roland Groz, Massih-Reza Amini. Apprentissage collaboratif pour la réduction
des log de test et la prédiction des anomalies sur les log de monitoring. Conférence d’Apprentissage
(CAp), Jul 2022, Vannes, France. �hal-03723447�

https://hal.science/hal-03723447v1
https://hal.archives-ouvertes.fr

Apprentissage collaboratif pour la réduction des log de test et la

prédiction des anomalies sur les log de monitoring

Bahareh Afshinpour∗1, Roland Groz †2, and Massih-Reza Amini ‡2

1,2,3Université Grenoble Alpes

July 14, 2022

Abstract

L’identification des défaillances dans les logs de test
est un problème difficile, principalement en raison
de leur caractère séquentiel et de l’impossibilité de
construire des ensembles d’apprentissage pour des
défaillances jusqu’alors inconnues. Pour réduire la
charge de travail des testeurs de logiciels, les approches
basées sur des règles ont été largement étudiées comme
solutions pour trouver efficacement les défaillances.
Sur la base de l’analyse des log de monitoring de
l’état du système logiciel, nous proposons une nouvelle
technique basée sur l’apprentissage pour le diagnostic
et la prédiction automatiques des anomalies. Dans
un contexte où la caractérisation d’une panne n’est
pas établie dans une approche de détection basée
sur la surveillance de l’état du système, la technique
suggérée détecte d’abord les périodes de temps où
l’état d’un système logiciel rencontre des situations
anormales (appelées Bug-Zones) sur la base de règles
prédéfinies qui sont ensuite validées par un expert. La
technique proposée est ensuite testée dans un système
en temps réel pour la prédiction d’anomalies de tests
invisibles. Dans des études de cas comparables, le
modèle peut être utilisé de deux manières. Il peut
aider les testeurs à se concentrer sur les intervalles de
temps défectueux en réduisant le nombre de log de
test . Il peut également être utilisé pour prévoir une
Bug-Zone dans un système en ligne, permettant aux
administrateurs des systèmes d’anticiper l’occurrence
d’un problème potentiel.

Termes de l’index: Tests de logiciels, Analyse de log,
Prédiction d’anomalies.

∗bahareh.afshinpour@univ-grenoble-alpes.fr
†roland.groz@univ-grenoble-alpes.fr
‡Massih-Reza.Amini@univ-grenoble-alpes.fr

1 Introduction

A classical viewpoint on software testing assumes that
for each given input entry (which could be a vector
or sequence of inputs), the software returns an out-
put (or a log event) record which are distinct from the
other input-output (or input-log-event) pairs. Accord-
ingly, there is “Pass” or “Fail” verdict associated to
each such input(s)-output(s) pair. A test campaign
using a test suite would collect all such pairs and as-
sociated verdicts in a test log. The separated “input-
output” or “input-log” pairs form a basis to test a soft-
ware artifact or perform some post-processing steps on
test suites, like “regression testing” or “test-suite re-
duction” [AGA+20]. From this perspective, the effect
of a single or a set of inputs is mapped to a limited
set of outputs or log events. Therefore, many soft-
ware testing improvements, especially, newly emerged
machine-learning approaches hold this underlying as-
sumption. A shopping software is an example of these
types of software, in which, every action (adding items
to the basket, check-out, payment) is associated with
its own outputs or log events. The meaning of the
error, as an undesired output or log observation, is
clearly determined by the input under this assump-
tion [AGA+20]. When an erroneous output is detected,
software developers investigate the corresponding in-
put to find out where in the code, it triggers the error.
Also, distinguishing the erroneous and the correct out-
puts/logs allows proposing supervised machine learn-
ing approaches for test/log analysis, prediction, mod-
eling or reduction [KWTI19]. This situation is referred
to as direct logging.

Actually, there can be some delay between a fault
and its propagation to a visible output. In this case,
the internal faults drive the computer system into a
period of anomalous behavior which may end up in a

1

system failure. Many complex software systems expe-
rience similar situation. For instance, a network ap-
pliance, a cellphone, or a multi-user operating system
may experience a period of anomaly that ends up in a
system reboot. In such systems, there is a time delay
between a failure and the input that caused the fail-
ure. Knowing the period of anomaly and localizing its
root cause input are desirable for two reasons: first,
it allows system administrators to predict system fail-
ure and take measures before it happens. Second, it
gives system developers a clue of the root cause input
to resolve the issue in the source code of the software.

For a mature software system, failures may be rare.
They might occur only on long software runs, either
in testing conditions (e.g. with so called soak or en-
durance testing), or during exploitation of the system.
In that case, when gathering direct logs and outputs
is not feasible, a practical way to find anomalous be-
havior and their root cause input is monitoring log-
ging. In monitoring logging, software testers sample
the device’s status or system monitoring information
(e.g: memory/CPU usage, number of processes, etc.)
and then study this status information to find anoma-
lous behavior.

In this situation, finding anomalies and root causes
are long and tedious tasks, if they are done manually,
due to the large number of log files and rare periods of
anomalies [KMT20].

In this work, we present a chain of machine learning
model creation steps, built around an End-to-end ma-
chine learning strategy, in order to find anomalies in
status monitoring logs, link the input tests to the de-
tected anomalies and make a system failure predictor
based on the created model. The outcome is a col-
laborative learning approach with minimum empirical
parameters that can scale up and down with various
number of status features and rates of sampling. This
approach can be used in many applications with mon-
itoring logging and operates in two steps. First, it ties
some anomaly detection methods and aggregates their
outputs to find anomalous periods of time with high
density of anomaly status, identifying them as “Bug-
Zones”. An expert is then asked to label tests leading
to Bug-Zones and outside of these zones at random to
create a training set and a classifier is trained to as-
sociate between tests and their obtained outputs from
the previous step.

The proposed method has two application goals.
First, it filters out large test logs and extracts only
the tests that are linked to an anomalous behavior.
This goal is in favor by system developers, integrators,
testers and operators as it helps them focus only on

the specific periods of testing that contribute to the
system failure. Second, it makes an online predictor to
alert system administrators about an imminent system
failure.

The proposed method was deployed to process logs
of network appliances acquired by Orange (telecom-
munication operator), partner of our PHILAE project.
The results are presented in this paper. Based on the
work carried out for this project, a tool is published
on GitHub repository issued by the ANR PHILAE
project.

The rest of this paper is organized as follows. Section
2 overviews the work related to our study. In section
3, we present the Telecom case study. In section 4,
we explain our proposed method in detail. Section 5
explains our implementation and empirical result on
our case study. Finally, we conclude the paper and
discuss future work in Section 6.

2 Related work

In testing complex software systems, there are thou-
sands of tests that run during the testing process each
day. The test process produces huge test log files.
Then, log file analysis methods are deployed to find
software failures. Due to the costly effort of manual
log analysis, automating the testing process is highly
desirable. There is some work on the automation of the
log file analysis to identify failures or detect root causes
like [MP08]. In some approaches, the definition of fault
is clear [KMT20] [AR19]. For instance, In [AR19] there
are clearly identified failed and passed logs. In other
cases, approaches have to study anomalous behavior
since there is no obvious definition of faults. Our work
falls in this second category.
In many works like [KBLP02], the experts prepared
valid log profiles to have log templates. A database is
created containing characteristics of a multiplicity of
valid logs, which is used to find the faults. Therefore,
this technique requires user-defined catalogs that de-
scribe the fault-related events.
Supervised approaches need to learn normal and abnor-
mal patterns from labels. Therefore, they are generally
useful in the case where tests can be divided into fail
and pass groups, as, there is no clear definition of the
faults and errors. Some studies, advocated the use of
unsupervised learning techniques to automate the log
analysis process. [MP08] presents an approach to auto-
mate log file analysis and root cause detection. It can
identify problems by creating a finite state automaton
(FSA) model from successful test sessions and com-

2

pare the created model against failed test session. This
method and other similar methods would not be effec-
tive on status monitoring logs. Due to the huge number
of events and their possible combinations before each
status record, the created model will be big and com-
plex. However, FSA and similar workflow abstraction
methods are shown to offer limited advantages for com-
plex models([YJX+16]).
This paper is one of the few works that exploits sys-
tem status monitoring observation for bug detection
and prediction in software testing. The goal of this
research was motivated by a telecommunication case
study, in which glassbox testing of the embedded third-
party software of a network appliance was neither pos-
sible, nor indeed desirable as it was supposed to have
been carried out by the software developers; and the
software was mature enough to exhibit faults only in
the long run. The implementation of the proposed
method can be applied to many similar testing cases.

3 The Telecom case study

The proposed method development was motivated by
a telecom case study, in which an end-user internet
appliance had been tested daily during six months by
a large number of remote requests. The monitoring
information was recorded meanwhile. The log files had
two categories:

• Test logs: They record test events arrived at the
internet appliance. One log file per day contained
thousands of remote requests, each of which with
its timestamp. The recorded requests were from
different categories of network activities such as
(Web surf, Digital TV, VoIP, WiFi, Software In-
stall, P2P, Etc. For example, this is a sample of
an test event record in the Test logs:
”timestamp”:”2018-10-08T08:01:27+00:00, ”met-
ric”: ”loading time”, ”bench”: ”XX1”, ”tar-
get”: ”NavWeb http://fr.wikipedia.org”, ”sta-
tus”: ”PASS”, ”domain”: ”Multi-services”,
”value”: 1121.0, ”node”: ”client03”

• Monitoring Logs: The effect of the tests
on internal resources like memory, CPU, pro-
cesses and network traffic captured by sam-
pling the under-the-test device. Here is a sam-
ple of monitoring event. ”value”: 17384.0,
”node”: ”monitoring”, ”timestamp”: ”2019-01-
14T23:00:18+00:00”,”domain”: ”Multi-services”,
”target”: ”X1”,”metric”: ”stats->mem cached”,
”bench”: ”X3”

Figure 1: A software system with input and monitoring
events

While the intervals of the test events are variable
and in order of seconds, the intervals of the monitoring
samples are constant and in order of minutes, namely:
1, 5 and 10 minute(s) depending on the benches and
targets, as the monitoring log collects information from
several parts of the test bench. Therefore, in the pe-
riod between the timestamps of two consecutive sam-
pled status, hundreds of test events are recorded in the
test logs. From time to time, some rare reboots oc-
curred due to the system failure. The manufacturer
of the appliance was interested to identify the cause of
system failure among the numerous test events. More-
over, telecom operators would like to know if they can
detect and anticipate anomalies in the online system.

4 Background

To elaborate more the above-mentioned problems, we
assume that a software system receives a chain of test
events. Examples of the test events could be network
packets, database queries, http requests, or API calls.
Figure 1 illustrates such a system monitoring logging
condition. Test events are denoted by I=[I1, . . . ,IN], a
sequence of N events. Since the events are recorded at
their arrival time, each test event Ii is a pair of event
type which is a member of all possible test events, along
with a timestamp that determines when the test event
arrives or is executed on the system. On the observa-
tion side, system status is recorded. That is what we
call the monitoring logging from now on. After several
test events, a monitoring logging observation event Oj

happens that records system’s status information (e.g:
memory, cpu usage, etc) in an array of values or met-
rics. Each monitoring logging event Oj is a an array
of metric values and a timestamp. The monitoring log
also reports some system failures noted by their times-
tamps. The period of status sampling is τ (Figure 1).

The goal of the our method is twofold: Bug-Zone
Finder as an indicator of the system’s anomalous be-
havior and Bug-Zone Predictor as a tool to predict

3

imminent risk of system failure.

4.1 Bug-Zone Finder

The first part of the proposed method is the Bug-Zone
Finder. As presented before, a Bug-Zone is a period of
time when the software system exposes an anomalous
behavior. Finding Bug-Zones is done in several steps:

4.1.1 Anomaly Detection

To find these periods, the first step is to deploy outlier
detection functions to preprocess the monitoring data.
We use a small set of different outlier functions. Each
outlier detection function ODq must accept a multi-
variate array of monitoring data; it outputs anomalous
entries by a Boolean array of outlier records:

Aq = ODq(M) (1)

In equation 1, M= (O1,. . . ,OJ) is the sampled mul-
tivariate monitoring data, in which, each sample Oj

contains an array of metric values (as explained in pre-
vious subsection). Aq, the output of the outlier de-
tection method is an array of size J denoted by Aq=
[a1,. . . ,aJ]. Each an is a Boolean value coded by an in-
teger 0 (for false) or 1 (for true) that indicates whether
Oj is an anomalous record according to outlier detec-
tion ODq.

4.1.2 Sliding Windows

As shown in Figure 2, each ODq gives us one Boolean
array Aq. Hence, after deploying outlier detection func-
tions, we have several Boolean arrays with the same
size (J). A sliding window can accumulate all Boolean
arrays into one array Aac. The sliding window simply
counts all “1” or “True” values in all Boolean arrays
laying inside a specific window (Figure 3):

Aac[j] =
∑
∀Aq

j+(W/2)∑
k=j−(W/2)+1

Aq[k] (2)

j = {1, . . . , J}, Aq[x] = 0 for x < 1 & x > J

The sliding window has a size that is denoted by W
in Figure 3 . Aac[t] is the number of all “1”s in a
window by size of W centered at t. Counting ’1’ s in
the sliding windows must be repeated and accumulated
for all the outlier detection output arrays Aq. In Figure
2, we assumed that we have used three outlier detection
methods and we have A1, A2 and A3 Boolean outlier
arrays. The sliding window outputs higher values when
the number of outliers in that period of time increases.

4.1.3 Standardization and Generating Outlier
Density Curve

The properties of the output of the sliding window,
Aac, depends on several factors: number of recorded
monitoring features, number of deployed outlier detec-
tion functions and the window size. To find Bug-Zones,
one needs to set a threshold on Aac. To have a constant
threshold and simpler design with fewer empirical val-
ues, we propose to standardize Aac (the output of the
sliding windows). Standardization removes the mean
value of Aac and alters its standard deviation to 1. The
output is what we call Outlier Density Curve (ODC),
from now on. ODC=standardization(Aac)

4.1.4 Bug-Zone Threshold and Extraction

After standardization, by fixing the threshold value be-
tween 0 and 1, Bug-Zones are detectable from ODC.
Bug-Zones are the moments when the outlier density
curve rises above the threshold horizontal line (the
bottom- right of Figure 2).

Each Bug-Zone is a pair of timestamps of the begin-
ning and the ending events of the Bug-Zone denoted
by BZ → TB and BZ → TE . An expert is then asked
to label tests in bug-zones and others picked randomly
outside of these zones to create a training set.

4.2 Learning Phase

The learning phase has three steps:

• Test event extraction

• Model construction

• Sequence representation by concept space creation

Each step will be covered in the following subsections.

4.2.1 Test event extraction

At this step, one needs to extract test events in a time
range before the Bug-Zone (Pre-Bug-Zone) to investi-
gate for its root cause. But we will need also to have
some Non-Pre-Bug-Zone inputs to compare with the
Pre-Bug-Zone inputs. This can be done by extract-
ing random-time intervals from time ranges outside the
Pre-Bug-Zone periods.

The input extraction time range depends on the ob-
servations that system developers make on the outlier
density curve, considering the root cause may happen
how long before the Bug-Zone. For simplicity, we ex-
tract test events in a range of 3τ before the center of the
Bug-Zone (BZi→TB+BZi→TE

2), where τ is the sampling

4

Figure 2: An overview of the proposed method.

Figure 3: A sliding windows over anomaly detection
arrays counts all True values

period of the monitoring log(Figure 1). This range
proved to exhibit the best results in our case, where
sampling is done at a relatively low rate.
Likewise, by creating random timestamps and verify-

ing that they don’t fall in the Pre-Bug-Zone periods, we
would have a set of random test sequences (Random-
Zones):

PreBZ = {PreBZ1, . . . , P reBZZ} (3)

PreBZz = [Iz1, . . . , IzP], (4)

Rand = {RND1, . . . , RNDZ} (5)

RNDz = [Iz1, . . . , IzR] (6)

In equations 4 and 6, Izp and Izr are test inputs
in the designated Pre-Bug-Zone or Random-Zone sets.

The number of the Random-Zone sequences is equal to
the number of the Bug-Zones in order to have a bal-
anced training set. The size of Random-Zone periods
was equally chosen to be 3τ .

4.2.2 Model construction

At this stage, the extracted Pre-Bug-Zone test events
are used to construct a model. Each Random-Zone
or Pre-Bug-Zone input array is treated as a sequence.
Likewise, each test event in that array is treated as
a one hot coding vector. We employed a contextual
sequence model proposed by [MCCD13] to learn the
representation of each test event. The model maps
then each type of test events into a vector. The array
size is |ϕ|, in which, ϕ is a set of all possible test event
types, called vocabulary.

4.2.3 Sequence representation by concept
space creation

The created model gives vectors that represent the
test events in the vocabulary. Therefore, a Pre-Bug-
Zone test array PreBZz or Random-Zone test array
Randz could be represented by an array of vectors (a
sequence) denoted by:

RandVz = [IVz1, . . . , I
V
zP],

P reBZV
z = [IVz1, . . . , I

V
zR].

5

The representation above is an array of vectors.
To create a single-vector representation for each
sequence, we need to combine all the vectors of a se-
quence in a way that effectively reflects the semantics
of the sequence. To this aim, we create a concept space
from the test events by clustering them into groups of
similar events and referring to each group as a concept
based on a similar idea expressed in [PKAG10].
Then, sequences of events are mapped in the space
induced by these clusters. Each characteristic of the
vector corresponds to the proportion of events of
that cluster present in the sequence. We employed
Gaussian mixture models where the number of clusters
is determined by penalizing model complexity using
the Akaike information criteria (AIC) [Aka74]. Other
clustering methods can be used, such as spectral
clustering with minimal description length (MDL).
After creating the concepts, it is possible to deter-

mine the conceptual presentation of a sequence by ob-
serving its events and the concepts to which they be-
long. Hence, a Pre-Bug-Zone sequence PreBZV

z is rep-
resented by a vector of C dimensions:

PreBZConcept
z = [conz1, . . . , conzc] (7)

In which, conzc indicates how many events from a
concept Conceptc exist in the Pre-Bug-Zone sequence
PreBZz. Random sequences of events that are not
in the Bug-zones are represented in the same manner
RandConcept

z .

4.3 Online ML-based Bug-Zone Predic-
tion

Online Bug-zone prediction gives an advance warning
to system administrators about imminent anomalies
and probable system failure. The last step to have
the online predictor is to train a classifier with the
PreBZConcept

z and RandConcept
z sets. The classifier

learns the classes of sequences that are likely to be
Pre-Bug-Zone and distinguish them from the normal
(Random-Zone) sequence.

5 Implementation and Results
on the Telecom Case Study

We developed a python 3.x script to orchestrate and
chain the proposed steps. We processed the monitor-
ing and test data from the telecom case study by the
proposed engine. The results of each step will be pre-
sented in the following subsections:

- Outlier Detection

For the first step, the outlier detection engines pro-
cessed the multivariate status information and deter-
mined the outlier entries. Figure 4(a) shows arrays of
the “CPU” multivariate status information in a light
green colour recorded in one day. Each array has
288 samples taken on 5-min periods during the day
(288×5min = 24 hours). The CPU status information
had 26 multivariate arrays, but for illustration purpose,
only the first five were chosen to be plotted.
During this study we used two different outlier de-
tection methods , Local Outlier Factor and Isolation
Forest [BKNS00, LTZ08]. The outlier samples are de-
picted in Figure 4(a) in short blue and red lines. The
blue ones come from the Local Outlier Factor outlier
detection and the red ones from Isolation Forest. No-
ticeably, we can observe anomalies around peaks in
some metrics sketches. As is observable, at some re-
gions, the two-outlier detection detect the same sam-
ples and at some other regions they detect different
samples. The Figure 4(a) shows how the two outlier
detection methods complement each other, while there
is no limit for the number of outlier detections to be
used, and more outlier detections can help to accumu-
late all methods’ detection strength.

- Bug-Zone Finder

Figure 4(b) illustrates the outlier density curve after
applying the sliding windows and standardization
steps. There are four rows of colourful dots scattered
on top of the figures which are the outliers detected by
LOF and IF outlier detection tools. Each row of dots
belongs to a multivariate series of status monitoring.
The fall on the uptime curves in red show a reboot in
each day. The yellow curve shows the outlier density
before standardization and the green shows the same
after standardization. The horizontal line on 2 is the
Bug-Zone threshold. Obviously around the reboot
events, the threshold cuts the green curve and detects
a Bug-Zone.
Based on our observation, 70% of the reboots were de-
tected inside a Bug-Zone that indicates the Bug-Zones
finder is effective in predicting of system failures and
the relation between anomalous behavior and status
monitoring is detectable by the Bug-Zone finder. The
undetected reboots may have implications. They may
be triggered by a hardware failure and not be de-
tectable by the proposed method. Or some of reboots
are even not bugs, they have been triggered by testers
to restart sessions. Some other detected Bug-Zones
where not near a reboot. Therefore, they may come
from transient periods of anomalous behaviour ended

6

(a) (b)

Figure 4: (a) The first five arrays of the “CPU” status information recorded in a day, (b) Outlier density curve
and detected Bug-Zones

without a system failure.

- Model Creation and Sequence Representation

After having the Bug-Zones, we extracted the
Pre-Bug-Zone and Random-Zone sequences from
the inputs sets. In total, we had 175 different
tests (vocabs), 589 Pre-Bug-Zone sequences and 568
Random-Zone sequences. We deployed word embed-
ding technique to create the NLP model. Afterwards,
by using K-means in combination with Elbow method,
we created 20 concepts from the 175 vocabularies. Fi-
nally, the Pre-Bug-Zone and Random-Zone sequences
converted to their corresponding concept-space vectors
that enables us to use them for Bug-Zone prediction.

- Visualization of the vectors

A visualization of the sequence vectors which were
created in the previous step, helps us to have an insight
on how they are scattered and what type of classifier
is needed. To visualize high dimensional vector, we
used t-SNE [VdMH08], a dimensional reduction tool,
to map the vectors in 2D plane. The plotted image of
the vectors are depicted in Figure 5. Each red dot rep-
resents a Pre-Bug-Zone test sequences, and likewise,
each blue dot is a Random-Zone test sequences. Obvi-
ously, there are clusters of sequences with distinction,
in some of which, the majority of dots are either red or
blue. The are some mixed clusters with nearly equal
number of red and blue dots. Despite their mixed 2D
image, they may not be mixed in higher dimensions.
This can be evaluated by a classifier.

- Preliminary Results and Efficiency of the Model

Here, we seek to find how accurately our model can
distinguish between Pre-Bug-Zone and Random-Zone
sequences. A supervised classifier can determine how
the Pre-Bug-Zone and Random-Zone sequences are
different from one another. Since in Figure 5, the
clusters are not linearly separated, we chose three dif-
ferent types of non-linear classifiers to separate them.
More precisely, in this step we used concept space
vectors (dim=20) of Pre-Bug-Zone and Random-Zone

Figure 5: Concept-space vectors after dimension reduc-
tion by t-SNE - red dots represent a Pre-Bug-Zone and
blue dots represent Random-Zone sequences

7

Figure 6: The Roc curve for Random Forest, SVM and
MLP classifiers on concept space vectors

sequences. We employed three common classifiers in
our study: Support Vector Machines (SVM), Random
Forest (RF) and Multi-Layer Preceprton (MLP) from
the Scikit-learn library implementations. All these
three approaches belong to the category of supervised
algorithms. Since the boundaries on our dataset
are hypothesized to be non-linear, we chose RBF
(radial basis function) as the SVM kernel function.
To assess the classification accuracy, we applied a
10-fold validation approach. Their accuracy to classify
the Pre-Bug-Zone and Random-Zone sequences is
presented in Table 1. Random Forest, with 75%
accuracy, has the highest rank. Figure 6 presents the
ROCs obtained for these three classifiers. ROC curves
are mostly used in binary classification to study the
accuracy of a classifier [Bra97]. This plot shows the
True Positive Rate of every classifier as a function of
the False Positive Rate of the same classifier. The
results show that Random Forest classifier outperforms
the other classifiers. Since the AUC value for Random
Forest is 0.75, while the AUC value for SVM and MLP
classifier is 0.62 and 0.64, respectively.

Method Accuracy
MLP 64%
SVM(RBF) 62%
RF 75%

Table 1: Classification methods applied on Pre-Bug-
Zone and Random-Zone sequences

- Bug-Zone-Prediction and results

To train the Bug-Zone predictor, we randomly di-
vided our concept-space dataset (both Pre-Bug-Zone
and Random-Zone sequences) into 80% and 20% to
train and test the predictor. We chose Random Forest
for prediction, since it was the most effective among
the other methods in the previous subsection. Ran-
dom Forest after training, succeeded to correctly clas-
sify 71% of the test dataset. This implies that it can
be used to predict Bug-Zones based on a real-time in-
coming test data.
A model can estimate the probability of data belonging
to each class label. We used cross-entropy to calculate
the difference between the two probability distributions
in our classification. The Average cross Entropy is 0.5
nats. It demonstrates that the model is making a rea-
sonable generalisation about the data as the validation
scores are not significantly high.

6 conclusion

System status information can be exploited for soft-
ware testing to find the root cause of system failures
and predict them in an online system. In this paper,
we presented Bug-Zone finder and Bug-Zone predictor,
two approaches for detecting and predicting anoma-
lous periods in a software system. First, the Bug-Zone
finder, by using two different anomaly detection meth-
ods, allowed us to detect anomalous periods and ex-
tract Bug-Zones. This enables testers to only focus on
the test events near the Bug-Zones. Thus, this reduces
the testers’ efforts and provides valuable information
on the events and their causes. Second, by using an
end-to-end ML technique to create a conceptual vec-
tor from the semantics of the test sequences, our on-
line predictive model is able to identify sequences of
tests that lead to system failure. Thus, it helps sys-
tem administrators to foresee system failures in the fu-
ture. The effectiveness of the two proposed methods
were evaluated on a real case study from the Orange
company. The detected Bug-Zones cover 70% of the
systems failures (reboots) and the Bug-Zone predictor
succeeded to correctly predict 71% of Bug-Zones in an
80-to-20 learn/test scenario. The figures are tainted
by the fact that our ground truth for failures, namely
system reboots, is actually overestimated, since a num-
ber of reboots (close to 30%) are indeed not linked to
failures, but can be triggered by testers and testbench
restarts, so we expect that our Bug-Zone finder and
predictor are indeed performing even better than those
figures show.

8

7 Acknowledgment

This work was supported by the French National Re-
search Agency: PHILAE project (N° ANR-18-CE25-
0013). The authors are very grateful to Benôıt Par-
reaux for providing a wealth of data on the case study
as well as many advice on the problem statement. We
are also grateful to Yves Ledru for his review and help-
ful discussions.

References

[AGA+20] Bahareh Afshinpour, Roland Groz, Massih-
Reza Amini, Yves Ledru, and Catherine
Oriat. Reducing regression test suites using the
word2vec natural language processing tool. In
SEED/NLPaSE@ APSEC, pages 43–53, 2020.

[Aka74] H Akaike. A new look at the statistical model
identification, volume 19. 1974.

[AR19] Anunay Amar and Peter C Rigby. Mining his-
torical test logs to predict bugs and localize
faults in the test logs. In 2019 IEEE/ACM
41st International Conference on Software En-
gineering (ICSE), pages 140–151. IEEE, 2019.

[BKNS00] Markus M Breunig, Hans-Peter Kriegel, Ray-
mond T Ng, and Jörg Sander. Lof: identify-
ing density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD international con-
ference on Management of data, pages 93–104,
2000.

[Bra97] Andrew P Bradley. The use of the area un-
der the roc curve in the evaluation of ma-
chine learning algorithms. Pattern recognition,
30(7):1145–1159, 1997.

[BRST17] Christophe Bertero, Matthieu Roy, Carla
Sauvanaud, and Gilles Trédan. Experience re-
port: Log mining using natural language pro-
cessing and application to anomaly detection.
In 2017 IEEE 28th International Symposium
on Software Reliability Engineering (ISSRE),
pages 351–360. IEEE, 2017.

[GU16] Markus Goldstein and Seiichi Uchida. A com-
parative evaluation of unsupervised anomaly
detection algorithms for multivariate data.
PloS one, 11(4):e0152173, 2016.

[KBLP02] Anurudha Kulatunge, Kalyan Basu, Hee C
Lee, and Meenakshi Prakash. Network fault
prediction and proactive maintenance system,
March 5 2002. US Patent 6,353,902.

[KMT20] Cheolmin Kim, Veena B Mendiratta, and Ma-
rina Thottan. Unsupervised anomaly detection
and root cause analysis in mobile networks. In

2020 International Conference on COMmuni-
cation Systems & NETworkS (COMSNETS),
pages 176–183. IEEE, 2020.

[KWTI19] Tatsuaki Kimura, Akio Watanabe, Tsuyoshi
Toyono, and Keisuke Ishibashi. Proactive fail-
ure detection learning generation patterns of
large-scale network logs. IEICE Transactions
on Communications, 102(2):306–316, 2019.

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua
Zhou. Isolation forest. In 2008 eighth ieee in-
ternational conference on data mining, pages
413–422. IEEE, 2008.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[MP08] Leonardo Mariani and Fabrizio Pastore. Auto-
mated identification of failure causes in system
logs. In 2008 19th International Symposium
on Software Reliability Engineering (ISSRE),
pages 117–126. IEEE, 2008.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen,
Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their
compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119,
2013.

[PK19] Amrit Pal and Manish Kumar. Dlme: dis-
tributed log mining using ensemble learning
for fault prediction. IEEE Systems Journal,
13(4):3639–3650, 2019.

[PKAG10] Jean-François Pessiot, Young-Min Kim, Mas-
sih R Amini, and Patrick Gallinari. Improv-
ing document clustering in a learned concept
space. Information processing & management,
46(2):180–192, 2010.

[Tho53] Robert L. Thorndike. Who belongs in the fam-
ily. Psychometrika, pages 267–276, 1953.

[VdMH08] Laurens Van der Maaten and Geoffrey Hinton.
Visualizing data using t-sne. Journal of ma-
chine learning research, 9(11), 2008.

[XHF+09] Wei Xu, Ling Huang, Armando Fox, David Pat-
terson, and Michael I Jordan. Detecting large-
scale system problems by mining console logs.
In Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, pages
117–132, 2009.

[YJX+16] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang
Jin, Hui Zhang, and Guofei Jiang. Cloudseer:
Workflow monitoring of cloud infrastructures
via interleaved logs. ACM SIGARCH Com-
puter Architecture News, 44(2):489–502, 2016.

9

[YLL+20] En-Hau Yeh, Phone Lin, Xin-Xue Lin, Jeu-Yih
Jeng, and Yuguang Fang. System error predic-
tion for business support systems in telecom-
munications networks. IEEE Transactions on
Parallel and Distributed Systems, 31(11):2723–
2733, 2020.

10

	Introduction
	Related work
	The Telecom case study
	Background
	Bug-Zone Finder
	Anomaly Detection
	Sliding Windows
	Standardization and Generating Outlier Density Curve
	Bug-Zone Threshold and Extraction

	Learning Phase
	Test event extraction
	Model construction
	Sequence representation by concept space creation

	Online ML-based Bug-Zone Prediction

	Implementation and Results on the Telecom Case Study
	conclusion
	Acknowledgment

