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Introduction

In contexts such as geophysics, laser beam propagation through the atmosphere, or medical imaging for instance, frequency-dependent attenuation has been observed at rate proportional to

|ω| λ λ ∈ (0, 2), (1) 
for a given ω representing the angular frequency [START_REF] Fannjiang | Scaling limits for wave beams in atmospheric turbulence[END_REF][START_REF] Gargett | The scaling of turbulence in the presence of stable stratification[END_REF][START_REF] Gomez | Experimental evidence of shear waves in fractional viscoelastic rheological models[END_REF][START_REF] Holm | Waves with power-law attenuation[END_REF][START_REF] Kiss | Viscoelastic characterization of in vitro canine tissue[END_REF][START_REF] Nicolle | Shear linear behavior of brain tissue over a large frequency range[END_REF][START_REF] Sinkus | MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography[END_REF]. Depending on the field of application, such power-law attenuation can be referred to as anomalous diffusion, nonexponential relaxation, inelastic damping, hysteric damping, singular hereditary, or singular memory media [START_REF] Chen | Fractal density modeling of crustal heterogeneity from the KTB deep hole[END_REF]. Accurate wavepropagation models with a power-law attenuation is therefore of great importance for applications in imaging and inverse problems (see [?] for a survey focusing on medical applications and references therein). To reproduce such power-law decay, several models have been proposed involving fractional derivatives (see [START_REF] Caputo | Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation[END_REF][START_REF] Gelinsky | Dynamic poroelasticity of thinly layered structure[END_REF][START_REF] Hanyga | Wave propagation in micro-heterogeneous porous media: A model based on an integro-differential wave equation[END_REF][START_REF] Holm | Waves with power-law attenuation[END_REF], ?, [START_REF] Ren | The fractional Kelvin-Voigt model for Rayleigh surface waves in viscoelastic FGM infinite half space[END_REF][START_REF] Sushilov | Frequency domain wave equation and its time-domain solutions in attenuating media[END_REF][START_REF] Szabo | Time domain wave equations for lossy media obeying a frequency power law[END_REF] for instance). A particular attention has been paid to space-time models. In contrast to frequency-domain models, time-domain models allow numerical simulation of a large variety of boundary value problems [?], and can be easier to implement and less costly [?].

Another approach, attracting more attention recently, consists in considering the propagation media as random and exhibiting fractal correlation structures or long-range dependencies (see [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF][START_REF] Sølna | Acoustic pulse spreading in a random fractal[END_REF] and [START_REF] Holm | Waves with power-law attenuation[END_REF]Chapter 9]). In other words, the correlation function of the medium fluctuations decays slowly enough to not be integrable at infinity. Experimental measurements in real environments have exhibited long-range correlation properties in different contexts, as in geophysics [START_REF] Chen | Fractal density modeling of crustal heterogeneity from the KTB deep hole[END_REF][START_REF] Dolan | The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs[END_REF] or laser beam propagation through the atmosphere [START_REF] Gargett | The scaling of turbulence in the presence of stable stratification[END_REF][START_REF] Sidi | Turbulence in the stratified atmosphere: Recent theoretical developments and experimental results[END_REF]. Another aspect of wave propagation that we address in this paper concerns the paraxial approximation. This approximation consists in describing the wave propagation along a privileged axis, and has been extensively studied and used in applications (see [START_REF] Bailly | Parabolic and Gaussian white noise approximation for wave propagation in random media[END_REF][START_REF] Bamberger | Parabolic wave equation approximations in heterogeneous media[END_REF][START_REF] Collins | Parabolic equation techniques for seismology, seismo-acoustics, and arctic acoustics[END_REF][START_REF] Garnier | Coupled paraxial wave equations in random media in the white-noise regime[END_REF][START_REF] Gomez | Fractional white-noise limit and paraxial approximation for waves in random media[END_REF][START_REF] Tappert | The parabolic approximation method in wave propagation and underwater acoustics[END_REF] for instance). Under suitable assumptions on physical parameters, this approximation can greatly simplify the description of propagation phenomena as well as their numerical simulations [?].

The aim of this paper is to provide a mathematical derivation, from first principles of physics, of a paraxial wave equation exhibiting a power-law attenuation [START_REF] Bailly | Parabolic and Gaussian white noise approximation for wave propagation in random media[END_REF] with λ ∈ [START_REF] Bailly | Parabolic and Gaussian white noise approximation for wave propagation in random media[END_REF][START_REF] Bal | Asymptotics of the phase of the solutions of the random Schrödinger equation[END_REF], in the context of random propagation media with long-range correlations. Our analysis considers both aspects, paraxial approximation and random medium fluctuations with long-range correlations, under the same limit. The case of mixing random medium fluctuations is also treated for comparison. In homogeneous propagation media the derivation of the paraxial approximation is relatively straightforward, but it becomes much more complex when waves are propagating in heterogeneous media. In applications, wave frequencies are generally sufficiently high so that the interactions between the waves and the fine structures of the medium fluctuations cannot be ignored. Rigorous derivations of the paraxial wave equation in random media, with mixing properties, can be found in [START_REF] Bailly | Parabolic and Gaussian white noise approximation for wave propagation in random media[END_REF][START_REF] Garnier | Coupled paraxial wave equations in random media in the white-noise regime[END_REF] for instance, and in case of long-range correlations in [START_REF] Gomez | Fractional white-noise limit and paraxial approximation for waves in random media[END_REF]. However, in this latter work the scaling regime is not the same as the one proposed in this paper. As waves propagate over large distances, it is natural to expect some universal behavior to describe the statistical properties of the multiple-scattering effects. In case of long-range correlations this refers to the non-central limit theorem [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF], as opposed to the standard central limit theorem for mixing propagation media. The scaling of the non-central limit theorem has been used to study wave propagation in 1D propagation media with long-range correlations through the use of the rough-path theory [START_REF] Marty | Acoustic waves in long-range random media[END_REF][START_REF] Marty | A general framework for waves in random media with long-range correlations[END_REF] under general assumptions on the random fluctuations, and random waveguides with a moment technique [START_REF] Gomez | Wave propagation in random waveguides with long-range correlations[END_REF]. In this context, the effects on the propagating wave can be described as a random travel-time shift driven by a fractional Brownian motion, leading to anomalous diffusion phenomena but no power-law attenuation in frequency. Here, we rather consider a central limit theorem scaling in the context of long-range correlations leading to mathematical challenges. This situation has been considered for 1D propagation media [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF], but their approach, allowing to exhibit a power-law attenuation of the form (1) as well as a fractional derivative in the effective wave equation, does not seem to apply in a 3D setting. Despite more restrictive assumptions on the random fluctuations than in [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF][START_REF] Marty | Acoustic waves in long-range random media[END_REF][START_REF] Marty | A general framework for waves in random media with long-range correlations[END_REF], the approach we propose can also be applied to more general 3D settings with non-layered fluctuations, but with additional technical difficulties, and will be the aim of future works. As for random media with mixing fluctuations, more general fluctuation models with long-range correlations should not change the overall results as the asymptotic equations and scattering coefficients depend only on the correlation functions of the fluctuation models, and not their precise definitions.

As already pointed out in the context of the random Schrödinger equation with long-range correlations [START_REF] Gomez | Wave decoherence for the random Schroödinger equation with long-range correlations[END_REF], the central limit theorem scaling can be seen as propagating the non-central limit scaling over longer propagation distances. This latter scaling already producing an effective phase modulation driven by a fractional Brownian motion [START_REF] Bal | Asymptotics of the phase of the solutions of the random Schrödinger equation[END_REF], the wave starts to oscillate very fast over larger propagation distances, and then have to be treated properly to still exhibit effective nontrivial effects. For the random Schrödinger equation, the Wigner transform is used to study the energy propagation by looking at correlations of the wave function, which naturally cancels out the rapid phases, and provides an effective description of the energy propagation through a radiative transfer equation [START_REF] Gomez | Radiative transport limit for the random Schroödinger equation with long-range correlations[END_REF]. For classical wave propagation problems, an equivalent approach consists in looking at the wave-front along a proper random characteristic time-frame. As a result, the rapid phases still have some effects by averaging the stochasticity to obtain a deterministic spreading for the wave-front. It is worthnoticing that under the central limit theorem scaling, but with long-range correlations, the random travel time has a standard deviation very large compared to the pulse width [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF]. This is in contrast with the standard O'Doherty-Anstey (ODA) theory with mixing medium fluctuations for which the standard deviation of the random travel time and the pulse width are of the same order (see [START_REF] Fouque | Wave Propagation and Time Reversal in Randomly Layered Media[END_REF]Chapter 8] and references therein). This unstable behavior of the random travel time may have a dramatic effect for applications in inverse problems based on travel time estimations, and a deeper understanding of the propagating wave is required. In the context of a randomly layered media, the pulse deformation can be approximately characterized by a deterministic paraxial wave equation of the form

∂ 2 tz ψ + c0 2 ∆xψ -r0D 2+γ t ψ = 0 γ ∈ (0, 1),
where the z-variable corresponds to the main propagation axis, the x-variable to the transverse section (see Figure 1), t to the time variable, c0 to the background wave speed, and r0 > 0 is a constant. Also, D 2+γ t stands for the Weyl fractional derivative with respect to time and order between 2 and 3 (see [START_REF] Gomez | Fractional white-noise limit and paraxial approximation for waves in random media[END_REF]), depending on the power decay rate γ ∈ (0, 1) of the correlation function of the medium fluctuations. This fractional derivative ensures the causality of the paraxial wave equation in the sense that for a given time t the equation involves only the prior knowledge, ψ(τ ) for τ ≤ t, of the wave ψ. In the Fourier domain, this equation can be recast as a Schrödinger equation of the form

i ω c0 ∂z ψ + 1 2 ∆x ψ + r0ω|ω| 1+γ ψ = 0, with ψ(ω, x, z) = ψ(t, x, z)e iωt dt,
where r0 is a constant with positive imaginary part. For γ = 1 the above fractional derivative turns to a classical third order derivative. This equation provides a frequency-dependent power-law attenuation of the form (1) with λ = 1 + γ ∈ [START_REF] Bailly | Parabolic and Gaussian white noise approximation for wave propagation in random media[END_REF][START_REF] Bal | Asymptotics of the phase of the solutions of the random Schrödinger equation[END_REF]. This range of values for λ is typical of attenuation in biological tissues [?]. The analysis developed in this paper relies on an approximation-diffusion theorem, which is usually used for mixing fluctuations. Despite some restrictions on the noise model for long-range correlations, the proof of this theorem requires a very careful attention due to the nonintegrability of the correlation function at infinity. Also, our restriction does not allow us to capture power-law attenuation with λ ∈ (0, 1), and further investigations would be required to capture these cases.

The paper is organized as follows. In Section 2, we describe the physical model under consideration and introduce the main assumptions we need to derive the limiting fractional paraxial wave equation, which is presented and discussed in Section 3. Section 4 presents the influence of the slow decay of the random medium correlations on the wave-front travel time. Section 5 reformulates the propagation problem in terms of a proper random ordinary differential equation, and Section 6 describes the asymptotic behavior of this equation. Sections 7, 8, and 9 are dedicated to the proof of the main results.

The wave model

In this section, we describe the physical model under consideration, the random medium fluctuations, and introduce some assumptions that are necessary to derive the main results stated in Section 3.

Random wave equation

In this paper a three-dimensional linear wave equation model is considered

∆p - 1 c 2 (z) ∂ 2 t p = F(t, x, z) (t, x, z) ∈ R × R 2 × R,
equipped with null initial conditions

p(t = 0, x, z) = ∂tp(t = 0, x, z) = 0 (x, z) ∈ R 2 × R, (2) 
meaning that the system is initially at rest. The z-coordinate represents the main propagation axis, while the x-coordinate represents the transverse section (cf. Figure 1 for an illustration of the setting). The forcing term F(t, x, z) is assumed to be of the form

F(t, x, z) := Ψ t λ0 , x r0 δ(z),
and represents a source emitting a pulse located in the plan z = 0, with central wavelength λ0, and beam radius r0. To be consistent with (2) the source profile Ψ needs to be supported in time in (0, ∞). For mathematical convenience, we also assume that the frequency ω = 0 is not supported by the Fourier transform in time of Ψ. This assumption will be made more precise later in the paper. Finally, the wave-speed profile is assumed to be of the form

1 c 2 (z) := 1 c 2 0 1 + ν z lc 1 (0,L) (z) , ( 3 
)
where c0 stands for the background wave speed, ν represents the fluctuations of the wave speed, and lc is the correlation length of these fluctuations. In other words, the correlation length can be seen as the typical scale of variation for the random fluctuations. The wave speed varies only in one direction, here the z-direction, providing a layered propagation medium. In practice, the wave-speed variations are almost impossible to determine exactly, and it is therefore reasonable to consider these fluctuations as random. The indicator function in [START_REF] Bamberger | Parabolic wave equation approximations in heterogeneous media[END_REF] indicates that the random perturbations take place only in the slab z ∈ (0, L). Our goal is to provide a description of the wave at z = L through a paraxial wave equation. This wave is referred to as the transmitted wave, in contrast with the one observed at z = 0, which is referred to as the reflected wave.

The random fluctuations

In this paper, the random fluctuations are assumed to be given by

ν(z) := Θ(σV (z)),
where Θ is an odd smooth bounded function with

θ 0 := Θ (0) = 0 and sup |Θ| < 1,
and V is a mean-zero stationary Gaussian random process. Here, the function Θ plays no significant role. Gaussian random processes being not bounded, this function just guarantees, for a modelization purpose, that c 2 (z) is actually always positive (see [START_REF] Bamberger | Parabolic wave equation approximations in heterogeneous media[END_REF]). Also, for σ small enough, the Taylor expansion Θ(σV (z)) = σV (z)Θ (0) + O(σ 3 ) (Θ (0) = 0 since Θ is odd) indicates that the medium fluctuations are driven by V .

To derive the fractional behavior of the paraxial wave equation, or equivalently the frequency-dependent power-law attenuation, we consider random fluctuations with long-range correlations, or in other words with slowly decaying correlations. Behind this terminology, we assume that the two-point correlation function is not integrable:

∞ 0 |E[V (z + s)V (z)]| ds = ∞.
In Figure 2, we illustrate the difference of statistical behavior between long-range correlations and short-range correlations (or in other words with rapidly decaying correlations), the latter having an integrable two-point correlation function. From these pictures, one can observe that slowly decaying correlations produce longer excursions of the random trajectories, due to the persistence of the correlations, than for rapidly decaying correlations. In this latter case, the trajectories cannot really produce correlation patterns and look almost like the ones of a white-noise. These simulations are random trajectories of a stochastic process we now introduce precisely.

The method we propose to analyze the transmitted and reflected waves is based on the perturbed-testfunction method [START_REF] Kushner | Approximation and weak convergence methods for random processes[END_REF][START_REF] Gomez | An oscillator driven by algebraically decorrelating noise[END_REF], and to use this technique under the context of long-range correlations we need some assumptions on V . The following construction has already been used to study the impact of random fluctuations with long-range correlations on the Schrödinger equation [START_REF] Bal | Asymptotics of the phase of the solutions of the random Schrödinger equation[END_REF][START_REF] Gomez | Radiative transport limit for the random Schroödinger equation with long-range correlations[END_REF][START_REF] Gomez | Wave decoherence for the random Schroödinger equation with long-range correlations[END_REF] and nonlinear oscillators [START_REF] Gomez | An oscillator driven by algebraically decorrelating noise[END_REF]. We consider V as being a linear superposition of Ornstein-Uhlenbeck type processes by setting

V (z) := z -∞ S e -µ|p| 2β (z-u) B(du, dp) = S V (z, dp), (4) 
with

V (z, dp) := z -∞ e -µ|p| 2β (z-u) B(du, dp), ( 5 
)
where µ, β > 0, and S = (-rS, rS) ⊂ R is a bounded interval containing 0 for rS > 0. Also, B is a Gaussian random measure with covariance function

E[B(du, dp)B(dv, dq)] := 2µ r(p)|p| 2β δ(u -v) δ(p -q) du dv dp dq, with r(p) := a(p) |p| 2α , α < 1/2, and p ∈ S \ {0},
where a is a nonnegative smooth bounded function with a(0) > 0. From this definition, we obtain the autocorrelation function for V :

R(z) := E[V (z0 + z)V (z0)] = S e -µ|p| 2β |z| r(p)dp. ( 6 
)
Note that we need α < 1/2 for the process V to be well-defined. After some algebra, we can exhibit the asymptotic behavior of the autocorrelation function:

R(z) ∼ |z|→∞ R0 |z| γ , ( 7 
)
with

R0 := a(0) ∞ -∞ e -µ|p| 2β |p| 2α dp, and γ := 1 -2α 2β > 0. ( 8 
)
We refer to Figure 2 for illustrations of this random process. An odd bounded function being of Hermite-rank one, we have (see [START_REF] Marty | Acoustic waves in long-range random media[END_REF] for more details)

E[ν(z0 + z)ν(z0)] ∼ |z|→∞ R0Θ1 |z| γ , with Θ1 := 1 √ 2π Θ(σu) u e -u 2 /2 du 2 .
As a result, depending on the value of γ, the two-point correlation function for ν can be integrable or not.

In other words, the medium fluctuations exhibit short-range correlations for γ > 1 or long-range correlations for γ ∈ (0, 1]. In this paper, for a mathematical tractability purpose, a specific form for V is considered. More general fluctuation models have been considered in [START_REF] Marty | Acoustic waves in long-range random media[END_REF][START_REF] Marty | A general framework for waves in random media with long-range correlations[END_REF], but the method they propose, based on the rough-path theory, does not seem to apply in the scaling regime described below. This method can be used to analyze the competition between randomness and periodicity in random differential equations emanating from wave propagation problems [START_REF] Marty | Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations[END_REF]. However, in our scaling regime, the structure of the periodic components turns out to involve the randomness itself in a way that cannot be controlled easily by this strategy. In [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF], the authors use also more general fluctuation models in a scaling regime similar to the one presented here. Nevertheless, the method they use to analyze the problem cannot be applied for 3D propagation media, it is designed for 1D propagation media, that is without the transverse variable x.

The scaling regime

The asymptotic analysis we provide here is based on a separation of the characteristic scales of the problem. The scales of interest are the propagation distance L into the random medium, the central wavelength λ0, the correlation length lc of the medium fluctuations, the beam radius r0, and the fluctuation strength σ. Our scaling regime is based on the four following assumptions. First, we consider a high-frequency regime, that is the central wavelength is small compared to the propagation distance:

ε := λ0 L 1.
Second, we assume that the correlation length is of order the central wavelength lc ∼ λ0, providing a full interaction between the random fluctuations and the propagating wave. Third, we assume that the beam width r0 satisfies r 2 0 λ0 ∼ L, so that the Rayleigh length is of order the propagation distance, which is crucial to obtain the paraxial approximation. In fact, the Rayleigh length is defined as the distance from the beam waist to the place where its cross-section is doubled by diffraction, and in homogeneous media it is of order r 2 0 /λ0. Finally, the strength of the fluctuations is assumed to be small, so that we place ourselves in a weak-coupling regime:

σ 1.
To fix the ideas, we set L ∼ 1, λ0 = lc = ε, and

r0 = σ = √ ε.
The choice of σ allows us to derive a nontrivial limit for both short-range and long-range correlations.

Our choice on the parameter scalings leads to the system ∆pε -

1 c 2 ε (z) ∂ 2 tt pε = Ψ t ε , x √ ε δ(z) (t, x, z) ∈ R × R 2 × R, (9) 
with 1 c 2 ε (z) = 1 c 2 0 1 + νε z ε 1 (0,L) (z) and νε(z) := Θ √ εV (z) .

The main results

To state our main result, we follow the strategy of [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF], and introduce the random travel time

T 0 ε (L) := L c0 + 1 2c0 L 0 νε(z/ε)dz, ( 10 
)
corresponding to the expected travel time L/c0 with a random correction, and the wave-front

p L tr,ε (s, y) := pε T 0 ε (L) + ε s, √ ε y, L (s, y) ∈ R × R 2 . ( 11 
)
This wave-front corresponds to the wave observed at the end of the random section (z = L), on a time window corresponding to the pulse width ε, and centered at the random travel time T 0 ε (L). Before stating our first result, which is proved in Section 7, we introduce some notations. We consider the following Fourier transform convention, f (ω, κ) := f (s, y)e iω(s-κ•y) ds dy, and f (s, y) := 1 (2π) 3 f (ω, κ)e -iω(s-κ•y) ω 2 dω dκ, which is convenient to study space-time problems. Denoting

S0(R × R 2 ) = ψ ∈ S(R × R 2 ) : φ(s, y)ds = 0, ∀y ∈ R 2 ,
where S(R × R 2 ) stands for the Schwartz class, S 0,s,y (R × R 2 ) denotes the set of tempered distributions restricted to S0(R × R 2 ) w.r.t. the variables s and y. This restriction to S0(R × R 2 ) is required for the paraxial wave equation ( 15) to be well-posed. One can remark that our source term Ψ belongs to S0(R × R 2 ), since we assume the frequency ω = 0 to not be supported by the source. Below, C 0 z (reps. C 1 z ) stands for the set of C 0 -functions (resp. C 1 -functions) w.r.t. the z-variable.

Theorem 3.1 The family (p L tr,ε )ε converges in probability in C(R × R 2 ) to p L tr (s, y) = 1 2 K(•, •, L) * Ψ(s, y), (s, y) ∈ R × R 2 , ( 12 
)
where, in the Fourier domain,

K(ω, κ, z) := e -θ 2 0 ω 2 (Γc(ω)+iΓs(ω))z/(8c 2 0 ) e -iωc 0 |κ| 2 z/2 , ( 13 
)
with

Γc(ω) := 2 ∞ 0 R(s) cos 2ωs c0 ds and Γs(ω) := 2 ∞ 0 R(s) sin 2ωs c0 ds. ( 14 
)
Here, R is the correlation function of the medium fluctuations [START_REF] Chen | Fractal density modeling of crustal heterogeneity from the KTB deep hole[END_REF]. The convolution kernel K is the unique

solution in C 0 z ([0, ∞), S 0,s,y (R × R 2 )) ∩ C 1 z ((0, ∞), S 0,s,y (R × R 2 )
) to the paraxial wave equation

∂ 2 sz K + c0 2 ∆yK -I(K) = 0, ( 15 
)
with K(s, y, z = 0) = δ(s)δ(y), and

I(ψ)(s) := θ 2 0 8c 2 0 s -∞ R c0(s -τ ) 2 ∂ 3 sss ψ(τ )dτ s ∈ R. ( 16 
)
Figure 3: Illustrations of the profile p L tr (s, y 1 , y 2 = 0) in the homogeneous case (blue lines) and for two values of β (β = 1/2 for the orange curves and β = 1/6 for the green curves). We take α = 1/4, µ = 2, a(p) = 1 (-10,10) (p), L = 5, c 0 = θ 0 = 1 and a source profile given by Ψ(ω, κ) = 2ω 2 e -ω 2 (1+κ 2 ) centered at s = 0 in the time domain for simplicity.

The asymptotic transmitted wave-front p L tr , at the end of the random section (z = L), can be written in term of a convolution where K represents the pulse deformation. From the explicit formulation of K in the Fourier domain, the pulse shape is affected in a way which is consistent with the standard ODA theory (see [START_REF] Fouque | Wave Propagation and Time Reversal in Randomly Layered Media[END_REF]Chapter 8] and references therein for more details) even if we are not considering mixing fluctuations. Typically, according to this theory, the propagating pulse exhibits a deterministic spreading characterized by a frequency-dependent attenuation and phase modulation. In our context, we observe these effects through ω 2 Γc(ω) (which is positive thanks to the Bochner theorem) and ω 2 Γs(ω) respectively. Here, these two terms are similar to the ones obtained in [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF], and are well defined even for slowly decaying correlations thanks to the oscillatory functions. We refer to Figure 3 for illustrations regarding the influence of the kernel K on the propagating pulse spreading.

The ODA theory for mixing fluctuations also provides a random time-shift driven by a standard Brownian motion, meaning that the transmitted pulse exhibits a random arrival time at z = L of order the pulse width. In the context of long-range correlations the situation is more delicate. The aforementioned random timeshift is already compensated in Theorem 3.1 by considering the random travel time T 0 ε in the definition of the transmitted wave-front [START_REF] Gargett | The scaling of turbulence in the presence of stable stratification[END_REF]. This allows to remove pathological behaviors when studying the asymptotic of the transmitted wave. As described in Section 4, for rapidly decaying correlations, T 0 ε can be approximated by a Brownian motion with mean L/c0 and a standard deviation of order the pulse width, which is consistent with the standard ODA theory. In the case of long-range correlations, terms that lead to an effective random time-shift in the context of rapidly decaying correlations would now blow up. As we will see in Section 4, T 0 ε can be approximated by a fractional Brownian motion, with a Hurst index ranging from 1/2 to 1, and a standard deviation very large w.r.t. the pulse width. This is the reason we compensate this term in [START_REF] Gargett | The scaling of turbulence in the presence of stable stratification[END_REF], and then avoid this blow up in the derivation of the pulse spreading. These facts will be made more precise in Section 4, in which we show that T 0 ε is a convenient approximation of the travel time along random characteristics to reach depth z = L L 0 dz cε (z) .

Regarding the backscattered signal at z = 0, it can be shown that p bk,ε (s, y) := pε εs, √ εy, 0 converges in probability to 0, in C(R × R 2 ), as ε → 0. This is a consequence of Theorem 6.1 and it is consistent with [START_REF] Fouque | Wave Propagation and Time Reversal in Randomly Layered Media[END_REF]Chapter 9], in which the authors show that the backscatter wave is made of a small incoherent signal that can be described through a random field. We will not go in this direction here since it requires involved mathematical developments that are beyond the scope of this paper.

In the time domain, the pulse deformation is described by the paraxial wave equation ( 15) involving an integral term similar to the one obtained in [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF]. It is interesting to note that this integro-differential operator preserves the causality, since at a fixed time s it involves only the knowledge of K(τ, •, •) for τ ≤ s. Also, in the Fourier domain, (15) can be written as the following Schrödinger equation

i ω c0 ∂z Ǩ(ω, y, z) + 1 2 ∆y Ǩ(ω, y, z) + i θ 2 0 ω 3 8c 3 0 (Γc(ω) + iΓs(ω)) Ǩ(ω, y) = 0, (17) 
where Ǩ(ω, y, z) := K(s, y, z)e iωs ds. [START_REF] Gomez | Wave decoherence for the random Schroödinger equation with long-range correlations[END_REF] Moreover, from [START_REF] Garnier | Coupled paraxial wave equations in random media in the white-noise regime[END_REF], one can see that the effects of the propagation medium in ( 17), a frequency-dependent attenuation and dispersion, satisfy the Kramers-Kronig relations [START_REF] Kramers | La diffusion de la lumière par les atomes[END_REF][START_REF] De | On the theory of the dispersion of X-rays[END_REF]. These relations are stated more precisely in the following proposition, and proved in Appendix B. Both the causality and the Kramers-Kronig relations contribute to the physical relevance of our paraxial wave equation. These properties are not surprising for [START_REF] Gomez | Radiative transport limit for the random Schroödinger equation with long-range correlations[END_REF] since this equation is obtained from first principles of physics.

Proposition 3.1

The effective frequency-dependent attenuation ω 2 Γc(ω) and dispersion ω 2 Γs(ω) are analytic functions w.r.t. ω on the complex upper half-plane, and satisfy the following Kramers-Kronig relations in S (R),

H(ω 2 Γc(ω ))(ω) = ω 2 Γs(ω) and H(ω 2 Γs(ω ))(ω) = -ω 2 Γc(ω),
where H stands for the Hilbert transform, and S (R) is the set of tempered distributions on R.

In case of long-range correlations, I can be approximated by a Weyl fractional derivative whose order depends on the decay rate γ of the correlation function R at infinity (see [START_REF] Collins | Parabolic equation techniques for seismology, seismo-acoustics, and arctic acoustics[END_REF]). Before stating the result, let us briefly introduce the notion of Weyl derivative, which is given for γ ∈ (0, 1) by

D γ f (s) := γ Γ(1 -γ) s -∞ f (s) -f (τ ) (s -τ ) 1+γ dτ s ∈ R,
whenever this quantity is well-defined, and Γ stands for the Gamma function. For instance, f can be a bounded γ -Hölder function with γ < γ . However, for C 1 -functions with fast enough decay at -∞, the Weyl derivative can be rewritten as

D γ f (s) = 1 Γ(1 -γ) s -∞ f (τ ) (s -τ ) γ dτ.
To define higher order derivatives, one can just set

D j+γ f (s) := D γ f (j) (s) = 1 Γ(1 -γ) s -∞ f (j+1) (τ ) (s -τ ) γ dτ j ∈ N, (19) 
assuming f smooth enough, with enough decay at -∞ of its derivatives f (j) . These latter requirements hold true for the kernel K as soon as z > 0 thanks to the damping term ω 2 Γc(ω) in [START_REF] Garnier | Coupled paraxial wave equations in random media in the white-noise regime[END_REF]. Therefore, ( 7) and ( 16) suggests that the integro-differential operator I in (15) can be approximated as follows

I(K) ∝ D 2+γ s K.
In what follows, we emphasize that the fractional derivative D 2+γ acts on the s-variable with the notation D 2+γ s . To derive properly this observation we rescale the correlation function as follows. We replace the correlation function R with the following scaled version,

σ(l0)R(z/l0), ( 20 
)
where l0 will be sent to 0, and

σ(l0) :=                  1 l γ 0 if γ ∈ (0, 1), 1 l0| ln(l0)| if γ = 1, 1 l0 if γ > 1. (21) 
In other words, we assume that the correlation length l0 is small compared to the pulse duration. Under this scaling, the attenuation and dispersion coefficients read

Γc(ω, l0) := 2σ(l0) ∞ 0 E[V (0)V (s/l0)] cos(2ωs/c0)ds, and 
Γs(ω, l0) := 2σ(l0) ∞ 0 E[V (0)V (s/l0)] sin(2ωs/c0)ds.
We can define accordingly, following ( 12) and ( 13), the transmitted wave-front p L tr,l 0 for which we have the following result proved in Section 8.

Theorem 3.2 The family (p

L tr,l 0 ) l 0 converges in C(R × R 2 ), as l0 → 0, to p L tr,0 (s, y) := 1 2 K0(•, •, L) * Ψ(s, y) (s, y) ∈ R × R 2 .
Here, K0 is defined in the Fourier domain by

K0(ω, κ, z) :=        e -θ 2 0 ω 2 Γ 0 z/(8c 2 0 ) e -iωc 0 |κ| 2 z/2 if γ ≥ 1, e -θ 2 0 R 0 |ω| 1+γ (Γ c,0 (ω)+iΓ s,0 (ω))z/(8c 2 0 ) e -iωc 0 |κ| 2 z/2 if γ ∈ (0, 1), ( 22 
)
with

Γc,0(ω) = Γ(1 -γ) cos (1 -γ)π 2 2 c0 γ-1 , Γs,0(ω) = Γ(1 -γ) sin (1 -γ)π 2 2 c0 γ-1 sign(ω), and 
Γ0 :=      2a(0) µ β if γ = 1, Γc(0) if γ > 1. ( 23 
)
Moreover, K0 is the unique solution in C 0 z ([0, ∞), S 0,s,y (R × R 2 )) ∩ C 1 z ((0, ∞), S 0,s,y (R × R 2 )) to the paraxial wave equation ∂ 2 sz K0 + c0 2 ∆yK0 -I0(K0) = 0, (24) 
with K0(s, y, z = 0) = δ(s)δ(y), and

I0(ψ) :=              θ 2 0 R0 8c 2 0 ∂ 3 sss ψ if γ ≥ 1, θ 2 0 R0Γ(1 -γ) 2 3-γ c 1+γ 0 D 2+γ s ψ if γ ∈ (0, 1).
In this result, we can easily observe the difference between the case γ ≥ 1 and γ ∈ (0, 1). In the former case, I0 is a classical third order differential operator, while for γ ∈ (0, 1), we have a fractional derivative of order 2 + γ ∈ (2, 3). Also, even if the case γ = 1 corresponds to slowly decaying correlations, the kernel K0 behaves as for γ > 1, and this case plays somehow the role of a continuity point w.r.t. the order of derivation in I0. Moreover, as we will see in the next section, the random travel time [START_REF] Fouque | Wave Propagation and Time Reversal in Randomly Layered Media[END_REF] has a very large standard deviation w.r.t. the pulse width for γ = 1. Therefore, the case γ = 1 do have the behavior of long-range correlations.

Another remark, for γ ≥ 1, there is no effective dispersion anymore in the limit l0 → 0, it remains only an effective frequency-dependent attenuation in ω 2 . Nevertheless, the effective dispersion is still present for γ ∈ (0, 1), and as γ 1, this dispersion remains of order 1, while the attenuation becomes strong. For long-range correlations, one can observe in [START_REF] Gradshteyn | Table of integrals[END_REF] the frequency-dependent attenuation given by the power law

|ω| 1+γ γ ∈ (0, 1],
with exponent depending on the decay rate of the correlation function of the medium fluctuations [START_REF] Collins | Parabolic equation techniques for seismology, seismo-acoustics, and arctic acoustics[END_REF]. Unfortunately, our choice of random field V does not allow finer results for short-range correlations as the ones obtained in [START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF], with λ ∈ (0, 1) in (1). In the case of short-range correlations (γ > 1 in ( 7)), we would need the additional requirement

∞ -∞ R(z)dz = 0,
which cannot be satisfied in our context since R is a positive function.

Finally, due to technical reasons, our approach does not allow to derive the result of Theorem 3.2 directly from the wave equation with a proper scaling in ε. Such an approach would require a(ε 1/(2β) p) and S/ε 1/(2β) in the definition (4) of V . However, in this case, the key technical estimate (53) would not be valid anymore. This is the reason why the second limit in l0 is introduced.

Travel time analysis

In this section, we discuss the asymptotic behavior of the random travel time [START_REF] Fouque | Wave Propagation and Time Reversal in Randomly Layered Media[END_REF] and its consequences. This analysis has already been carried out in [START_REF] Garnier | Pulse propagation in random media with long-range correlation[END_REF][START_REF] Garnier | Effective fractional acoustic wave equations in random multiscale media[END_REF] under more general fluctuation models. Here, we work out the main lines, under our setting, to provide a complete picture regarding the impact of long-range correlations on the propagating pulse.

As already noticed, the travel time T 0 ε (L), for the stable wave-front to reach the plan z = L, is random. Its precise behavior can be described through the following result, which is proved in Appendix C.

Proposition 4.1 Let us defined

Wε(L) := 1 σε T 0 ε (L) - L c0 ,
where

σε :=          ε (1+γ)/2 if γ ∈ (0, 1), ε| ln( √ ε)| 1/2 if γ = 1, ε if γ > 1.
The family (Wε(L))ε converges in distribution to a limit W0(L), where:

• for γ ∈ (0, 1), W0 is a fractional Brownian motion with Hurst index

H = 1 - γ 2 ∈ (1/2, 1),
and

E[W0(L) 2 ] = L 2H θ 2 0 R0 H(2H -1)
, with R0 defined by (8);

• for γ ≥ 1, W0 is a Brownian motion with E[W0(L) 2 ] = L θ 2 0 Γ0,
and Γ0 defined by [START_REF] Hanyga | Wave propagation in micro-heterogeneous porous media: A model based on an integro-differential wave equation[END_REF].

In other words, the random travel time for the wave-front can be formally expressed as follows for γ > 1,

T 0 ε (L) = L c0 + εW0(L) + o(ε).
We can observe an effective random time-shift, w.r.t. the expected travel time L/c0, given by a Brownian motion of order the pulse width ε. This observation is consistent with the standard ODA theory. For γ = 1, we now have

T 0 ε (L) = L c0 + ε | ln( √ ε)| 1/2 W0(L) + o(ε),
with still a random time-shift given by a Brownian motion, but with a standard deviation (sd) larger, by a factor | ln( √ ε)| 1/2 , than the pulse width. In other words, we have sd

T 0 ε (L) ε ∝ | ln( √ ε)| 1/2 1. (25) 
This becomes more significant for slowly decaying correlations, with γ ∈ (0, 1), since we have

T 0 ε (L) = L c0 + ε • ε -(1-γ)/2 W0(L) + o(ε (1+γ)/2 ),
where the random time-shift is now given by a fractional Brownian motion. The standard deviation of this random time-shift is larger than the pulse width by a factor ε

-(1-γ)/2 1, that is sd T 0 ε (L) ε ∝ ε -(1-γ)/2 1. ( 26 
)
To sum up, for short-range correlations we observe a time-shift, w.r.t. the expected travel time L/c0, of order the pulse width. But for long-range correlations, even if this shift remains small compared to the expected travel time L/c0, it becomes very large compared to the pulse width.

One can also remark that the random travel time [START_REF] Fouque | Wave Propagation and Time Reversal in Randomly Layered Media[END_REF] for the stable wave-front does not correspond exactly to the travel time along random characteristics

Tε(L) := L 0 du cε(u) = 1 c0 L 0 1 + νε(u/ε)du,
representing the arrival time at z = L. The random time T 0 ε (L) provides a convenient approximation to Tε(L) for the analysis developed in this paper. Hence, we observe an arrival delay ∆Tε(L) := T 0 ε (L) -Tε(L) for the wave-front, which can be roughly expressed, after some algebra, as

∆Tε(L) = 1 8c0 L 0 ν 2 ε (z/ε)dz + o(ε).
From this expression, one can see that this arrival delay is positive, for ε small enough, meaning that compared to the travel time Tε(L) the stable wave-front exhibits a delay to reach the plan z = L. The comparison of the arrival times w.r.t. the pulse width ε can be characterized precisely as follows.

Proposition 4. [START_REF] Bal | Asymptotics of the phase of the solutions of the random Schrödinger equation[END_REF] We have

lim ε→0 ∆Tε(L) ε = θ 2 0 R(0)L 8c0 in probability.
The details of the proof are provided in Appendix D, and this result shows that the wave-front exhibits a deterministic delay of order the pulse width w.r.t. the travel time Tε(L).

Modal decomposition

The stochastic analysis provided in this paper is based on a modal decomposition of the wave field in the space-time frequency domain, which follows the lines of [START_REF] Fouque | Wave Propagation and Time Reversal in Randomly Layered Media[END_REF]Chapter 14].

To study [START_REF] Fannjiang | Scaling limits for wave beams in atmospheric turbulence[END_REF], we introduce the following specific Fourier transform

fε(ω, κ) := f (t, x)e iω(t/ε-κ•x/ √ ε) dtdx,
and its corresponding inverse formulation

f (t, x) := 1 (2π) 3 ε 2 fε(ω, κ)e -iω(t/ε-κ•x/ √ ε) ω 2 dωdx, (27) 
which are scaled according to the source term. Applying this Fourier transform to [START_REF] Fannjiang | Scaling limits for wave beams in atmospheric turbulence[END_REF] gives

∂ 2 zz pε + ω 2 λ 2 ε (κ) ε 2 pε + ω 2 ε 2 c 2 0 νε z ε 1 (0,L) (z)pε = ε 2 Ψ(ω, κ)δ(z) (t, x, z) ∈ R × R 2 × R. (28) 
with Ψ(ω, κ) := Ψ(t, x)e iω(t-κ•x) dtdx, the unscaled Fourier transform of the source profile Ψ, and

λε(κ) := 1 -εc 2 0 |κ| 2 c0 . ( 29 
)
Throughout this paper, for simplicity, we assume that Ψ is compactly supported within a ball centered at 0 and radius of order 1, that is not depending on ε. We also assume for technical reasons that ω = 0 does not belong to the support of the source:

suppω Ψ ⊂ (-∞, -ωc) ∪ (ωc, ∞),
for some cutoff frequency ωc > 0. This assumption allows to avoid unnecessary complications to define [START_REF] Gomez | Radiative transport limit for the random Schroödinger equation with long-range correlations[END_REF] and in the proof of Theorem 3.2. Therefore, we have

pε(ω, κ, z) = 0 for |κ| ≥ 1 c0 √ ε .
These assumptions are not restrictive and do not change the overall result, but simplify greatly the presentation. In fact, for |κ| < 1/(c0 √ ε), we only deal with the oscillatory components of the solution to [START_REF] De | On the theory of the dispersion of X-rays[END_REF]. The components associated to |κ| > 1/(c0 √ ε) correspond to the evanescent modes that decay exponentially w.r.t the z-variable. Due to this exponential decay, the evanescent modes do not contribute in a significant way in the limit ε → 0, and are therefore considered as negligible.

Note also that the source term in (28) produces the following jump conditions at the source location z = 0, that are used below to determine the initial amplitudes of the modal decomposition:

pε(ω, κ, z = 0 + ) -pε(ω, κ, z = 0 -) = 0, ∂z pε(ω, κ, z = 0 + ) -∂z pε(ω, κ, z = 0 -) = ε 2 Ψ(ω, κ). ( 30 
)
Figure 4: Illustration of the mode amplitudes associated to the incoming and outgoing waves at z = 0 and z = L.

Mode coupling in random media

In the random section, that is for z ∈ (0, L), we decompose the solutions to the second order equation ( 28) as right-and left-going modes, pε(ω, κ, z) := 1

ωλε(κ) âε(ω, κ, z)e iωλε(κ)z/ε + bε(ω, κ, z)e -iωλε(κ)z/ε , ( 31 
)
with the additional condition

d dz âε(ω, κ, z)e iωλε(κ)z/ε + d dz bε(ω, κ, z)e -iωλε(κ)z/ε = 0, so that ∂z pε(ω, κ, z) = i ωλε(κ) ε âε(ω, κ, z)e iωλε(κ)z/ε -bε(ω, κ, z)e -iωλε(κ)z/ε .
Hence, both âε and bε can be expressed in terms of pε and ∂z pε:

âε(ω, κ, z) = 1 2 ωλε(κ)pε(ω, κ, z) + ε i ωλε(κ) ∂z pε(ω, κ, z) e -iωλε(κ)z/ε , bε(ω, κ, z) = 1 2 ωλε(κ)pε(ω, κ, z) - ε i ωλε(κ) ∂z pε(ω, κ, z) e iωλε(κ)z/ε .
Here, âε represents the amplitudes of the right-going modes, while bε the ones of the left-going modes. Differentiating in z, these two last expressions, and using [START_REF] De | On the theory of the dispersion of X-rays[END_REF] give

d dz âε(ω, κ, z) bε(ω, κ, z) = 1 ε νε z ε Hε ω, κ, z ε âε(ω, κ, z) bε(ω, κ, z) , ( 32 
)
where

Hε(ω, κ, z) = iω 2λε(κ)c 2 0 1 e -2iωλε(κ)z -e 2iωλε(κ)z -1 . ( 33 
)
This differential equation describes how a wave is affected while going through the slab (0, L). More precisely, it describes how the medium fluctuations produce the scattering effects on the propagating wave through the exchange between the right-and left-going modes. Note that there is no coupling between any two distinct κ-modes since we consider a randomly layered propagation medium. Moreover, the scattering slab is surrounded by two homogeneous half-spaces, so that we need to complement this system with boundary conditions representing the incoming waves in the slab and the outgoing waves from the slab.

Boundary conditions

In this section, we depict the propagation mechanism in absence of random fluctuations of the wave-speed profile, which corresponds to the situation for z < 0 and z > L. Considering a decomposition similar to [START_REF] Marty | Acoustic waves in long-range random media[END_REF], in absence of random fluctuations, leads to constant mode amplitudes in view of [START_REF] Marty | A general framework for waves in random media with long-range correlations[END_REF]. Therefore, if we assume that no waves are coming from the left-and the right-hand side of the random slab z ∈ (0, L) (see Figure 4 for an illustration), we necessarily have pε(ω, κ, z) := ĉε(ω, κ) ωλε(κ) e -iωλε(κ)z/ε for z < 0, and pε(ω, κ, z) := dε(ω, κ) ωλε(κ) e iωλε(κ)z/ε for z > L.

As we will see below, on the left-hand-side of the source term (z < 0), we only have a left-going mode produced by the source and the backscattered field at z = 0 with amplitude bε(ω, κ, 0), no right-going mode coming from the left. In the same way, on the right-hand-side of the random section (z > L), we only have a right-going mode produced by the wave outgoing the random section at z = L, and no left-going mode coming from the right. To be more precise, reminding the expression of pε at each side of the interface z = L,

pε(ω, κ, z) = 1 ωλε(κ) âε(ω, κ, z)e iωλε(κ)z/ε + bε(ω, κ, z)e -iωλε(κ)z/ε 1 (0,L) (z) + dε(ω, κ) ωλε(κ) e iωλε(κ)z/ε 1 (L,∞) (z),
and by continuity of pε and ∂z pε at z = L, we have dε(ω, κ) := âε(ω, κ, z = L) and bε(ω, κ, z = L) = 0.

To see how the source term charges the modes, we remind the expression of pε at each side of the source position z = 0,

pε(ω, κ, z) = ĉε(ω, κ) ωλε(κ) e -iωλε(κ)z/ε 1 (-∞,0) (z) + 1 ωλε(κ) âε(ω, κ, z)e iωλε(κ)z/ε + bε(ω, κ, z)e -iωλε(κ)z/ε 1 (0,L) (z),
and use the jump conditions [START_REF] Marty | Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations[END_REF] to obtain

âε(ω, κ, z = 0) = ε 2 ωλε(κ) 2 Ψ(ω, κ), and ĉε(ω, κ) = bε(ω, κ, z = 0) + ε 2 ωλε(κ) 2 Ψ(ω, κ).

Wave propagation in homogeneous media

In this section, we provide a derivation of the paraxial approximation in the case of a homogeneous propagation medium (νε ≡ 0). In this context, bε ≡ 0 from [START_REF] Marty | A general framework for waves in random media with long-range correlations[END_REF], and we simply have

pε(ω, κ, z) = ε 2 2 Ψ(ω, κ)e iωλε(κ)z/ε for z > 0,
so that taking the inverse Fourier transform [START_REF] Kramers | La diffusion de la lumière par les atomes[END_REF] gives

pε(t, x, z) = 1 2(2π) 3 Ψ(ω, κ)e iωλε(κ)z/ε e -iω(t/ε-κ•x/ √ ε) ω 2 dωdκ. Let us remark that λε(κ) = 1 c0 - ε c0 2 |κ| 2 + O(ε 2 ), (34) 
thanks to [START_REF] Kushner | Approximation and weak convergence methods for random processes[END_REF]. Looking at the wave in the frame of the source term, by setting

t = z c0 + ε s and x = √ ε y, we obtain lim ε→0 pε z c0 + εs, √ εy, z = ψ(s, y, z) := 1 2(2π) 3 Ψ(ω, κ)e -iωs e -iω(c 0 |κ| 2 z/2-κ•y) ω 2 dωdκ.
Here, ψ satisfies the paraxial wave equation

∂ 2 sz ψ(s, y, z) + c0 2 ∆yψ(s, y, z) = 0, with ψ(s, y, z = 0) = 1 2 Ψ(s, y).
In other words, the pulse front can be described through the so-called paraxial wave equation, with a condition at z = 0 given by half the source profile. Note that if we take the Fourier transform of ψ w.r.t. time (the s-variable) we obtain the following Schrödinger equation

i ω c0 ∂z ψ(ω, y, z) + 1 2 ∆y ψ(ω, y, z) = 0, with ψ(ω, y, z = 0) = 1 2 Ψ(ω, y),
where ψ(ω, y, z) := ψ(s, y, z)e iωs ds.

Propagator matrix

The system (32) is a boundary value problem, with

âε(ω, κ, z = 0) = ε 2 ωλε(κ) 2 Ψ(ω, κ) and bε(ω, κ, z = L) = 0, (35) 
which is not convenient for our analysis based on martingale techniques and diffusion processes corresponding to initial value problems. In this section, we introduce initial value problems that can be related to [START_REF] Marty | A general framework for waves in random media with long-range correlations[END_REF]. First, we introduce the associated propagator matrix Pε, which is the solution to

d dz Pε(ω, κ, z) = 1 ε νε z ε Hε ω, κ, z ε Pε(ω, κ, z), with Pε(ω, κ, z = 0) = I2,
where I2 is the 2×2 identity matrix. The relation between the left-and right-going modes with the propagator is given by âε

(ω, κ, z) bε(ω, κ, z) = Pε(ω, κ, z) âε(ω, κ, 0) bε(ω, κ, 0) . ( 36 
)
From the symmetries of Hε, given by ( 33), the propagator matrix can be recast as

Pε(ω, κ, z) = αε(ω, κ, z) βε(ω, κ, z) βε(ω, κ, z) αε(ω, κ, z) ,
where (αε, βε) being the solution to

d dz αε(ω, κ, z) βε(ω, κ, z) = 1 ε νε z ε Hε ω, κ, z ε αε(ω, κ, z) βε(ω, κ, z) , ( 37 
)
with αε(ω, κ, 0) βε(ω, κ, 0) = 1 0 .

From this equation, using that Hε has null trace, the determinant of the propagator is then constant in z,

det Pε(ω, κ, z) = det Pε(ω, κ, 0) = 1, yielding the conservation relation |αε(ω, κ, z)| 2 -|βε(ω, κ, z)| 2 = 1. (38) 
From these new variables, αε and βε, one can describe the transmitted mode amplitudes at z = L, and the reflected mode amplitudes at z = 0 using [START_REF] Sidi | Turbulence in the stratified atmosphere: Recent theoretical developments and experimental results[END_REF] and [START_REF] Sølna | Acoustic pulse spreading in a random fractal[END_REF]:

âε(ω, κ, z = L) = 1 αε(ω, κ, L) âε(ω, κ, z = 0), and bε(ω, κ, 0) = - βε(ω, κ, L) αε(ω, κ, L) âε(ω, κ, z = 0).
One can also remark from [START_REF] Stroock | Multidimensional diffusion processes[END_REF], that we have the following conservation relation for the right-and left-going

modes |âε(ω, κ, L)| 2 + | bε(ω, κ, 0)| 2 = |âε(ω, κ, 0)| 2 ,
telling us that the input energy at z = 0 equals the sum of the transmitted energy at z = L and the reflected one at z = 0. As already discussed in Section 4, the random travel time of the wave-front produces terms that can blow up in our scaling regime. To overcome this difficulty in our analysis, we reformulate (37) through the variables Aε(ω, κ, z) := αε(ω, κ, z)e -iωφε(κ,z)/ε and Bε(ω, κ, z) := βε(ω, κ, z)e iωφε(κ,z)/ε , (

where

φε(κ, z) := 1 2λε(κ)c 2 0 z 0 νε(s/ε 2 )ds. ( 40 
)
While this quantity provides an effective limit as ε → 0 for mixing fluctuations, it blows up in case of longrange correlations, and this is the reason why we single out its contribution from [START_REF] Sinkus | MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography[END_REF]. In this latter context, the term ( 40) is responsible of the large standard deviation of the random travel time T 0 ε w.r.t. to the pulse width [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF][START_REF] Kiss | Viscoelastic characterization of in vitro canine tissue[END_REF].

The new variables (Aε, Bε) satisfy the system

d dz Aε(ω, κ, z) Bε(ω, κ, z) = 1 ε νε z ε Hε ω, κ, τε(κ, z) ε Aε(ω, κ, z) Bε(ω, κ, z) , ( 41 
)
with

Hε(ω, κ, τ ) = iω 2λε(κ)c 2 0 0 e -iωτ -e iωτ 0 ,
and τε(κ, z)

:= 2λε(κ)z + φε(κ, z). ( 42 
)
Note that from ( 38) and ( 39), we still have the conservation relation

|Aε(ω, κ, z)| 2 -|Bε(ω, κ, z)| 2 = 1. ( 43 
)
Let us remark that it is not clear how the strategy proposed by [START_REF] Marty | Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations[END_REF], based on the rough-path theory, could be applied to the system (41) in case of long-range correlations. Compared to [START_REF] Marty | Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations[END_REF], we have the additional random blowing term φε(κ, z) in the periodic component of Hε, which makes the coupling matrix in [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF] nonlinear in νε. This nonlinear behavior and the long-range correlation property make difficult the evaluation of key quantities allowing the use of the Terry-Lyons continuity theorem (see [START_REF] Marty | Asymptotic behavior of differential equations driven by periodic and random processes with slowly decaying correlations[END_REF]). This is the reason why we do not follow this route in this paper.

Finally, to study the asymptotic behavior of the mode amplitudes âε(ω, κ, L) and bε(ω, κ, 0), one can study the one of (Aε, Bε) as ε → 0, which is given by the following result. independent of the κ-variables, and where all its components are statistically independent. Here, for each ω, X0(ω, •) is solution to the following stochastic differential equation

dX0(ω, z) = - θ 2 0 ω 2 Γc(ω) 4c 2 0 0 1 1 0 X0(ω, z) • dW1(z) -i θ 2 0 ω 2 Γc(ω) 4c 2 0 0 1 -1 0 X0(ω, z) • dW2(z) -i θ 2 0 ω 2 Γs(ω) 8c 2 0 1 0 0 1 X0(ω, z)dz, ( 45 
)
where W1 and W2 are two independent real-valued standard Brownian motions, • stands for the Stratonovich integral, 

Γc(ω) := 2 ∞ 0 R(s)
i θ 2 0 ω 2 Γc(0) 4c 2 0 1 0 0 -1 X0(ω, z) • dW0(z),
which is not in (45), and where W0 is a real-valued standard Brownian motion independent of (W1, W2). This extra term is responsible for the Brownian arrival time-shift in the standard ODA theory, as exhibited through the random travel time of the wave-front in Section 4. In Theorem 6.1, even under short-range correlations (γ > 1 in ( 7)), this term has disappeared since we have considered the compensated mode amplitudes [START_REF] Sushilov | Frequency domain wave equation and its time-domain solutions in attenuating media[END_REF]. Note also that in [10, Section 7.1] the Brownian time-shift is the same for each frequencies ωj, which then correlates all the mode amplitudes at different frequencies. This is in contrast with our result where the contribution of the random travel time has been compensated. In our context, the statistical independence for any distinct frequencies is responsible for the pulse stabilization, that is the convergence in probability toward a deterministic limit in Theorem 3.1. In the context of long-range correlations (γ ∈ (0, 1]), the compensations (39) are mandatory due to the fact that Γc(0) = ∞ in this case. Before going into the proof of Theorem 6.1, which is given in Section 9, we show how this result plays a role in the proof of Theorem 3.1.

The transmitted waves and proof of Theorem 3.1

The transmitted wave, on the time frame of the random travel time T 0 ε (L) and scaled according to the source profile [START_REF] Fannjiang | Scaling limits for wave beams in atmospheric turbulence[END_REF], is given by

p L tr,ε (s, y) := pε T 0 ε (L) + εs, √ εy, L = 1 (2π) 3 ε 2 âε(ω, κ, L) ωλε(κ) e iω(λε(κ)L-T 0 ε (L))/ε e -iω(s-κ•y) ω 2 dω dκ = 1 2(2π) 3 Ψ(ω, κ) Aε(ω, κ, L) e iωΦε(κ,L)/ε e -iω(s-κ•y) ω 2 dω dκ,
where Φε(κ, L) := λε(κ)L -T 0 ε (L) + φε(κ, L), with T 0 ε (L) defined by [START_REF] Fouque | Wave Propagation and Time Reversal in Randomly Layered Media[END_REF], and φε(κ, L) defined by [START_REF] Szabo | Time domain wave equations for lossy media obeying a frequency power law[END_REF]. For Φε(κ, L) we have the following result.

Lemma 7.1 We have lim

ε→0 1 ε E Φε(κ, L) + Lc0 2 |κ| 2 = 0.
Proof By definition we have

Φε(κ, L) = L λε(κ) - 1 c0 + 1 2c0 1 c0λε(κ) -1 L 0 νε s ε ds,
with from ( 29)

λε(κ) = 1 c0 -ε c0|κ| 2 2 + O(ε 2 ),
where O is uniform in κ since Ψ is compactly supported in both ω and κ in a ball with radius of order 1 w.r.t. ε. As a result,

1 ε E Φε(κ, L) + Lc0 2 |κ| 2 = √ ε sup s∈[0,L] E[|V (s/ε)|] sup |Θ | + O(ε),
which concludes the proof of the lemma according to (53).

The conservation relation (43) implies that 1/Aε is uniformly bounded by 1 in all its variables, so that thanks to Lemma 7.1,

lim ε→0 E sup s,y |p L tr,ε (s, y) -q L tr,ε (s, y)| = 0, with q L tr,ε (s, y) := 1 2(2π) 3 Ψ(ω, κ) Aε(ω, κ, L) e -iω(s+Lc 0 |κ| 2 /2-κ•y) ω 2 dω dκ.
Hence, it is enough to prove the convergence for q L tr,ε to obtain the one of p L tr,ε according to [4, Theorem 3.1 pp. 27].

Proposition 7.1 The family (q

L tr,ε )ε converges in probability in C(R × R 2 ) to p L tr (s, y) := 1 2(2π) 3 Ψ(ω, κ)e -θ 2 0 ω 2 (Γc(ω)+iΓs(ω))L/(8c 2 
0 ) e -iω(s+Lc 0 |κ| 2 /2-κ•y) ω 2 dω dκ.

Proof Denoting

E(ω) = e -θ 2 0 ω 2 (Γc(ω)+iΓs(ω))L/(8c 2 0 ) ,
and

Eε(ω1, ω2, κ1, κ2) = E 1 Aε(ω1, κ1, L) -E(ω1) 1 Aε(ω2, κ2, L) -E(ω2) ,
we have

E sup s,y |q L tr,ε (s, y) -p L tr (s, y)| 2 ≤ 1 4(2π) 6 |Eε(ω1, ω2, κ1, κ2)| × | Ψ(ω1, κ1) Ψ(ω2, κ2)|ω 2 1 ω 2 2 dω1 dκ1 dω2 dκ2.
Now, we expand the expectation in Eε so that

Eε(ω1, ω2, κ1, κ2) = E 1 Aε(ω1, κ1, L)Aε(ω2, κ2, L) -E 1 
Aε(ω1, κ1, L)

E(ω2) -E(ω1)E 1 Aε(ω2, κ2, L) + E(ω1)E(ω2).
From Theorem 6.1, with a single ω and κ, together with the Itô formula [25, Theorem 3.3 pp. 149] applied to the real and imaginary parts of (45), we obtain

lim ε→0 E 1 Aε(ω, κ, L) = E(ω).
Note that the convergence in distribution implies the convergence of the expectation thanks to [4, Theorem 3.5 pp. 31] and the fact that 1/Aε is uniformly bounded in ε according to (43). For similar reasons, but adding the fact that the limit in ε of (Aε(ω1, κ1, L), Aε(ω2, κ2, L)) for two distinct pairs of (ω, κ) are independent (as stated in Theorem 6.1), we have The transmitted wave-front at the end of the random slab z = L is then given by

lim ε→0 E 1 Aε(ω1, κ1, L)Aε(ω2, κ2, L) = lim ε→0 E 1 Aε(ω1, κ1, L) lim ε→0 E 1 Aε(ω2, κ2, L) = E(ω1)E(ω2).

Combining these results gives lim

p L tr (s, y) = 1 2 K(•, •, L) * Ψ(s, y),
with the pulse deformation given in the Fourier domain by

K(ω, κ, z) = e -θ 2 0 ω 2 (Γc(ω)+iΓs(ω))z/(8c 2 0 ) e -iωc 0 |κ| 2 z/2 .
From this formula, it turns out that K is the unique solution to

∂ 2 sz K + c0 2 ∆yK -I(K) = 0, with I(ψ)(s, y) := - θ 2 0 8c 3 0 iω 3 (Γc(ω) + iΓs(ω)) ψ(ω, y)e iωs dω, (46) 
and K(s, y, z = 0) = δ(s)δ(y). The details for the uniqueness are provided in Appendix A. In the time domain, the operator I can be recast as

I(ψ)(s) = φ * ∂ 3 sss ψ(s) with φ(s) = θ 2 0 8c 2 0 R c0s 2 1 (0,∞) (s), (47) 
so that

I(ψ)(s) = θ 2 0 8c 2 0 s -∞ R c0(s -τ ) 2 ∂ 3 sss ψ(τ )dτ.
Let us finish this section with a comment on the backscattered wave p bk,ε (s, y) := pε ε s, √ ε y, 0 .

According to Theorem 6.1, the amplitude Bε/Aε converges in distribution to some limit which has null expectation according to the Itô formula. Note that we again have the convergence of the expectation, since Bε/Aε is also uniformly bounded in ε by 1 according to (43). Thanks to the independence of the limit w.r.t. to multiple frequencies ω, the limiting expectation of the product of two Bε/Aε at two distinct frequencies is the product of the limiting single expectation, which is then 0. Following the same lines as the proof of Proposition 7.1, we obtain that the backscattered wave converges to 0, as ε → 0, in probability in C(R × R 2 ). This observation is consistent with [10, Chapter 9] in which the authors describe the backscattered signal as a "small" incoherent signal that can be described through a random field. This analysis is beyond the scope of this paper and will not be addressed here.

Proof of Theorem 3.2

In this section, we describe how the integral operator I can be approximated by a fractional derivative, or a standard third order derivative, depending whether γ ∈ (0, 1) or γ ≥ 1 respectively. The fractional operator that derives from I is given by a Weyl fractional derivative defined by [START_REF] Gomez | Fractional white-noise limit and paraxial approximation for waves in random media[END_REF].

In view of ( 46) and ( 47), the operator I is completely characterized by the correlation function R through the coefficients Γc and Γs (see ( 14)). Under the scaling [START_REF] Gomez | Wave propagation in random waveguides with long-range correlations[END_REF], we only need to study the asymptotics to these coefficients, which is done in the following technical lemma, whose proof is provided in Appendix E.

Lemma 8.1 Setting

Γc(ω, l0) := 2σ(l0) ∞ 0 R s l0 cos 2ωs c0 ds,
and

Γs(ω, l0) := 2σ(l0) ∞ 0 R s l0 sin 2ωs c0 ds,
where σ(l0) is defined by [START_REF] Gomez | An oscillator driven by algebraically decorrelating noise[END_REF], we have:

1. for γ ∈ [1, ∞), lim l 0 →0
Γc(ω, l0) = Γ0 and lim

l 0 →0
Γs(ω, l0) = 0, with Γ0 defined by (23);

2. for γ ∈ (0, 1), lim

l 0 →0
Γc(ω, l0) = R0Γc,0(ω) and lim

l 0 →0
Γs(ω, l0) = R0Γs,0(ω),

with for ω = 0 Γc,0(ω) = 2 ∞ 0 ds s γ cos(2ωs/c0) = 2Γ(1 -γ) cos (1 -γ)π 2 2|ω| c0 γ-1 ,
and

Γs,0(ω) = 2 ∞ 0 ds s γ sin(2ωs/c0) = 2Γ(1 -γ) sin (1 -γ)π 2 2|ω| c0 γ-1 sign(ω),
where R0 is given by [START_REF] Dolan | The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs[END_REF], and Γ stands for the Gamma function.

Note that the two latter formulas for Γc,0(ω) and Γs,0(ω) are obtained using [22, 3.761-4 and 9 pp. 436-437].

From this lemma, we obtain the following convergence in

C(R × R 2 ), lim l 0 →0 p tr,l 0 (s, y, L) = ptr,0(s, y, L) = 1 2 K0(•, •, L) * Ψ(s, y),
thanks to the dominated convergence theorem, where, in the Fourier domain,

K0(ω, κ, z) :=        e -θ 2 0 ω 2 Γ 0 z/(8c 2 0 ) e -iωc 0 |κ| 2 z/2 if γ ≥ 1, e -θ 2 0 R 0 ω 2 (Γ c,0 (ω)+iΓ s,0 (ω))z/(8c 2 0 ) e -iωc 0 |κ| 2 z/2 if γ ∈ (0, 1).
From the definition of K0, we obtain for γ ≥ 1 the following paraxial wave equation with a third order derivative in s,

∂ 2 sz K0 + c0 2 ∆yK0 - θ 2 0 Γ0 8c 2 0 ∂ 3 sss K0 = 0.
For γ ∈ (0, 1), following the same strategy as in Section 7, but with now

φ(s) = θ 2 0 R0 2 3-γ c 1+γ 0 s -γ 1 (0,∞) (s),
we obtain

∂ 2 sz K0 + c0 2 ∆yK0 - θ 2 0 R0Γ(1 -γ) 2 3-γ c 1+γ 0 D 2+γ s K0 = 0,
where

D 2+γ s ψ(s) = 1 Γ(1 -γ) s -∞ (s -τ ) -γ ∂ 3 sss ψ(τ )dτ
stands for the Weyl fractional derivative of order 2 + γ.

The details for the uniqueness of this paraxial equation are provided in Appendix A.

9 Proof of Theorem 6.1

In this section, we adapt the idea of [START_REF] Gomez | An oscillator driven by algebraically decorrelating noise[END_REF] to our context, and the convergence in distribution of the family (X ε )ε is proved in two steps. The first step concerns the tightness of the family, and the second one concerns the characterization of all its accumulation points as being weak solutions to a well-posed stochastic differential equation. Both points are based on the perturbed test function method and the notion of pseudogenerator allowing the use of martingale techniques [START_REF] Kushner | Approximation and weak convergence methods for random processes[END_REF]. We introduce first this key notion before going into the detailed analysis of the convergence. Let us remark that tightness criteria like [29, Theorem 4 pp. 48] require uniform bounds in probability that we do not have for (Xε)ε. This appears to be also a problem to identify the subsequence limits. To bypass this problem, we adopt the strategy proposed in [START_REF] Stroock | Multidimensional diffusion processes[END_REF]Chapter 11] and introduce a truncated process. This new process is related to the original one through a family of stopping times that goes to ∞ when we remove the truncation.

The truncated process

Let us start by writing down the system satisfied by Xε in a convenient form for the forthcoming analysis,

d dz Xε(z) = 1 ε νε z ε n j=1 l=0,1 iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 τε(κ j ,z)/ε X j,1-l ε (z)e jl .
Here, τε(κ, z) is given by [START_REF] Tappert | The parabolic approximation method in wave propagation and underwater acoustics[END_REF],

Xε = (X 1,0 ε , X 1,1 ε , . . . , X n,0 ε , X n,1 ε ) = n j=1 l=0,1 X j,l ε (z)e jl , with X j,0 ε (z) = Aε(ωj, κj, z) and X j,1 ε (z) = Bε(ωj, κj, z) j ∈ {1, . . . , n},
and (e jl ) jl is the canonical basis for

C 2 × • • • × C 2 n times.
Denoting M > 0 the cutoff parameter, which does not dependent on ε in what follows, the truncated process Xε,M is defined as being the solution to

d dz Xε,M (z) = 1 ε νε z ε n j=1 l=0,1 iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 τε(κ j ,z)/ε FM (X j,1-l ε,M (z))e jl , ( 48 
)
where

FM (X ) := X φM (X ) X ∈ C,
with φM a compactly supported smooth function such that 0 ≤ φM ≤ 1, and

φM (X ) = 1 if |X | ≤ M, 0 if |X | ≥ 2M.
Thanks to the cutoff function, φM the process Xε,M is uniformly bounded in ε by 2M with probability one. This property is used in the proof of the tightness and the identification of the limiting martingale problem.

To relate the truncated process Xε,M with the original one Xε, let us introduce Ω = C([0, ∞), C 2n ), the space of all possible trajectories for Xε and Xε,M , associated to its canonical filtration

Mz = σ(f (s), 0 ≤ s ≤ z),
and σ-field

M := σ z≥0 Mz .
We also introduce the stopping times

ηM (f ) := inf(z ≥ 0 : f (z) ≥ M ) f ∈ Ω,
and the distributions Pε and Pε,M of respectively XM and Xε,M , which are defined on the measurable space (Ω, M). From the above definitions, it is clear that

Pε = Pε,M on Mη M .
The strategy of the proof relies on this latter identity together with [START_REF] Stroock | Multidimensional diffusion processes[END_REF]Lemma 11.1.1 pp.262]. To prove the convergence in distribution, as ε → 0, of (Pε)ε to P0 in Ω, where P0 is the distribution of the process X0 defined by (44) (in other words the convergence in distribution of (Xε)ε to X0), we just have to prove that for each M > 0:

• (Pε,M )ε (or equivalently (Xε,M )ε) is tight;

• for any limit point P0,M P0 = P0,M on Mη M .

If the martingale problems associated to P0 and any P0,M are the same on Mη M , and P0 is associated to a well-posed stochastic differential equation, the latter point is a direct consequence of [START_REF] Stroock | Multidimensional diffusion processes[END_REF]Exercise 11.5.1 pp.283]. The identification of the limiting martingale problem is carried out in Section 9.5, while the tightness is proved in Section 9.4. Also, to prove the tightness of (Pε,M )ε on Ω, we only have to prove it on C([0, L], C 2n ) for any L > 0.

From the boundedness of the truncated process Xε,M , together with the expansion

νε(z/ε) = Θ √ εV (z/ε) = √ εΘ (0)V (z/ε) + O ε 3/2 |V (z/ε)| 3 , ( 49 
)
remembering that Θ is an odd function, and (48), one can write

d dz Xε,M (z) = θ 0 √ ε V z ε n j=1 l=0,1 iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 τε(κ j ,z)/ε FM (X j,1-l ε,M (z))e jl + Eε(z).
Here, θ 0 = Θ (0), and the error term Eε is uniformly bounded in ε and z ∈ [0, L] with probability one. This latter term provides a negligible contribution in the limit ε → 0 and does not play any role in the forthcoming analysis. For the sake of simplicity in the presentation, we ignore this term and consider instead the following system:

d dz Xε,M (z) = θ 0 √ ε V z ε n j=1 l=0,1 iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 τε(κ j ,z)/ε FM (X j,1-l ε,M (z))e jl . ( 50 
)

Pseudogenerator

We remind the reader about the notion of pseudogenerator allowing the use of martingale techniques while the underlying process is not a Markov process. Before introducing the notion of pseudogenerator, let us defined the p -lim. Let us introduce the following σ-algebras

G ε z = σ(V (s/ε, dp), 0 ≤ s ≤ z) 0 ≤ z ≤ L,
and S ε be the set of all measurable functions f , adapted to the filtration (G ε z ), and for which

sup z≤L E[|f (z)|] < ∞. Let f and f h in S ε for all h > 0, we say that f = p -lim h f h if sup z,h E[|f h (z)|] < +∞ and lim h→0 E[|f h (z) -f (z)|] = 0 ∀z ≥ 0.
Regarding the pseudogenerator itself, denoted by A ε , we say that f ∈ D(A ε ), the domain of A ε , and

A ε f = g if both f and g are in S ε and p -lim h→0 E ε z [f (z + h)] -f (z) h -g(z) = 0.
Here, E ε z denotes the conditional expectation given G ε z . The key property to relate the pseudogenerator to the martingale property is the following. Proposition 9.1 For any f ∈ D(A ε ), the process

M ε f (z) = f (z) -f (0) - z 0 A ε f (u)du is a (G ε z )-martingale.
This last result will allow us to characterize the limiting process of Xε,M through a well-posed martingale problem with generator A that has to be determined. Unfortunately, the pseudogenerator A ε associated to Xε,M , at some test function f , has a singular term of order 1/ √ ε. The idea of the perturbed test function method is to construct a perturbation f ε of f in order to extract an effective statistical behavior from A ε f ε . This strategy allows A ε f ε to converge to Af , where A will be the generator describing this asymptotic statistical behavior for X0,M (with distribution P0,M ).

Technical lemmas for the fluctuations V

Here, we introduce two results that are used in the forthcoming analysis to analyze the corrections of a test function. We refer to [START_REF] Gomez | An oscillator driven by algebraically decorrelating noise[END_REF]Appendices C and D] for detailed proofs of these two lemmas. The first one concerns the conditional expectation and variance.

Lemma 9.1 Setting

Gz = σ(V (s, dp), 0 ≤ s ≤ z) z ≥ 0,
where V (•, dp) is given by (5), we have for any z, h ≥ 0

E V (z + h, dp)|Gz = e -µ|p| 2β h V (z, dp), ( 51 
)
and

E V (z + h, dp)V (z + h, dq) Gz -E V (z + h, dp)|Gz E V (z + h, dq)|Gz = (1 -e -2µ|p| 2β h )r(p)δ(p -q) dp dq . (52) 
The second result concerns uniform bounds for the fluctuations V .

Lemma 9.2 Let L > 0, M > 0, D k,M := [0, L] × L ∞ ([0, L], W k,M ), with W k,M := ϕ ∈ W 1,k (S) : ϕ W 1,k ≤ M ,
where W 1,k (S) stands for the Sobolev space with k ∈ (1, ∞]. We have

E sup (z,ϕ)∈D k,M V z ε , ϕ(z, •) ≤ C + C(ε) √ ε , ( 53 
)
and for any n

∈ N * sup ε sup z∈[0,L] E sup ϕ∈W k,M V z ε , ϕ n ≤ Cn , ( 54 
)
where C, Cn and C(ε) are three positive constants, and the latter satisfies

lim ε→0 C(ε) = 0.

Tightness

In this section, we prove the tightness of (Xε,M )ε, which is a family of processes with continuous trajectories.

According to [START_REF] Billingsley | Convergence of probability measure[END_REF]Theorem 13.4], it is enough to prove its tightness in D([0, L], C 2n ), the set of càd-làg functions with values in C 2n , and equipped with the Skorohod topology. This proposition can be proved using the perturbed test function method by applying [29, Theorem 4 pp. 48]. Throughout the forthcoming analysis, we make use of the complex derivatives that are defined, for X = u + iv, as

∂X := 1 2 (∂u -i∂v) and ∂ X := 1 2 (∂u + i∂v).
These tools allow us to keep working with complex quantities, and avoid working with (50) rewritten in terms of real and imaginary parts.

In what follows, let f be a smooth bounded function on C 2n with successive bounded derivatives, and set

f ε 0 (z) := f (Xε,M (z)).
In order to prove the tightness, we make use of the pseudogenerator and associated martingale techniques.

The pseudogenerator for Xε,M at f ε 0 is given by

A ε f ε 0 (z) = θ 0 √ ε V z ε × n j=1 l=0,1 iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 τε(κ j ,z)/ε FM (X j,1-l ε,M (z))∂ X j,l f (Xε,M (z)) + n j=1 l=0,1 iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 τε(κ j ,z)/ε FM (X j,1-l ε,M (z)) ∂ X j,l f (Xε,M (z)) =: θ 0 √ ε V z ε × n j=1 l=0,1 iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 τε(κ j ,z)/ε FM (X j,1-l ε,M (z))∂ X j,l f (Xε,M (z)) + c.c. ,
where c.c. stands for complex conjugate, and will be used throughout the remaining of this proof instead of rewriting quantities that only have to be conjugated. The tightness of (Xε,M )ε is proved through [29, Theorem 4 pp. 48] by Lemmas 9.3 and 9.4 below. The main tool behind these technical requirements is the martingale property provided by Proposition 9.1, which involves the pseudogenerator A ε . Therefore, to prove the tightness, we need to remove the singular term produced by V (•/ε)/ √ ε in A ε f ε 0 , and then in the corresponding martingale itself. To this end, we construct a small perturbation f ε 1 to f ε 0 (Lemma 9.3) so that the pseudogenerator A ε (f ε 0 + f ε 1 ) will become of order one w.r.t. ε (Lemma 9.4), as well as the martingale associated to f ε 0 + f ε 1 in Proposition 9.1. Following the strategy of [29, Chapter 4], we set

f ε 1 (z) = θ 0 √ ε ∞ z ds E ε z V s ε × n j=1 l=0,1 iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 (τε(κ j ,z)+2λε(κ j )(s-z))/ε × FM (X j,1-l ε,M (z))∂ X j,l f (Xε,M (z)) + c.c. ,
for which we have the two following results.

Lemma 9.3 For any

η > 0 lim ε→0 P sup z∈[0,L] |f ε 1 (z)| > η = 0, and 
lim ε→0 sup z∈[0,L] E[|f ε 1 (z)|] = 0.

Lemma 9.4 The family

A ε f ε 0 + f ε 1 (z), ε ∈ (0, 1), 0 ≤ z ≤ L is uniformly integrable.
Proof (Proof of Lemma 9.3) According to (51) we have

E ε z V z ε + s = S e -g(p)s V z ε , dp ,
where we have introduced the notation g(p) = µ|p| 2β for simplicity. Making the change of variable s → z + εs, and integrating in s, we obtain

f ε 1 (z) = √ ε θ 0 n j=1 l=0,1 V (z/ε, dp) g(p) + 2iωj(-1) l+1 λε(κj) × iωj(-1) l 2λε(κj)c 2 0 e iω j (-1) l+1 τε(κ j ,z)/ε FM (X j,1-l ε,M (z))∂ X j,l f (Xε,M (z)) + c.c.. It turns out that |f ε 1 (z)| ≤ √ ε K n j=1 S V (z/ε, dp) g(p) + 2iωjλε(κj) + S V (z/ε, dp) g(p) -2iωjλε(κj) ,
for some constant K > 0. Let us denote

V (s, ϕ1,j,ε) = S V (s, dp) g(p) ± 2iωjλε(κj)
, where ϕ1,j,ε(p

) := 1 g(p) ± 2iωjλε(κj) , ( 55 
) which is Lipschitz in p if β ≥ 1/2, or belongs to W 1,k (S) for k ∈ (1, 1/(1 -2β)) if β < 1/2 since S |∂pϕ1,j,ε(p)| k dp ≤ C |p| k(2β-1) < ∞.
Therefore, ϕ1,j,ε ∈ W k,C for some constant C > 0 and

|V (z/ε, ϕ1,j,ε)| ≤ sup ϕ∈W k,C |V (z/ε, ϕ)|, so that |f ε 1 (z)| ≤ K √ ε sup ϕ∈W k,C |V (z/ε, ϕ)|.
Consequently, according to (54) we obtain

lim ε→0 sup z∈[0,L] E[|f ε 1 (z)|] = 0.
Also, we have for any η > 0

P sup z∈[0,L] |f ε 1 (z)| > η ≤ P sup z∈[0,L] |f ε 1 (z)| > η, √ ε sup (s,ϕ)∈[0,L/ε]×W k,C |V (s, ϕ)| ≤ η + P √ ε sup (s,ϕ)∈[0,L/ε]×W k,C |V (s, ϕ)| > η =: P1,ε + P2,ε,
where P1,ε = 0 since K η ≤ η for η small enough but independent of ε. Finally, according to (53), together with the Markov inequality, we obtain

0 ≤ P2,ε ≤ 1 η E √ ε sup (s,ϕ)∈[0,L/ε]×W k,C
|V (s, ϕ)| , so that limε→0 P2,ε = 0, which concludes the proof of the lemma.

Proof (Proof of Lemma 9.4) After lengthy but straightforward algebra, we obtain

A ε (f ε 0 + f ε 1 )(z) = A ε 0 (z) + A ε 1 (z), (56) 
where

A ε 0 (z) := n j=1 l=0,1 θ 2 0 V (z/ε)V (z/ε, dp) g(p) + 2iωj(-1) l+1 λε(κj) × n j =1 l =0,1
F 1,j,j ,l,l ,ε (z)e i(ω j (-1) l+1 τε(κ j ,z)+ω j (-1) l +1 τε(κ j ,z))/ε + F 2,j,j ,l,l ,ε (z)e i(ω j (-1) l+1 τε(κ j ,z)-ω j (-1) l +1 τε(κ j ,z))/ε + G1,j,ε(z) + G2,j,ε(z)e 2iω j (-1) l+1 τε(κ j ,z)/ε + c.c.,

A ε 1 (z) := n j=1 l=0,1 θ 0 √ ε Θ( √ εV (z/ε))V (z/ε, dp) g(p) + 2iωj(-1) l+1 λε(κj)
Hj,ε(z)e iω j (-1) l+1 τε(κ j ,z)/ε + c.c., with F 1,j,j ,l,l ,ε (z) := i 2 ωjω j (-1) l+l 4λε(κj)λε(κ j )c 4 0

FM (X j,1-l ε,M (z))FM (X j ,1-l ε,M (z)) × ∂ 2 X j ,l X j,l f (Xε,M (z)), F 2,j,j ,l,l ,ε (z) := -i 2 ωjω j (-1) l+l 4λε(κj)λε(κ j )c 4 0 FM (X j,1-l ε,M (z))FM (X j ,1-l ε,M (z)) × ∂ 2 X j ,l X j,l f (Xε,M (z)), G 1,j,l,ε (z) := -i 2 ω 2 j 4λ 2 ε (κj)c 4 0 FM (X j,l ε,M (z))∂X FM (X j,l ε,M (z))∂ X j,l f (Xε,M (z)), G 2,j,l,ε (z) := i 2 ω 2 j 4λ 2 ε (κj)c 4 0 FM (X j,l ε,M (z))∂ X FM (X j,l ε,M (z))∂ X j,l f (Xε,M (z)), H j,l,ε (z) := -i 2 ω 2 j 4λ 2 ε (κj)c 4 0 FM (X j,l ε,M (z))∂ X j,l f (Xε,M (z)).
Note that both A ε 0 and A ε 1 depend on the original test function f , even if we drop this dependency for notational simplicity. To conclude the proof of the tightness, we can see that both A ε 0 and A ε 1 are uniformly integrable thanks to the following lemma. Lemma 9. [START_REF] Caputo | Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation[END_REF] We have sup

ε,z∈[0,L] E[|A ε 0 (z)| 2 ] + E[|A ε 1 (z)| 2 ] < ∞.
Proof (Proof of Lemma 9.5) Let us treat only the term A ε 1 involving a term Θ( √ εV ). The treatment of A ε 0 follows the same lines once we get ride of the function Θ in A ε 1 . From (49), we have

A ε 1 (z) = n j=1 l=0,1 θ 2 0 V (z/ε)V (z/ε, dp) g(p) + 2iωj(-1) l+1 λε(κj)
Hj,ε(z)e iω j (-1) l+1 τε(κ j ,z)/ε + c.c.

+ O ε|V (z/ε)| 3 n j=1 |V (z/ε, ϕ1,j,ε)| , (57) 
where ϕ1,j,ε is defined by (55). Following the lines of the proof of Lemma 9.3, we obtain

|A ε 1 (z)| 2 ≤ K sup ϕ∈W k,C |V (z/ε, ϕ)| 4 + ε 2 sup ϕ∈W k,C |V (z/ε, ϕ)| 8 ,
for some appropriate positive constants K and C, with k = ∞ if β ≥ 1/2, and k

∈ (1, 1/(1 -2β)) if β < 1/2.
This concludes the proof of Lemma 9.5, and then the one of Lemma 9.4 owing (56).

Identification of the limit

In this section we identify all the limit points of (Xε,M )ε through a martingale problem with infinitesimal generator

LM f (X ) = n j=1 l=0,1 θ 2 0 ω 2 j 4c 2 0 r(p) g(p) + 2i(ωj/c0)(-1) l+1 × FM (X j,1-l )FM (X j,l ) ∂ 2 X j,1-l X j,l f (X ) + FM (X j,1-l ε,M )FM (X j,1-l ) ∂ 2 X j,l X j,l f (X ) + FM (X j,l )∂X FM (X j,l )∂ X j,l f (X ) + c.c.. (58)
Let us start with the following remark. In view of (57) together with (54), we have sup

ε,z∈[0,L] E[|A ε 1 (z) -A ε 1 (z)|] = O(ε), with A ε 1 (z) := n j=1 l=0,1 θ 2 0 V (z/ε)V (z/ε, dp) g(p) + 2iωj(-1) l+1 λε(κj)
H j,l,ε (z)e iω j (-1) l+1 τε(κ j ,z)/ε + c.c..

As a result, remembering (56), we have

sup z∈[0,L] E[|A ε (f ε 0 + f ε 1 )(z) -A ε 0 (z) -A ε 1 (z)|] = O(ε),
so that to determine the infinitesimal generator of the limit points we only have to focus on A ε 0 + A ε 1 . For this term, we separate the terms which exhibit a fast phase from the others, since the former will average out and do not contribute at the limit ε → 0. We then write

A ε 0 (z) + A ε 1 (z) = B ε 0 (z) + B ε 1 (z),
where

B ε 0 (z) := n j=1 l=0,1 θ 2 0 V (z/ε)V (z/ε, dp) g(p) + 2iωj(-1) l+1 λε(κj)
× F 1,j,j,l,1-l,ε (z) + F 2,j,j,l,l,ε (z) + G 1,j,l,ε (z) + c.c., and

B ε 1 (z) := A ε 1 (z) + n j=1 l=0,1 θ 2 0 V (z/ε)V (z/ε, dp) g(p) + 2iωj(-1) l+1 λε(κj) × j =j
or l=l F 1,j,j ,l,l ,ε (z)e i(ω j (-1) l+1 τε(κ j ,z)+ω j (-1) l +1 τε(κ j ,z))/ε + j =j or l=1-l F 2,j,j ,l,l ,ε (z)e i(ω j (-1) l+1 τε(κ j ,z)-ω j (-1) l +1 τε(κ j ,z))/ε + G 2,j,l,ε (z)e 2iω j (-1) l+1 τε(κ j ,z)/ε + c.c..

The term B ε 1

Because of its rapid phases, this term does not contribute to the limit. To prove this, we start by introducing another test function to average out the stochastic terms involving V . For notational convenience, and without loss of generality, we only treat the term involving A ε 1 . The other terms are treated exactly the same way.

Setting

f ε 2 (z) := ∞ z ds n j=1 l=0,1 θ 2 0 E ε z [V (s/ε, dp)V (s/ε, dq)] -E[V (0, dp)V (0, dq)] g(p) + 2iωj(-1) l+1 λε(κj)
× H j,l,ε (z)e iω j (-1) l+1 (τε(κ j ,z)+2λε(κ j )(s-z))/ε ,

we have A ε (f ε 2 )(z) = -A ε 1 (z) + A ε 1 (z) + √ ε R ε 1 (z)
, where

A ε 1 (z) := n j=1 l=0,1 θ 2 0 r(p) g(p) + 2iωj(-1) l+1 λε(κj)
H j,l,ε (z)e iω j (-1) l+1 τε(κ j ,z)/ε + c.c., and the following lemma.

Lemma 9. [START_REF] Chen | Fractal density modeling of crustal heterogeneity from the KTB deep hole[END_REF] We have

sup z∈[0,L] E[|f ε 2 (t)|] = O(ε) and sup ε,z∈[0,L] E[|R ε 1 (z)|] < ∞.
Proof (Proof of Lemma 9.6) Making the change of variable s → z + εs, together with (52), and integrating in s, yield

f ε 2 (z) = ε n j=1 l=0,1
θ 2 0 H j,l,ε (z)e iω j (-1) l+1 τε(κ j ,z)/ε × V (z/ε, dp)V (z/ε, dq) -r(p)δ(p -q)dpdq (g(p) + 2iωj(-1) l+1 λε(κj))(g(p) + g(q) + 2iωj(-1) l+1 λε(κj))

=: f ε 21 (z) + f ε 22 (z),
where f ε 21 corresponds to the term with V (z/ε, dp)V (z/ε, dq) in f ε 2 , and f ε 22 the one with r(p). It is direct to see that sup

z∈[0,L] E[|f ε 22 (z)|] = O(ε),
and we only need to focus on f ε 21 . Now, let us denote

V (s, ϕ2,j,s,ε) = S S V (s, dp)V (s, dq) g(p) ± 2iωjλε(κj) g(p) + g(q) ± 2iωjλε(κj)
, where ϕ2,j,s,ε(p) := V (s, ϕ3,j,p,ε), and ϕ3,j,p,ε(q) := 1 g(p) ± 2iωjλε(κj) g(p) + g(q) ± 2iωjλε(κj) .

In the same way as for ϕ1,j,ε in the proof of Lemma 9.3, we can remark that for any p the function ϕ3,j,p,ε belongs to W k,C for some constant C > 0 independent to p, and so that sup we have φ2,j,s,ε W 1,k (S) ≤ 1, and then φ2,j,s,ε ∈ W k,1 . As a result, we obtain

|V (z/ε, ϕ 2,j,z/ε,ε )| = sup ϕ∈W k,C |V (z/ε, ϕ)| |V (z/ε, φ2,j,z/ε,ε )| ≤ sup ϕ∈W k,C 1 |V (z/ε, ϕ)| 2 , with C1 = max(1, C ), so that sup z∈[0,L] E[|f ε 21 (z)|] = O(ε),
according to (54). The term R ε 1 (z) is treated in a similar way and we omit the precise details. This concludes the proof of Lemma 9.6. Now, to deal with the rapid phases of A ε 1 , we introduce the following test function

f ε 3 (z) := ∞ z ds n j=1 l=0,1 θ 2 0 r(p) g(p) + 2iωj(-1) l+1 λε(κj)
× H j,l,ε (z)e iω j (-1) l+1 (τε(κ j ,z)+2λε(κ j )(s-z))/ε e -√ ε(s-z) , so that making again the change of variable s → z + εs and integrating in s, we have

f ε 3 (z) := ε n j=1 l=0,1 θ 2 0
r(p)H j,l,ε (z)e iω j (-1) l+1 τε(κ j ,z)/ε (ε 3/2 -2iωj(-1) l+1 λε(κj))(g(p) + 2iωj(-1) l+1 λε(κj)) ,

satisfying sup z∈[0,L] E[|f ε 3 (z)|] = O(ε).
Now, differentiating in z, we obtain

A ε (f ε 3 )(z) = -A ε 0 (z) + R ε 2 (z), with R ε 2 (z) := ∞ z ds n j=1 l=0,1 θ 2 0 r(p) g(p) + 2iωj(-1) l+1 λε(κj) × e iω j (-1) l+1 (τε(κ j ,z)+2λε(κ j )(s-z))/ε e -√ ε(s-z) × d dz H j,l,ε (z) + iωj(-1) l+1 2ελε(κj)c 2 0 H j,l,ε (z)Θ( √ εV (z/ε)) + √ ε ,
and for which

|R ε 2 (z)| ≤ ε K |V (z/ε)| √ ε + |V (z/ε)| 2 + √ ε 1 |ε 3/2 -2iωj(-1) l+1 λε(κj)| ,
after the change of variable s → z + εs, and integrating in s. As a result, thanks to (54), we have

sup z∈[0,L] E[|R ε 2 (z)|] = O( √ ε).
To sum up, we obtain sup

z∈[0,L] E[|A ε (f ε 0 + f ε 1 + f ε 2 + f ε 3 )(z) -B ε 0 (z)|] = O( √ ε),
and it only remains to determine the asymptotic of B ε 0 .

The term B ε 0

This term needs a careful treatment to average the random process. In fact, for this term we cannot proceed as for B ε 1 with a test function like f ε 2 since there is no remaining phase. This would provide a term of the form dp r(p)/g(p) = ∞ for long-range correlations. The asymptotic of B ε 0 is given by the following result.

Proposition 9.3 We have

lim ε→0 sup z∈[0,L] E z 0 B ε 0 (s) -LM f (Xε,M (s))ds = 0,
where LM is defined by (58).

Proof (Proof of Proposition 9.3) Here, we only have to prove

lim ε→0 sup z∈[0,L] E z 0 B ε 0 (s) -Lε,M f (Xε,M (s))ds = 0, (59) 
with

Lε,M f (X ) := n j=1 l=0,1 θ 2 0 dp r(p) g(p) + 2iωj(-1) l+1 λε(κj) × F 1,j,j,l,1-l,ε (z) + F 2,j,j,l,l,ε (z) + G 1,j,l,ε (z) ,
since passing from Lε,M to LM = Lε=0,M being straightforward owing [START_REF] Ren | The fractional Kelvin-Voigt model for Rayleigh surface waves in viscoelastic FGM infinite half space[END_REF]. Also, to simplify the notations in this proof, let us denote

F j,l,ε (z) := F 1,j,j,l,1-l,ε (z) + F 2,j,j,l,l,ε (z) + G 1,j,l,ε (z) g(p) + 2iωj(-1) l+1 λε(κj) , ( 60 
) so that z 0 B ε 0 (s) -Lε,M f (Xε,M (s))ds = n j=1 l=0,1 θ 2 0 z 0 ds F j,l,ε (s) × V (s/ε, dp)V (s/ε, dq) -r(p)δ(p -q)dpdq.
To prove (59), we decompose the interval [0, z] over a uniform grid with a small stepsize of order ε in order to get ride of the s-dependence of F j,l,ε , and then average out the V 's. Let η > 0 be an arbitrary small parameter and write

z 0 B ε 0 (s) -Lε,M f (Xε,M (s))ds = [z/( √ εη)]-1 m=0 (m+1) √ εη m √ εη B ε 0 (s) -Lε,M f (Xε,M (s))ds + z [z/( √ εη)] B ε 0 (s) -Lε,M f (Xε,M (s))ds =: R ε 3 (z) + R ε 4 (z). For R ε 4 , we have E[|R ε 4 (z)|] ≤ (z -[z/( √ εη)] √ εη) sup s∈[0,L] E[|B ε 0 (s)|] + K ≤ K √ ε,
where K is some constant that bounds uniformly Lε,M f (Xε,M (s)). The last inequality is obtained by bounding sup ε,s∈[0,L] E[|B ε 0 (s)|] as a subcase of Lemma 9.5. Regarding R ε 3 , we have

R ε 3 (z) = n j=1 l=0,1 θ 2 0 [z/( √ εη)]-1 m=0 F j,l,ε (mqη) × (m+1) √ εη m √ εη ds V (s/ε, dp)V (s/ε, dq) -r(p)δ(p -q)dpdq + n j=1 l=0,1 θ 2 0 [z/( √ εη)]-1 m=0 (F j,l,ε (s) -F j,l,ε (m √ εη)) × (m+1) √ εη m √ εη ds V (s/ε, dp)V (s/ε, dq) -r(p)δ(p -q)dpdq =: R ε 31 (z) + R ε 32 (z). For R ε 32 (z), we have from (50) E[|R ε 42 (z)|] ≤ K √ ε [z/( √ εη)]-1 m=0 (m+1) √ εη m √ εη ds s m √ εη ds ≤ η K ,
where the constant K > 0 is obtained through similar arguments as to obtain the first part of Lemma 9.6 using the denominator of (60). Finally for R ε 31 (z), using the Cauchy-Schwarz inequality w.r.t. the expectation, we have

E[|R ε 31 (z)|] ≤ K [z/( √ εη)]-1 m=0 I ε m,η ,
for some constant K > 0, with

I ε m,η := E (m+1) √ εη m √ εη ds V (s/ε, dp)V (s/ε, dq) -r(p)δ(p -q) dp dq 2 .
Therefore, using the Gaussianity of V , we have

I ε m,η = (m+1) √ εη m √ εη ds1 (m+1) √ εη m √ εη ds2 × E V s1 ε , dp1 V s2 ε , dq1 E V s1 ε , dp2 V s2 ε , dq2 + E V s1 ε , dp1 V s2 ε , dq2 E V s1 ε , dp2 , V s2 ε , dq1
and by symmetry w.r.t. s1 and s2 we obtain

I ε m,η ≤ dp dq r(p) r(q) (m+1) √ εη m √ εη ds1 s 1 m √ εη
ds2 e -(g(p)+g(q))(s 1 -s 2 )/ε . Now, to bound I ε m,η properly, we consider two cases. Integrating without any caution would provide a term of the form r(p) r(q)/(g(p) + g(q)) which is not integrable at 0 in case of long-range correlations.

Let η > 0 be an arbitrary small parameter. If |p| ≤ η , we can bound the exponential term by 1 and obtain a term of the form ε η 2 {|p|≤η } r(p)dp, upto a constant independent of m, ε, η or η , and where the term εη 2 is compensated by the one of the above sum in m. However, this term goes to 0 as η → 0 thanks to the integrability of r and the dominated convergence theorem. Now for |p| > η , that is we place ourselves away from 0, the point that can produce nonintegrability, we have

(m+1) √ εη m √ εη ds1 s 1 m √ εη ds2 e -(g(p)+g(q))(s 1 -s 2 )/ε ≤ ε g(p) √ εη 0 (1 -e -g(p)s 1 /ε )ds1 ≤ K η ε 3/2 η.
As a result, one can finally write

E[|R ε 31 (z)|] ≤ K {|p|≤η } r(p)dp 1/2 + K η ε 1/4 ,
which concludes the proof of Proposition 9.3.

All the limit points are then solution to a martingale problem associated to the infinitesimal generator LM given by (58). From that definition it is direct to see that for ||X || ≤ M , with X ∈ C 2n , we have

LM f (X ) = Lf (X ), where Lf (X ) := LfM=∞(X ) = n j=1 l=0,1 θ 2 0 ω 2 j 4c 2 0 r(p) g(p) + 2i(ωj/c0)(-1) l+1 × X j,1-l X j,l ∂ 2 X j,1-l X j,l f (X ) + X j,1-l ε,M X j,1-l ∂ 2 X j,l X j,l f (X ) + X j,l ∂X X j,l ∂ X j,l f (X ) + c.c..
Also, one can see that there is no coupling between two components (X j,0 , X j ,1 ) and (X j,0 , X j ,1 ) for j = j , meaning that the components of the the limiting processes are independent. Therefore, we only have to look at the well-posedness of the (untruncated) martingale problem associated to one coordinate, that is for one frequency. The corresponding infinitesimal generator then writes Finally, from a martingale representation theorem [25, Proposition 4.6 pp. 315], upto an extension of the underlying probability space, the solutions to this martingale problem can be represented as weak solutions to the following stochastic differential equation 

Lf (X ) = l=0,1 θ 2 0 ω 2 4c 2 0 r(p) g(p) + 2i(ω/c0)(-1) l+1 × X 1-l X l ∂ 2 X 1-l X l f (X ) + X 1-l X 1-l ∂ 2 X l X l f (X ) + X l ∂ X l f (X ) + c.c. = θ 2 0 ω 2 Γc(ω) 4c 2 0 X 1 X 0 ∂ 2 X 1 X 0 f (X ) + X 1 X 0 ∂ 2 X 1 X 0 f (X ) + X 1 X 1 ∂ 2 X 0 X 0 f (X ) + X 0 X 0 ∂ 2 X 1 X 1 f (X ) + θ 2 0 ω 2 Γc(ω) 8c 2 0 X 0 ∂ X 0 f (X ) + X 1 ∂ X 1 f (X ) + X 0 ∂ X 0 f (X ) + X 1 ∂ X 1 f (X ) + i θ 2 0 ω 2 Γs(ω) 8c 2 0 X 0 ∂ X 0 f (X ) -X 1 ∂ X 1 f (X ) -X 0 ∂ X 0 f (X ) + X 1 ∂ X 1 f (X ) ,
dX0(z) = - ω 2 Γc(ω) 4c 2 0 0 1 1 0 X0(z) • dW1(z) -i ω 2 Γc(ω) 4c 2 0 0 1 -1 0 X0(z) • dW2(z) -i ω 2 Γs(ω) 8c 2 

Conclusion

In this paper, we have analyzed high-frequency waves propagating in randomly layered media with longrange correlations in the weak-coupling regime. this context, the waves are affected in two ways. First, they exhibit a random travel time-shift that can be characterized as a fractional Brownian motion (or a Brownian motion for γ = 1 in ( 7)), but with a standard deviation which is very large compared to the pulse width. Second, the wave-front spreading is deterministic and can be characterized as the solution to a paraxial wave equation involving a pseudo-differential operator. This operator exhibits a frequency-depend attenuation and phase modulation depending on the correlation function of the medium fluctuations, and ensuring the causality of the limiting paraxial equation as well as the Kramers-Kroning relations. The frequency-dependent attenuation is shown to be close to the form (1) for λ ∈ [START_REF] Bailly | Parabolic and Gaussian white noise approximation for wave propagation in random media[END_REF][START_REF] Bal | Asymptotics of the phase of the solutions of the random Schrödinger equation[END_REF]. Moreover, this pseudodifferential operator can be approximated by a fractional Weyl derivative, with order depending on γ, the power law decay of the correlation function of the random medium (see [START_REF] Collins | Parabolic equation techniques for seismology, seismo-acoustics, and arctic acoustics[END_REF]).

The noise model considered in this paper presents some restrictions that could be removed since the scattering coefficients rely on the correlation function R, not the particular structure of V . Considering more general models could also allow us to obtain exponents λ ∈ (0, 1) for the attenuation power law, and the rough path theory could be helpful to handle more general settings. Nevertheless, our method opens the road to analyze more general 3D settings with random variations with respect to the transverse section, which will be the aim of future works.

A Uniqueness of [START_REF] Gelinsky | Dynamic poroelasticity of thinly layered structure[END_REF] and [START_REF] Holm | Waves with power-law attenuation[END_REF] In this appendix, we only treat the uniqueness for (15) since the methodology for [START_REF] Holm | Waves with power-law attenuation[END_REF] is exactly the same.

From the linearity of [START_REF] Gelinsky | Dynamic poroelasticity of thinly layered structure[END_REF], it enough to prove that any solution K to [START_REF] Gelinsky | Dynamic poroelasticity of thinly layered structure[END_REF] in C 0 z ([0, ∞), S 0,s,y (R × R 2 )) ∩ C 1 z ((0, ∞), S 0,s,y (R × R 2 )), and vanishing at z = 0, is constant equal to 0. In other words, for any Z > 0 and φ ∈ S0(R × R 2 ), we need to prove that K(Z), φ S ,S = 0. To this end, let us consider in a first time ψ ∈ S(R × R 2 ), and ϕ(z, s, y) = K(•, •, z -Z) * ψ(s, y) (z, s, y)

∈ [0, Z] × R × R 2 ,
where K is defined in the Fourier domain by [START_REF] Garnier | Coupled paraxial wave equations in random media in the white-noise regime[END_REF]. Hence, ϕ satisfies 

B Proof of Proposition 3.1

The analyticity of ω → ω 2 Γc(ω) and ω → ω 2 Γs(ω) over the upper complex half-plane is direct. Let us now introduce a notation and make two remarks. Defining the inverse Fourier transform of (18) as F -1 (ψ)(s) := 1 2π e -iωs ψ(ω)dω, the Fourier transform of the Hilbert transform reads F -1 (H(ψ))(s) = -i sign(s) F -1 (ψ)(s).

From this relation, we that H(S(R)) ⊂ S(R). The second remark is that by applying two integrations by part we have For γ > 1, the convergence of Wε to W0 is given by an invariant principle (see [START_REF] Marty | Acoustic waves in long-range random media[END_REF]Theorem 4] for a more advanced results), and for γ ∈ (0, 1] we refer to [START_REF] Gomez | An oscillator driven by algebraically decorrelating noise[END_REF]Proposition 1.3]. This concludes the proof of the proposition.

D Proof of Proposition 4.2

The proof is in two steps. The first step consists in approximating the time delay in a more convenient form. The second step consists in looking at the expectation and variance of this new expression to obtain the convergence in probability.

For the first step, using the Taylor expansion of u → √ 1 + u at the second order, we have

∆Tε(L) ε = 1 8c0ε L 0 ν 2 ε (z/ε)dz + E 1 ε (L),
with for any η > 0 lim

ε→0 P |E 1 ε (L)| > η = 0.
In fact, for any η > 0 we have

P |E 1 ε (L)| > η ≤ P |E 1 ε (L)| > η, √ ε sup z∈[0,L/ε] |V (z/ε)| ≤ η + P √ ε sup z∈[0,L/ε] |V (z/ε)| > η ,
where the second term on the r. 

Figure 1 :

 1 Figure 1: Illustration of the physical setting.

Figure 2 :

 2 Figure 2: Illustration of three realizations of the random process defined by (4) with long-range correlations for the left-picture, and short-range correlations for the right-picture. Here, µ = 1, α = 1/4, a(p) = 1 (-10,10) (p), β = 1/2 (that is γ = 1/2) for the left-picture illustrating the long-range correlations, and β = 1/6 (that is γ = 3/2) for the right-picture illustrating short-range correlations.

Theorem 6 . 1

 61 Let n ≥ 1, and set Xε(ω, κ, z) = Aε(ω, κ, z) Bε(ω, κ, z) . For any (ω1, . . . , ωn) and (κ1, . . . , κn), the process Xε, defined by Xε(z) := Xε(ω1, κ1, z), . . . , Xε(ωn, κn, z) , converges in distribution in C((0, ∞), C 2n ) to a process X0(z) := X0(ω1, z), . . . , X0(ωn, z) , (44)

  (s, y) -p L tr (s, y)| 2 = 0, which concludes the proof of the proposition.

Proposition 9 . 2

 92 The family (Xε,M )ε is tight in D([0, L], C 2n ).

  p∈S |ϕ2,j,s,ε(p)| ≤ sup ϕ∈W k,C |V (s, ϕ)|. Also, we have ∂pϕ2,j,s,ε(p) = V (s, φ3,j,p,ε), with φ3,j,p,ε belonging to W k,C , where C > 0 does not depend on p, and then sup p∈S |∂pϕ2,j,s,ε(p)| ≤ sup ϕ∈W k,C |V (s, ϕ)|. Considering C = max(C , C ), we have ϕ2,j,s,ε W 1,k (S) ≤ sup ϕ∈W k,C |V (s, ϕ)|, and setting φ2,j,s,ε := ϕ2,j,s,ε sup ϕ∈W k,C |V (s, ϕ)| ,

for X ∈ C 2

 2 sin(2ωs/c0)ds.

  dz, where W1 and W2 are two independent real-valued standard Brownian motions, and • stands for the Stratonovich integral. This equation is readily well-posed, in the sense of probability law, since the diffusion coefficients and drift are linear [25, Theorem 2.5 pp. 287 and Proposition 3.20 pp. 309]. As a result, all the accumulation points have the same distribution, and this concludes the proof of Theorem 6.1.

  z = Z) = ψ. Using that ϕ(z) ∈ S(R × R 2 ) for any z ∈ [0, Z], we can consider g(z) = ∂s K(z), ϕ(z) S ,S ,which satisfiesd dz g(z) = ∂ 2 sz K(z), ϕ(z) S ,S + ∂s K, ∂zϕ(z) S ,S = (-c0∆y/2 + I) K, ϕ(z) S ,S -K, ∂ 2 sz ϕ(z) S ,S = -K, (∂ 2 sz + c0∆y/2 -I)ϕ(z) function g being constant in z, we have ∂s K(Z), ψ S ,S = g(Z) = g(0) = -K(0), ∂sϕ(0) S ,S = 0, so that ∂s K(Z) = 0 in S(R × R 2 ), and then K(s, y, Z) = K(y, Z) does not vary is s. As a result, for any φ ∈ S0(R × R 2 ), we have K(Z), φ S ,S = K(y, Z) φ(s, y)ds dy = 0.

ω 2 ( 2 0 2 ∞ 0 RH(ω 2 = ω 2 0 V 0 E

 22202200 Γc(ω) + i Γs(ω)) = -c (s)e 2iωs/c 0 ds, so that for any test function ψ ∈ S(R)H(ω 2 Γc(ω )), ψ S s) dω H(cos(2ω s/c0))(ω)ψ(ω),thanks to the Fubini theorem since R is integrable. Now, using thatH(cos(2ω s/c0))(ω) = sin(2ωs/c0), we obtain Γc(ω )), ψ S ,S = -s) dω sin(2ωs/c0)ψ(ω) Γs(ω), ψ S ,S ,yielding the first relation. To obtain the second relation, we follow the same lines but now usingH(sin(2ω s/c0))(ω) = -cos(2ωs/c0),providing the minus sign for this relation, and then concludes the proof. (u/ε)du, we have from a Taylor expansion of Θ at the second order (remember that Θ is odd, and then Θ (0) = 0), and (54)E |Wε(L) -Wε(L)| ≤ 1 c0σε L |νε(u/ε) -√ εθ 0 V (u/ε)| du ≤ sup |Θ |L c0σε ε 3/2 sup z∈[0,L/ε] E |V (z)| 3 -→ 0 ε→0, so that we only need to focus on Wε according to [4, Theorem 3.1 pp. 27].

2 L 0 |V 2 ε 2 ε, 1 For γ > 1 2 ∞ 0 R→0 2 ∞ 0 RFor γ = 1

 20221120201 h.s. goes to 0 as ε → 0, thanks to (53) together with the Markov inequality. Now, working on the event (√ ε sup z∈[0,L/ε] |V (z/ε)| ≤ η ), we have for η ∈ (0, 1/ sup |Θ |) |E 1 ε (L)| ≤ √ ε sup |Θ | 3 4c0(1 -η sup |Θ |) 5/(z/ε)| 3 , so that E |E 1 ε (L)|1 (sup z∈[0,L/ε] |V (z/ε)|≤η ) ≤ sup |Θ | 3 L 4c0(1 -η sup |Θ |) 5/2 √ ε sup z∈[0,L/ε] E[|V (z/ε)| 3 ] -→ 0 ε→0, thanks to (54). Also, we have from a second order Taylor expansion for Θ (using that Θ (0) (z/ε)dz = Dε(L) + E 2 ε ((z/ε)dz -Dε(L) ≤ ε |θ 0 | sup |Θ |L 24c0 sup z∈[0,L/ε] E[|V (z)| 4 ] + ε 3 sup |Θ | 2 L 288c0 sup z∈[0,L/ε] E[|V (z)| 6 ],which goes to 0 as ε → 0 thanks to (54). As a result, from the Markov inequality, we have for any η > 0lim ε→0 P ∆Tε(L) ε -Dε(L) > η = 0,so that we only need to focus on the convergence of Dε(L). Regarding its expectation we haveE[Dε(L)] = θ 2 0 R(0)L 8c0 .Now, thanks to the Chebyshev inequality, for any η > 0 we have P Dε(L)which concludes the proof of the proposition thanks to the dominated convergence theorem.E Proof ofLemma 8.Thanks to the integrability of the correlation function and making the change of variable s → l0s, we have Γc(ω, l0) + i Γs(ω, l0) = (s)e 2iωsl 0 /c 0 ds -→ l 0 (s)ds = Γc(0), using the dominated convergence theorem. For γ ∈ (0, 1) After integrating in s, we have Γc(ω, l0) + i Γs(ω, l0) |p| 2α (µ|p| 2β /l0 -2iω/c0) . Now, making the change of variable p → l 1/(2β) 0 p gives Γc(ω, l0) + i Γs(ω, l0) = 2 |p| 2α (µ|p| 2β -2iω/c0) |p| 2α (µ|p| 2β -2iω/c0) . This limit can be rewritten as a(0) ∞ -∞ dp |p| 2α (µ|p| 2β -2iω/c0) = After integrating in s, we have Γc(ω, l0) + i Γs(ω, l0) = 2 l0| ln(l0)| r S -r S a(p)dp |p| 2α (µ|p| 2β /l0 -2iω/c0) p 2α (µ p 2β /l0 -2iω/c0) = I l 0 + II l 0 + III l 0 + IV l 0 ,

where the decomposition is defined as follows:

For I l 0 , using the triangular inequality and making the change of variable p → l 1/(2β) 0 p gives

For II l 0 , the idea being just to isolate the point p = 0, we have

For III l 0 , we have after the change of variable p → l

Finally, for IV l 0 , integrating in p we have