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Introduction

Reinforcement learning (RL) is a machine learning framework which learns to perform a task by repeatedly interacting with the environment. This framework is widely utilized in a wide range of Table 1: This table summarizes the different model-based and mode-free state of the art algorithms available in the literature for CMDPs. We note that the proposed algorithm in this work is able to achieve the best sample complexity among them all while achieving zero constraint violation as well. For the works considering different setting such as episodic setting, we provide a detailed method to convert the result to the form of sample complexity in infinite horizon setup in Appendix A.1.

• This is the first attempt that provides model-free algorithm for CCMDPs that achieve optimal sample complexity with zero constraint violation. The key challenge beyond CMDP is the formulation of unbiased estimator for Lagrangian function that allows for the analysis to go through.

• We utilized the idea of conservative constraints in the dual domain to derive the zero constraint violations. Conservative constrains were used recently for showing zero constraint violations in online constrained convex optimization in [START_REF] Akhtar | Conservative stochastic optimization with expectation constraints[END_REF], while the problem of CCMDP is much more challenging than online constrained optimization. The dual constraint violations are then used to derive the primal domain results utilizing the novel analysis unique to this work (cf. Sec. 5.3). We remark that directly applying the conservative constraint idea in the primal domain does not result in the optimal dependence on the discount factor.

• The proposed algorithm utilizes adaptive state-action pair sampling (cf. Eq. ( 14)), due to which the stochastic gradient estimates exhibit unbounded second order moments. This makes the analysis challenging, and standard saddle point algorithms cannot be used. This difficulty is handled by using KL divergence as the performance metric for the dual update similar to [START_REF] Zhang | Cautious reinforcement learning via distributional risk in the dual domain[END_REF].

• To provide an empirical evidence, we solve a problem of queuing systems in Sec. 6 and show the efficacy of the proposed algorithm.

Related work

Unconstrained RL. In the recent years, reinforcement learning has been well studied for unconstrained tabular settings. Different algorithms are compared based upon the sample complexity of the algorithm which describes the number of samples T required to achieve an optimal policy. For the infinite horizon discounted reward setting, [START_REF] Lattimore | Pac bounds for discounted mdps[END_REF]) modified the famous model-based UCRL algorithm [START_REF] Jaksch | Near-optimal regret bounds for reinforcement learning[END_REF] to achieve the PAC upper bound of Õ |S||A|

(1-γ) 3 2 on the sample complexity. [START_REF] Li | Tightening the dependence on horizon in the sample complexity of q-learning[END_REF] improved the model-free vanilla Qlearning algorithm to achieve the sample Complexity Õ |S||A| (1-γ) 4 2 . For the episodic setting with episode length of H, [START_REF] Gheshlaghi Azar | Minimax regret bounds for reinforcement learning[END_REF] proposed the model-based UCBVI algorithm and achieved a sample complexity of Õ H 3 |S||A| 2 which is equivalent to the lower bound provided in the paper. Along the similar lines, (Jin et al., 2018) proposed a model-free UCB Q-learning and achieved the sample complexity of Õ( H 5 |S||A| 2 ). Above all, there exists a number of near-optimal algorithms (either model-based or model-free) in the unconstrained tabular settings for RL. Model-based Constrained RL. Once the estimated transition model is either given or estimated accurately enough, it makes intuitive sense to utilize a model-based algorithm to solve the constrained RL (CRL) problem because the problem boils down to solving only a linear program [START_REF] Altman | Constrained Markov decision processes[END_REF]. Under the model-based framework, the authors [START_REF] Efroni | Exploration-exploitation in constrained mdps[END_REF] proposed 4 algorithms namely OptCMDP & OptCMDP-bonus, OptDual, and OptPrimalDual which solve the problem in the primal, dual, and primal-dual domains, respectively. [START_REF] Brantley | Constrained episodic reinforcement learning in concave-convex and knapsack settings[END_REF] proposed a modular algorithm, CONRL, which utilizes the principle of optimism and can be applied to standard CRL setting and also extended to the concave-convex and knapsack setting. [START_REF] Kalagarla | A sample-efficient algorithm for episodic finite-horizon mdp with constraints[END_REF] proposed the UC-CFH algorithm which also works using the optimism principle and provided a PAC analysis for their algorithm. [START_REF] Ding | Provably efficient safe exploration via primal-dual policy optimization[END_REF] considered a linear MDP with constraints setting and proposed the OPDOP algorithm and extended it to the tabular setting as well. Model-free CRL. As compared to the model-based algorithms, existing results for the model-free algorithms are fewer. The authors of [START_REF] Achiam | Constrained policy optimization[END_REF] proposed a constrained policy optimization (CPO) algorithm and authors of [START_REF] Tessler | Reward constrained policy optimization[END_REF] proposed a reward constrained policy 1. [START_REF] Efroni | Exploration-exploitation in constrained mdps[END_REF] used N , which is the maximum number of non-zero transition probabilities across the entire state-action pairs. We bound it by S. Moreover, a factor of |A| is missed in their result, which we believe is a typo in their work. 2. [START_REF] Kalagarla | A sample-efficient algorithm for episodic finite-horizon mdp with constraints[END_REF] used C, which is the upper bound on the number of possible successor states for a state-action pair. We bound it by S. 3. We use the result in Theorem 4 in [START_REF] Ding | Natural policy gradient primal-dual method for constrained markov decision processes[END_REF]. Notice that in the Algorithm 2 of their paper, |S||A| 1-γ samples are necessary for each outer loop. 4. Notice that in line 4 of Algorithm 1 in [START_REF] Xu | Crpo: A new approach for safe reinforcement learning with convergence guarantee[END_REF], a inner loop with Kin iteration is needed for policy evaluation and Kin = Õ( T (1-γ)|S||A| ) 5. The dependence on S, A is not clear in [START_REF] Chen | A primal-dual approach to constrained markov decision processes[END_REF]. An estimation for the Q-function is needed in the algorithm. However, the authors didn't include analysis for the estimation. 6. Notice that the value function defined in this paper is a normalized version. Thus, an extra 1

(1-γ) 2 is needed for a fair comparison. optimization (RCPO) algorithm. The authors of [START_REF] Gattami | Reinforcement learning for constrained markov decision processes[END_REF] related CMDP to zero-sum Markov-Bandit games, and provided efficient solutions for CMDP. However, these works did not provide any convergence rates for their algorithms. Furthermore, the authors in [START_REF] Ding | Natural policy gradient primal-dual method for constrained markov decision processes[END_REF] proposed a primal-dual natural policy gradient algorithm both in tabular and general settings and have provided a regret and constraint violation analysis. A primal only constraint rectified policy optimization (CRPO) algorithm is proposed in [START_REF] Xu | Crpo: A new approach for safe reinforcement learning with convergence guarantee[END_REF] to achieve sublinear convergence rate to the global optimal policy and sublinear convergence rate for the constraint violations as well. Most of the existing approaches with specific sample complexity and constraint violation error bound are summarized in Table 1. Recently, [START_REF] Chen | A primal-dual approach to constrained markov decision processes[END_REF] translated the constrained RL problem into a saddle point problem and proposed a primal-dual algorithm which achieved Õ(1/ 2 ) sample complexity to obtain -optimal -feasible solution. However, the policy is considered as the primal variable in the algorithm and an estimation of Q-table is required in the primal update, which introduces extra sample complexity and computation complexity.

Concave Utility RL. Another major research area related to constrained RL is concave utility RL (Hazan et al., 2019b;[START_REF] Zhang | Cautious reinforcement learning via distributional risk in the dual domain[END_REF]. Model-based approaches have been considered in [START_REF] Chi | Regret minimization for reinforcement learning with vectorial feedback and complex objectives[END_REF][START_REF] Brantley | Constrained episodic reinforcement learning in concave-convex and knapsack settings[END_REF][START_REF] Yu | Provably efficient algorithms for multiobjective competitive rl[END_REF][START_REF] Agarwal | Multi-objective reinforcement learning with non-linear scalarization[END_REF]. These works do not target zero-constraint violations. Recently, [START_REF] Agarwal | Concave utility reinforcement learning with zero-constraint violations[END_REF] proposed a model-based algorithm based on optimistic sampling that achieves zero constraint violations. In contrast, our work considers a model-free approach. Further, [START_REF] Bai | Joint optimization of multi-objective reinforcement learning with policy gradient based algorithm[END_REF] considered a model-free policy gradient approach for concave utility RL, but did not consider constraints.

Online Constrained Convex Optimization. In the field of standard online convex optimization with constraints, the problem of reducing the regret and constraint violation is well investigated in the recent years [START_REF] Mahdavi | Trading regret for efficiency: online convex optimization with long term constraints[END_REF][START_REF] Akhtar | Conservative stochastic optimization with expectation constraints[END_REF]. Recently, the authors of [START_REF] Akhtar | Conservative stochastic optimization with expectation constraints[END_REF] utilized the idea of conservative constraints to achieve -optimal solution with Õ(1/ 2 ) sample complexity and zero constraint violations. We utilize the conservative idea in this work to more complex setting of constrained RL problems to achieve zero constraint violations.

Problem Formulation

An infinite horizon discounted reward constrained Markov Decision Process (CMDP) is defined by tuple (S, A, P, r, g i , I, γ, ρ). In this model, S denotes the finite state space (with |S| number of states), A is the finite action space (with |A| number of actions), and P : S × A → ∆ |S| gives the transition dynamics of the CMDP (where ∆ d denotes the probability simplex in d dimension). More specifically, P(•|s, a) describes the probability distribution of next state conditioned on the current state s and action a. We denote P(s |s, a) as P a (s, s ) for simplicity. In the CMDP tuple, r : S × A → [0, 1] is the reward function, g i : S × A → [-1, 1] is the i th constraint cost function, and I denotes the number of constraints. Further, γ is the discounted factor and ρ is the initial distribution of the states.

Let us define the stationary stochastic policy as π : S → ∆ |A| , which maps a state to a distribution in the action space. The value functions for both reward and constraint's cost following such policy π are given by [START_REF] Chen | A primal-dual approach to constrained markov decision processes[END_REF])

V π r (s) = (1 -γ)E ∞ t=0 γ t r(s t , a t ) , V π g i (s) = (1 -γ)E ∞ t=0 γ t g i (s t , a t ) , (1) 
for all s ∈ S. At each instant t, for given state s t and action a t ∼ π(•|s t ), the next state s t+1 is distributed as s t+1 ∼ P(•|s t , a t ). The expectation in (1) is with respect to the transition dynamics of the environment and the stochastic policy π. The standard CMDP problem considers the problem maximizing value function for reward and satisfying some constraints on value function for cost function, given by max

π V π r (s) s. t. V π g i (s) ≤ 0 ∀i ∈ [I], (2) 
Next, let us define λ π : S × A → [0, 1] is known as cumulative discounted occupancy measure under policy π given by

λ π (s, a) = (1 -γ) ∞ t=0 γ t P(s t = s, a t = a) , (3) 
where

s 0 ∼ ρ, a t ∼ π(•|s t ), P(s t = s, a t = a)
is the probability of visiting state s and taking action a in step t. Then, the problem in (2) which optimizes over policy space, can be equivalently written in the occupancy measure space [START_REF] Zhang | Cautious reinforcement learning via distributional risk in the dual domain[END_REF] as

max λ≥0 λ T r s.t. λ T g i ≥ 0 ∀i ∈ [I], a∈A (I -γP T a )λ a = (1 -γ)ρ. (4) 
We note that in (4), the objective and constraints are linear with respect to λ. In this work, we are interested in non-linear objective (concave) and non-linear constraints (convex) which arises frequently in the literature, for instance in maximizing the entropy of state-action distribution (Hazan et al., 2019a), imitation learning [START_REF] Ho | Generative adversarial imitation learning[END_REF], and fairness in multi-agent resource allocation [START_REF] Margolies | Exploiting mobility in proportional fair cellular scheduling: Measurements and algorithms[END_REF]. The concave utility constrained optimization problem can be formulated as

max λ≥0 f (λ) s.t. h i (λ) ≥ 0 ∀i ∈ [I], a∈A (I -γP T a )λ a = (1 -γ)ρ, (5) 
where f is a known concave objective, h i , i ∈ [I] are constraint functions. In (5), we define

λ a = [λ(1, a), • • • , λ(|S|, a)] ∈ R |S|
as the a th column of λ. Notice that the equality constant in Eq. ( 5) sums up to 1, which means λ is a valid probability measure and we define Λ := {λ| s,a λ(s, a) = 1} as a probability simplex. For a given occupancy measure λ, we can recover the policy π λ as

π λ (a|s) = λ(s, a) a λ(s, a ) . (6) 
Using Theorem 3.3(c) in [START_REF] Altman | Constrained Markov decision processes[END_REF], we have that if λ * is the optimal solution for the problem in Eq. ( 5), then π λ * will be the corresponding optimal policy.

Algorithm Development

Before developing the algorithm, we first describe some assumptions and demonstrate some properties of the objective function and constraint functions in (5).

Assumption 1 (Concavity) The objective function f and constraint functions h i , i ∈ [I] are concave functions with respect to the occupancy measure λ on the set Λ.

Assumption 2 (Lipschitz) The objective function f and constraint function h i , i ∈ [I] are Lipschitz functions with Lipschitz constant L f and L h with respect to the occupancy measure λ on the set Λ. For simplicity, we assume

L f ≥ 1 and L h ≥ 1 (i.e. use L f = max{L f , 1}) Formally, for any λ, λ ∈ Λ f (λ) -f ( λ) 2 ≤ L f λ -λ 2 (7) h(λ) -h( λ) 2 ≤ L h λ -λ 2 (8)
Under Assumption 1 and 2, we derive the following Lemmas.

Lemma 1 ((Shalev-Shwartz et al., 2011)[Lemma 2.6]) The gradient of objective function and constraint function are bounded by their Lipschitz constants on the set Λ. Formally,

∇ λ f (λ) 2 ≤ L f , ∀λ ∈ Λ ∇ λ h i (λ) 2 ≤ L h , ∀λ ∈ Λ, ∀i ∈ [I].
Lemma 2 The objective function and constraint functions are bounded by a constant on the set Λ, respectively. Without loss of generality, we assume they are bounded by 1.

Proof Define λ = 1 |S||A| e
, where e is one vector. By Assumption 2, we have for any λ ∈ Λ

f (λ) -f ( λ) 2 ≤ L f λ -λ 2 ≤ L f |A||S|.
Thus, we can write

f (λ) 2 ≤ L f |A||S| + f ( λ).
The problem in ( 5) is well studied in the literature for the linear objectives and constraints. In this work, we consider concave utilities and the aim is to develop an algorithm to achieve zero constraint violation without suffering for the objective optimality gap. To do so, we consider the conservative stochastic optimization framework presented in [START_REF] Mahdavi | Trading regret for efficiency: online convex optimization with long term constraints[END_REF][START_REF] Akhtar | Conservative stochastic optimization with expectation constraints[END_REF] and utilize it to propose a conservative version of the constrained problem with general utility function in (5) as

max λ≥0 f (λ) (9a) s.t. h i (λ) ≥ κ ∀i ∈ [I], (9b) a∈A 
(I -γP T a )λ a = (1 -γ)ρ, (9c) 
where 0 < κ < 1 is the tuning parameter which controls the conservative nature for the constraints.

The idea is to consider a tighter version (controlled by κ) of the original inequality constraint in (5) which allows us to achieve zero constraint violation for CMDPs which does not hold for any existing algorithm. We will specify the specific value of the parameter κ later in the convergence analysis section (cf. Sec. 5). To make the following saddle point analysis, we need following assumptions.

Assumption 3 (Strict feasibility) There exists a strictly feasible occupancy measure λ ≥ 0 to problem in (9) such that

h i ( λ) -ϕ ≥ 0 ∀i ∈ [I] a (I -γP T a ) λa = (1 -γ)ρ (10) 
for some 0 < ϕ < 1.

Assumption 3 is the stronger version of the popular Slater's condition which is often required in the analysis of convex optimization problems. A similar assumption is considered in the literature as well [START_REF] Mahdavi | Trading regret for efficiency: online convex optimization with long term constraints[END_REF][START_REF] Akhtar | Conservative stochastic optimization with expectation constraints[END_REF] and also helps to ensure the boundedness of dual variables (see Lemma 3). With Assumption 1, note that the conservative version of the problem in Eq. ( 9) is still a convex programming and hence the strong duality holds under Slater condition in Assumption 3, which motivates us to develop the primal-dual based algorithms to solve the problem in (9). By the KKT theorem, the problem in Eq. ( 9) is equivalent to the following a saddle point problem which we obtain by writing the Lagrangian of (9) as

L(λ, u, v) =f (λ) + i∈[I] u i h i (λ) -κ + (1 -γ) ρ, v + a∈A λ T a (γP a -I)v (11) =f (λ) + u, h T (λ) -κ1 + (1 -γ) ρ, v + a∈A λ T a (γP a -I)v, (12) 
where u := [u 1 , u 2 , • • • , u i ] T is a column vector of the dual variable corresponding to constraints in (9b), v is the dual variable corresponding to equality constraint in (9c) and h := [h 1 , • • • , h I ] collects all the h i 's corresponding to I constraints in (9b), and 1 is the all one column vector. From the Lagrangian in (11), the equivalent saddle point problem is given by

max λ∈Λ min u≥0,v L(λ, u, v). (13) 
Since the Lagrange function is concave w.r.t. primal and convex w.r.t dual variables, it is known that the saddle point can be solved by the primal-dual gradient descent [START_REF] Nedić | Subgradient methods for saddle-point problems[END_REF]. However, since we assume that the transition dynamics P a is unknown, then directly evaluating gradients of Lagrangian in (13) with respect to primal and dual variables is not possible. To circumvent this issue, we resort to a randomized primal dual approach proposed in [START_REF] Wang | Randomized linear programming solves the markov decision problem in nearly linear (sometimes sublinear) time[END_REF] to solve the problem in a model-free stochastic manner. We assume the presence of a generative model which is a common assumption in control/RL applications. The generative model results the next state s for a given state s and action a in the model and provides a reward r(s, a) to train the policy. To this end, we consider a distribution ζ over S × A to write a stochastic approximation for the Lagrangian L(λ, u, v) in (13) as

L ζ (s,a,s ),s 0 (λ, u, v) = (1 -γ)v(s 0 ) + 1 ζ(s,a)>0 • λ(s, a)[γv(s ) -v(s) -M 1 ] ζ(s, a) (14) 
+ f (λ) + u, h(λ) -κ1 -M 2 λ,
and s 0 ∼ ρ, the current state action pair (s, a) ∼ ζ, and the next state s ∼ P(•|s, a). We remark that the stochastic approximation L ζ (s,a,s ),s 0 (λ, u, v) in ( 14) is an unbiased estimator for the Lagrangian function in Eq. ( 11) if we omit the constant M 1 and M 2 , which implies that

E ζ×P(•|s,a),ρ [L ζ (s,a,s ),s 0 ] = L(λ, u, v) + M 1 + M 2 with supp(ζ) ⊂ supp(λ)
. We could see ζ as a adaptive state-action pair distribution which helps to control the variance of the stochastic gradient estimator. The stochastic gradients of the Lagrangian with respect to primal and dual variables are given by

∇λ L(λ, u, v) = 1 ζ(s,a)>0 • γv(s ) -v(s) -M 1 ζ(s, a) • E sa + ∇ λ f (λ) + i∈[I] u i ∇ λ h i (λ) -M 2 1, ( 15 
) ∇u L(λ, u, v) = h(λ) -κ1, ( 16 
) ∇v L(λ, u, v) = e(s 0 )+1 ζ(s,a)>0 • λ(s, a)(γe(s ) -e(s)) ζ(s, a) , (17) 
where we define e(s 0 ) = (1 -γ)e(s 0 ) with e(s 0 ) ∈ R |S| being a column vector with all entries equal to 0 except only the s th entry equal to 1, E sa ∈ R |S|×|A| is a matrix with only the (s, a) entry equaling to 1 and all other entries being 0. We remark that M 1 and M 2 in ( 15) is a shift parameter which is used in the convergence analysis.

Remark 1 We note that the special case presented in [START_REF] Bai | Achieving zero constraint violation for constrained reinforcement learning via primal-dual approach[END_REF] for CMDP uses a similar primal-dual method. However, the approximated Lagrange function defined in ( 14) is different from that in [START_REF] Bai | Achieving zero constraint violation for constrained reinforcement learning via primal-dual approach[END_REF] for the linear utility and constraints. The approach in [START_REF] Bai | Achieving zero constraint violation for constrained reinforcement learning via primal-dual approach[END_REF] extended to general functions leads to a biased estimator of gradient of approximated Lagrange in (15), which make the analysis challenging. Thus, in this paper, we redefine the approximated Lagrange function, where we only sample for transition function but not together with objective or constraints. The estimator in (15) is an unbiased estimator for the gradient with respect to λ.

With all the stochastic gradient definitions in place, we are now ready to present the proposed novel algorithm called Conservative Stochastic Primal-Dual Algorithm (CSPDA) summarized in Algorithm 1. First, we initialize the primal and dual variables in step 1. In step 4 and 5, we sample (s t , a t , s 0 ) and then obtain s t from the generative model. In step 6, we update the dual variables by the gradient descent step and a projection opration (See Lemma 3 for the definition of U and V). In step 7, we utilize the mirror ascent update and utilize the KL divergence as the Bregman divergence to obtain tight dependencies on the convergence rate analysis similar to [START_REF] Wang | Randomized linear programming solves the markov decision problem in nearly linear (sometimes sublinear) time[END_REF]. Then, the occupancy measure is normalized so that it remains a valid distribution.

Convergence Analysis

In this section, we study the convergence rate of the proposed Algorithm 1 in detail. We start by analyzing the duality gap for the saddle point problem in (13). Then we show that the output of Algorithm 1 given by λ is -optimal for the conservative version of the dual domain optimization problem in (9) of CMDPs. Finally, we perform the analysis in the policy space and present the main results of this work. We prove that the induced policy π by the optimal occupancy measure Constant δ ∈ (0,1 2 )

Output: λ = 1 T T t=1 λ t , ū = 1 T T t=1 u t and v = 1 T T t=1 v t 1: Initialize u 1 ∈ U, v 1 ∈ V and λ 1 = 1 |S||A| • 1 2: for t = 1, 2, ..., T do 3: ζ t := (1 -δ)λ t + δ |S||A| 1 4: Sample (s t , a t ) ∼ ζ t and s 0 ∼ ρ 5:
Sample s t ∼ P(•|a t , s t ) from the generative model and observe reward r sa 6:

Update value functions as u and v as

u t+1 =Π U (u t -α ∇u L(λ t , u t , v t )) (18) v t+1 =Π V (v t -α ∇v L(λ t , u t , v t )) (19) 7: 
Update occupancy measure as

λ t+ 1 2 = arg max λ ∇λ L(λ t , u t , v t ), λ -λ t - 1 β KL(λ λ t ) (20) 
λ t+1 =λ t+ 1 2 / λ t+ 1 2 1 (21) 
8: end for λ is also -optimal and achieves zero constraint violation at the same time. Before discussing the convergence analysis, we provide a detailed description of the assumptions required for the work in this paper.

Convergence Analysis for Duality Gap

In order to bound the duality gap, we note that the standard analysis of saddle point algorithms [START_REF] Nedić | Subgradient methods for saddle-point problems[END_REF][START_REF] Akhtar | Conservative stochastic optimization with expectation constraints[END_REF] is not applicable because of the unbounded noise introduced into the updates due to the use of adaptive sampling of the state-action pairs [START_REF] Wang | Randomized linear programming solves the markov decision problem in nearly linear (sometimes sublinear) time[END_REF][START_REF] Zhang | Cautious reinforcement learning via distributional risk in the dual domain[END_REF]. Therefore, it becomes necessary to obtain explicit bounds on the gradient as well as the variance of the stochastic estimates of the gradients. We start the analysis by consider the form of Slater's condition in Assumption 3, and show that the dual variables u and v are bounded (Note that the optimal dual variables now will be function of conservative variable κ as well).

Lemma 3 (Bounded dual variable u and v) Under the Assumption 3, the optimal dual variables u * κ and v * κ are bounded. Formally, it holds that u

* κ 1 ≤ 4L f ϕ and v * κ ∞ ≤ L f 1-γ + 4L f L h (1-γ)ϕ .
The proof of Lemma 3 is provided in Appendix C.1. As a result, we define

U := u | u 1 ≤ 8L f ϕ and V := v | v ∞ ≤ 2[ L f 1-γ + 4L f L h (1-γ)ϕ
] . Since we have mathematically defined the set U and V, now we rewrite the saddle point formulation in (13) as

max λ∈Λ min (u∈U ,v∈V) L(λ, u, v). (22) 
In the analysis presented next, we will work with the problem in ( 22). First, we decompose the duality gap in Lemma 4 as follows.

Lemma 4 (Duality gap) For any dual variables u, v, let us define w = [u T , v T ] T , and consider ū, v, λ as defined in Algorithm 1, the duality gap can be bounded as

L(ū, v, λ * κ ) -L(u, v, λ) ≤ 1 T T t=1 ∇ λ L(w t , λ t ), λ * κ -λ t (I) + ∇ w L(w t , λ t ), w t -w (II)
.

(

) 23 
The bound on terms I and II in the statement of Lemma 4 are provided in Lemma 6 and 7 in the Appendix C.3 (see proofs in Appendix C.4 and C.5, respectively). This helps to prove the main result in Theorem 1, which establishes the final bound on the duality gap as follows.

Theorem 1 Define (u † , v † ) := arg min u,v L(u, v, λ). Recall λ *
κ is the best solution for the conservative Lagrange problem. The duality gap of the Algorithm 1 is bounded as

E[L(ū, v, λ * κ ) -L(u † , v † , λ)] ≤ O I|S||A| log(|S||A|) T • L f L h (1 -γ)ϕ . ( 24 
)
The proof of Theorem 1 is provided in Appendix C.3. The result in Theorem 1 describes a sublinear dependence of the duality gap onto the state-action space cardinality upto a logarithmic factor.

In the next subsection we utilize the duality gap upper bound to derive a bound on the objective suboptimality and the constraint violation separately.

Dual Objective and Constraint Violation

Recall that the saddle point problem in Eq. ( 22) is an equivalent problem to Eq. ( 5) where the main difference arises due to the newly introduced conservativeness parameter κ. Thus, a convergence analysis for duality gap should imply the convergence in occupancy measure in Eq. ( 9). But before that, we need to characterize the gap between the original problem ( 5) and its conservative version in (9). The following Lemma 5 shows that the gap is of the order of parameter κ.

Lemma 5 Under Assumption 3, and condition κ ≤ min{ ϕ 2 , 1}, it holds that the difference of optimal values between original problem and conservative problem is O(κ). Mathematically, it holds that λ * , rλ * κ , r ≤ κ ϕ .

The proof of Lemma 5 is provided in Appendix D.1. Using the statement of Lemma 5 and Theorem 1, we obtain the convergence result in terms of output occupancy measure in following Theorem 2.

Theorem 2 For any 0 < < 1, there exists a constant c1 such that if

T ≥ max 16, 4ϕ 2 , 1 2 • c2 1 L 2 f L 2 h I|S||A| log(|S||A|) (1 -γ) 2 ϕ 2 , ( 25 
)
and we set

κ = 2L f L h c1 1 -γ I|S||A| log(|S||A|) T , M 1 = 4 L f 1 -γ + 4L f L h (1 -γ)ϕ , M 2 = L f + 8L f L h ϕ ,
then the constraints of the original problem in (5) satisfy:

E[h i ( λ)] ≥ ϕ ∀i ∈ [I], (26a) 
E a (γP T a -I) λa + (1 -γ)ρ 1 ≤ (1 -γ) ϕ L f L h . ( 26b 
)
Additionally, the objective sub-optimality of (5) is given by

E[f (λ * ) -f ( λ)] ≤ 3 . ( 27 
)
The proof of Theorem 2 is provided in Appendix D.2. Next, we present the special case of Theorem 2 in the form of Corollary 1 (see proof in Appendix D.3), which shows the equivalent results for the case without conservation parameter, κ = 0.

Corollary 1 (Non Zero-Violation Case) Set κ = 0. For any > 0, there exists a constant c1 such

that if T ≥ c2 1 • L 2 f L 2 h I|S||A| log(|S||A|) (1-γ) 2 ϕ 2 2
then λ satisfies the constraint violation as

E[h i ( λ)] ≥ -∀i ∈ [I] (28a) E a (γP T a -I) λa + (1 -γ)ρ 1 ≤ (1 -γ) ϕ L f L h , (28b) 
and the sub-optimality is given by

E[f (λ * ) -f ( λ)] ≤ .
The positive lower bound of ϕ in (26a) hints that λ is feasible (hence zero constraint violation). On the other hand, the lower bound in (28a) is negativewhich states that the constraints in the dual space may not be satisfied for λ. Next, we show that how the result in Theorem 2 helps to achieve the zero constraint violation in the policy space.

Convergence Analysis in Policy Space

We have established the convergence in the occupancy measure space in Sec. 5.2 and shown that λ achieves an -optimal -feasible solution but the claim of zero constraint violation is still not clear. But a small violation in Eq. (26b) makes λ to loose its physical meaning as discussed in Proposition 1 in [START_REF] Zhang | Cautious reinforcement learning via distributional risk in the dual domain[END_REF]. Thus, to make the idea clearer and explicitly show the benefit of the conservative idea utilized in this work, we further present the results in the policy space. The bound in Eq. ( 26b) provides an intuition that the output occupancy measure is close to the optimal one and therefore, the induced policy should also be close to the optimal policy. Such a result is mathematically presented next in Theorem 3.

Theorem 3 (Zero-Violation) Under the condition in Theorem 2 the induced policy π by the output occupancy measure λ is an -optimal policy and achieves 0 constraint violation. Mathematically, this implies that The proof of Theorem 3 is provided in Appendix E.1. To get better idea about the importance of result in Theorem 3, we next present a Corollary 2 (see proof in E.2) which is a special case of Theorem 3 for κ = 0.

f (λ * ) -E[f (λ π)] ≤ (29a) E[h i (λ π)] ≥ 0 ∀i ∈ [I]. (29b) 
Corollary 2 (Non Zero-Violation Case) Under the condition in Corollary 1, the induced policy π by the output occupancy measure λ is an -optimal policy w.r.t both objective and constraints. More formally,

f (λ * ) -E[f (λ π)] ≤ (30a) E[h i (λ π)] ≥ -∀i ∈ [I]. (30b) 
The benefit of utilizing the conservation parameter κ becomes clear after comparing the results in (29b) and (30b).

Evaluations on a Queuing System

In this section, we evaluate the proposed Algorithm 1 on a queuing system with a single server in discrete time (Altman, 1999)[Chapter 5]. In this model, we assume a buffer of finite size L. A possible arrival is assumed to occur at the beginning of the time slot. The state of the system is the number of customers waiting in the queue at the beginning of time slot such that the size of state space is |S| = L + 1. We assume that there are two kinds of actions: service action and flow action. The service action is selected from a finite finite subset A of [a min , a max ] such that 0 < a min ≤ a max < 1. With a service action a, we assume that a service of a customer is successfully completed with probability a. If the service succeeds, the length of the queue will reduce by one, otherwise queue length remains the same. The flow action is a finite subset B of [b min , b max ] such that 0 ≤ b min ≤ b max < 1. Given a flow action b, a customer arrives with probability b. Let the state at time t be x t , and we assume that no customer arrives when state x t = L. Finally, the overall action space is the product of service action space and flow action space, i.e., A × B. Given an action pair (a, b) and current state x t , the transition of this system

P (x t+1 |x t , a t = a, b t = b) is shown in Table 2. Current State P (x t+1 = x t -1) P (x t+1 = x t ) P (x t+1 = x t + 1) 1 ≤ x t ≤ L -1 a(1 -b) ab + (1 -a)(1 -b) (1 -a)b x t = L a 1 -a 0 x t = 0 0 1 -b(1 -a) b(1 -a)
Table 2: Transition probability of the queue system Assuming γ = 0.5, we define the objective function f as total discounted cumulative reward plus entropy regularization. And define two constraints function h 1 , h 2 as standard total discounted constraint value with respect to service and flow. Thus, the overall optimization problem is given as

max π λ π , r -c s,a λ π s,a log(λ π s,a ) (31) 
s.t. λ π , g i ≥ 0 i = 1, 2
where s 0 ∼ ρ, π a and π b are the policies for the service and flow, respectively. It is not hard to find that the above objective function is concave and Lipschitz. For simulations, we choose L = 5, A = [0.2, 0.4, 0.6, 0.8], and B = [0.4, 0.5, 0.6, 0.7] for all states besides the state s = L, Further, we select Slater variable ϕ = 0.2, number of iteration T = 100000, c1 = 0.02, and conservative variable κ is selected as the statement of Theorem 2. The initial distribution ρ is set as uniform distribution. Moreover, the cost function is set to be r(s, a, b) = -s + 5, the constraint function for the service is defined as g 1 (s, a, b) = -10a + 4, and the constraint function for the flow is g 2 (s, a, b) = -8(1 -b) 2 + 1.28. We run 100 independent simulations and collect the mean value and standard variance. In Fig. 1 and Fig. 2, we set c = 0 and c = 1, which means they are the standard CMDP problem and concave utility problem, respectively. In each figure, we show the learning process of objective value and constraint value for κ = 0 and κ > 0 respectively (in the case of κ > 0, the value is chosen based on the value in Theorem 2.). Note that the y-axis in Figs. 1 and2 is the objective function (on left) and the constraint function (on right) defined in Eq. ( 31). In both the cases, it can be seen that when κ = 0, the constraint values converge to a small negative number when T goes larger, while for κ > 0, the constraint values will converge to a positive value, which matches the result in theory. Further, the objective value are similar for both κ = 0 and κ > 0, while the case where κ > 0 helps to achieve zero constraint violation. Having κ as a hyperparameter in practice can lead to optimal objectives where the constraint violations converge to zero.

Conclusion

In this work, we considered the problem of learning optimal policies for infinite-horizon concave constrained Markov Decision Processes (CCMDP) under finite state S and action A spaces with I number of constraints. Such constrained reinforcement learning (CRL) with concave utility hasn't been studied in the literature. To solve the problem in a model-free manner, we proposed a novel Conservative Stochastic Primal-Dual Algorithm (CSDPA) based upon the randomized primal-dual saddle point approach proposed in [START_REF] Wang | Randomized linear programming solves the markov decision problem in nearly linear (sometimes sublinear) time[END_REF]. We show that to achieve an -optimal policy, it is sufficient to run the proposed Algorithm 1 for Ω(

L f L h I|S||A| log(|S||A|) (1-γ) 2 ϕ 2 2
) steps. Additionally, we proved that the proposed Algorithm 1 does not violate any of the I constraints which is unique to this work in the CRL literature. The idea is to consider a conservative version (controlled by parameter κ) of the original constraints and then a suitable choice of κ enables us to make the constraint violation zero while still achieving the best sample complexity for the objective suboptimality.

Appendix A. Preliminaries

A.1 Explanation of comparison among references in Table 1 STEP 1: FROM REGRET TO PAC RESULT Many references listed in the Table 1 are in the episodic setting and give the result in the form of regret, which is defined as

K k=1 V * r,1 (s 1 ) -V π k r,1 (s 1 ) ≤ f (H, |S|, |A|, T, δ) with probability at least 1 -δ (32) 
where T = KH. The following method provides a probably approximately correct (PAC) result from the regret. At the end of learning horizon K, a policy π can be defined as follow

π(s) =                π 1 (s) with probability 1/K • • • • • • π k (s) with probability 1/K • • • • • • π K (s) with probability 1/K (33)
Note that π chooses the different policies π k for k ∈ [K] uniformly at random. Thus, we know

1 K K k=1 V π k
r,1 (s 1 ) = V π r,1 (s 1 ). Divide Eq. ( 32) by K on both side, we have

V * r,1 (s 1 ) -V π r,1 (s 1 ) ≤ f (H, |S|, |A|, T, δ) K (34)
If the function f is sub-linear w.r.t. T , then for large enough K, we have V * r,1 (s 1 ) -V π r,1 (s 1 ) ≤ with probability at least 1 -δ, which means that π is an -optimal policy.

STEP 2: FROM EPISODIC SETTING TO INFINITE HORIZON DISCOUNTED SETTING

As mentioned above, many references consider the problem in episodic setting. In order to make a comparison, it is necessary to have a fair conversion. Here, we use the method from (Jin et al., 2018)[footnote 3 in page 3]. Firstly, we check whether the MDP model in the given result assume a horizon dependent transition dynamics, i.e, whether P is a function of h. If so, then define S = SH. If not, then define S = S. This conversion is easy to understand and reasonable because an extra H times state space is needed if transition dynamics is different for each h. After this step, we change H to 1 1-γ . This is because the infinite horizon discounted value function can be simulated by the following algorithm. V π r,1 (s 1 ) = H h=1 r(s h , a h ) 7: end for The sample horizon is taken from the geometry distribution with parameter (1 -γ) and thus the expected length of horizon is 1 1-γ , which explains why it is fair to change H to 1 1-γ . Following these two steps, we convert the result in episodic setting into infinite horizon discounted setting.

STEP3: FROM HIGH PROBABILITY RESULT TO EXPECTATION RESULT

After converting the result from episodic setting to infinite horizon discounted setting, we get an -optimal result with probability at least 1 -δ. However, the result in this paper is in the form of expectation. Thus, we can convert the result with the following method. Notice that the value function V r is bounded by 1 1-γ , we have

E[V * r (s 1 ) -V π r (s 1 )] ≤ * (1 -δ) + δ * 1 1 -γ (35) If δ < (1 -γ), then, we have E[V * r (s 1 ) -V π r (s 1 )] ≤ 2 . D κ (u, v) := max λ≥0 L(λ, u, v) = max λ≥0 f (λ)+ i∈[I] u i h i (λ) -κ +(1-γ) ρ, v + a∈A λ T a (γP a -I)v
(37) The optimal dual variables are given by

(u * κ , v * κ ) := arg min u≥0,v D κ (u, v), (38) 
and let us denote the optimal dual value by d * κ = D κ (u * κ , v * κ ). We note that the problem in ( 9) is a convex programming problem. By the Slater condition in the Assumption 3, we know strong duality holds, i.e p * κ = d * κ . To proceed, let us consider a constant C and define a set C := {(u, v) ≥ 0|D κ (u, v) ≤ C}. For any (u, v) ∈ C and a feasible λ which satisfies Assumption 3, we could write

C ≥ D κ (u, v) (a) ≥ L( λ, u, v) =f ( λ) + i∈[I] u i h i (λ) -κ + (1 -γ) ρ, v + a∈A λT a (γP a -I)v (b) ≥f ( λ) + u, ϕ1 2 =f ( λ) + ϕ 2 u 1 , (39) 
where step (a) holds by the definition of dual function and step (b) is true by Assumption 3 and κ ≤ ϕ 2 . From weak duality, we have

D κ (u, v) ≥ d * κ ≥ p * κ = λ * κ , r (40) 
Now let C = λ * , r , all inequalities in Eq. ( 40) become equality for (u, v) ∈ {(u, v) ≥ 0|D κ (u, v) ≤ λ * , r }. Thus, this set is the optimal dual variable set. We set C = λ * , r and rearrange the Eq. ( 39) to obtain

u * κ 1 ≤ 2[f (λ * κ ) -f ( λ)] ϕ (a) ≤ 2L f λ * κ -λ 2 ϕ (b) ≤ 2L f [ λ * κ 1 + λ 1 ] ϕ (c) ≤ 4L f ϕ (41)
where the step (a) holds by the Lipschitz Assumption 2. The second step holds by triangle inequality and last step holds because occupancy measure sum up to 1.

Bound on v * κ ∞ : To solve the convex programming in ( 9), the KKT conditions should be sufficient and necessary, which can be written as

∇ λ L(λ * κ , u * κ , v * κ ) = 0 (42a) h i (λ * κ ) ≥ κ ∀i ∈ [I] (42b) a (I -γP T a )λ * κ,a = (1 -γ)ρ (42c) i∈[I] u * κ,i [h i (λ * κ ) -κ] = 0 (42d) u * κ ≥ 0 (42e) 
By Eq. (42a), we have for any state-action pair (s, a)

∇ λ f (λ * κ ) s,a + i∈[I] u * κ,i ∇ λ h i (λ * κ ) s,a -(e s -γP as ) T v * κ = 0, ( 43 
)
where ∇ λ f (λ * κ ) s,a is the (s, a) element of ∇ λ f (λ * κ ) and u * κ,i is the i th elemnt of vector u * κ . P as is a column vector and P as (s ) = P (s |a, s). Given a fixed action ā, denote 43), we have

∇ λ f (λ * κ ) ā := [∇ λ f (λ * κ ) 1,ā , ∇ λ f (λ * κ ) 2,ā , • • • , ∇ λ f (λ * κ ) S,ā ] T , ∇ λ h i (λ * κ ) ā := [∇ λ h i (λ * κ ) 1,ā , ∇ λ h i (λ * κ ) 2,ā , • • • , ∇ λ h i (λ * κ ) S,ā ] T and P := [P ā,1 , • • • , P ā,|S| ] ∈ R |S|×|S| . By Eq. (
(I -γ PT )v * κ = ∇ λ f (λ * κ ) ā + i∈[I] u * κ,i ∇ λ h i (λ * κ ) ā (44) 
As a result, we have 

L f + 4L f L h ϕ (a) ≥ L f + L h u * κ 1 (b) ≥ ∇ λ f (λ * κ ) ā + i∈[I] u * κ,i ∇ λ h i (λ * κ ) ā ∞ = (I -γ PT )v * κ ∞ (c) ≥ v * κ ∞ -γ PT v * κ ∞ (d) ≥ (1 -γ) v * κ ∞ , ( 
* κ ∞ ≤ L f 1-γ + 4L f L h (1-γ)ϕ .

C.2 Proof of Lemma 4

Proof Consider the Lagrangian in ( 11) and note that it is convex w.r.t u as well as v. w.r.t The gradient of the Lagrange function u and v are given by

∇ u L(λ, u, v) = h(λ) -κ1, ∇ v L(λ, u, v) = (1 -γ)ρ + a (γP T a -I)λ a . ( 46 
)
It is obvious that 

∇ 2 u L(λ, u, v) = ∇ u,v L(λ, u, v) = ∇ v,u L(λ, u, v) = ∇ 2 v L(λ, u, v) = 0,
L(λ * κ , ū, v) -L( λ, u, v) = L(λ * κ , w) -L( λ, w) (a) ≤ 1 T T t=1 L(λ * κ , w t ) -L(λ t , w) = 1 T T t=1 L(λ * κ , w t ) -L(λ t , w t ) + L(λ t , w t ) -L(λ t , w) (b) ≤ 1 T T t=1 ∇ w L(λ t , w t ), λ * κ -λ t + ∇ λ L(λ t , w t ), w t -w , (47) 

C.3 Proof of Theorem 1

Proof We collect the dual variables u and v in one variable w as defined in Lemma 4 for the ease of analysis. The next two Lemmas provide the bound on the terms I and II in Eq. ( 23).

Lemma 6 Let the iterate sequence {λ t } be updated as mentioned in the updates (20) and (21) of Algorithm 1, then for any t it holds that

∇ λ L(λ t , w t ), λ -λ t ≤ 1 β KL(λ||λ t ) -KL(λ||λ t+1 ) + β 2 s,a λ t sa (∆ t sa ) 2 + ∇λ L(λ t , w t ) -∇ λ L(λ t , w t ), λ t -λ . ( 48 
)
Lemma 7 Define W = U × V and consider the iterate sequence {w t } updated according to the rule Eq. ( 18) and (19) in Algorithm 1. For any t, it holds that

∇ w L(λ t , w t ), w t -w ≤ 1 2α w t -w 2 -w t+1 -w 2 +α 2 ∇w L(λ t , w t ) 2 + 2α ∇ w L(λ, w) -∇w L(λ, w), w t -w . ( 49 
)
Next, utilizing the results of Lemma 6 and 7 (see proofs in Appendix C.4 and C.5) into Lemma 4, we prove the main result in Theorem 1, which establishes the final bound on the duality gap as follows. Let λ = λ * κ in Eq. ( 48) and (u † , v † ) := arg min u,v L(u, v, λ) in Eq. ( 49). Then, sum up Eq. ( 48) and ( 49) from t = 1 to T , we have

1 T T t=1 ∇ λ L(λ t , w t ), λ * κ -λ t + ∇ w L(λ t , w t ), w t -w † ≤ KL(λ * κ ||λ 1 ) T β T 1 + β 2T T t=1 s,a λ t sa (∆ t sa ) 2 T 2 + 1 T T t=1 ∇λ L(λ t , w t ) -∇ λ L(λ t , w t ), λ t -λ * κ T 3 + 1 2T α w 1 -w † 2 T 4 + α 2T T t=1 ∇w L(λ t , w t ) 2 T 5 + T t=1 ∇ w L(λ t , w t ) -∇w L(λ t , w t ), w t -w † T 6
(50) Combine the above result with the statement of Lemma. 4 to write

E[L(λ * κ , ū, v) -L( λ, u † , v † )] ≤ 6 j=1 E[T j ]. (51) 
We derive an upper bound on the right hand side of (51) in Appendix C.6-C.11. Following the results in Appendix C.6-C.11, we have

E[T 1 ] ≤ log(|S||A|) T β , E[T 2 ] ≤ 4000βL 2 f L 2 h |S||A| (1 -γ) 2 ϕ 2 E[T 3 ] = 0, E[T 4 ] ≤ 400|S|L 2 f L 2 h (1 -γ) 2 T αϕ 2 , E[T 5 ] ≤ 16αI, E[T 6 ] ≤ 200L f L h I|S| √ T (1 -γ)ϕ . ( 52 
) Let β = (1-γ)ϕ L f L h log(|S||A|) T |S||A| and α = L f L h √ |S| (1-γ)ϕ √
T I , the final bound for duality gap could be written as

E[L(λ * κ , ū, v) -L( λ, u † , v † )] ≤ L f L h |S||A| log(|S||A|) √ T (1 -γ)ϕ + 4000L f L h |S||A| log(|S||A|) √ T (1 -γ)ϕ + 400 |S|I √ T (1 -γ)ϕ + 16L f L h |S|I √ T (1 -γ)ϕ + 200L f L h |S|I √ T (1 -γ)ϕ ≤ O I|S||A| log(|S||A|) T • L f L h (1 -γ)ϕ ,
(53) which is as stated in the statement of Theorem 1.

C.4 Proof of Lemma 6

The Proof of Lemma 6 in this work follows similar logic to [START_REF] Zhang | Cautious reinforcement learning via distributional risk in the dual domain[END_REF]

[Lemma C.2].
The main difference lies in the selection of shift parameters M and we provide the proof here for completeness. Proof Let us defined ∆ sa as the (s, a)-th component of ∇λ L(λ t , u t , v t ). Consider the update in Eq. ( 20) and note that the problem is separable for each component of λ and could be solved in closed form as follows.

max λ ∇λ L(λ t , u t , v t ), λ -λ t - 1 β KL(λ λ t ) = ∇λ L(λ t , u t , v t ), -λ t + max λ s,a ∆ t sa λ sa - 1 β s,a λ sa log λ sa λ t sa = s,a max λsa λ sa ∆ t sa - 1 β log λ sa λ t sa , ( 54 
)
where we drop the terms which does not depend upon the variable λ and Λ denotes the set of probability distributions. Next, we solve the unconstrained maximization in (54) by differentiating and equating it to zero as follows

d dλ sa λ sa ∆ t sa - 1 β log λ sa λ t sa λsa=λ t+ 1 2 sa = ∆ t sa - 1 β log   λ t+ 1 2 sa λ t sa   - 1 β = 0. (55) 
After rearranging the terms, we obtain

λ t+ 1 2 sa = λ t sa exp(β∆ t sa -1). (56) 
Now, we project back the solution on to the set of valid probability distribution and obtain the update as

λ t+1 sa = λ t sa • exp(β∆ t sa ) s ,a λ t s a • exp(β∆ t s a ) , (57) 
where we note that λ t+1 sa ∈ Λ. Next, we analyze the one step KL divergence of λ t+1 to any λ as

KL(λ||λ t ) -KL(λ||λ t+1 ) = s,a λ sa log λ sa λ t sa - s,a λ sa log λ sa λ t+1 sa = s,a λ sa log λ t+1 sa λ t sa . (58) 
Next, we substitute the definition of λ t+1 sa to obtain

KL(λ||λ t ) -KL(λ||λ t+1 ) = s,a λ sa β∆ t sa -log   s ,a λ t s a • exp(β∆ t s a )   =β λ, ∇λ L(λ t , u t , v t ) -log   s ,a λ t s a • exp(β∆ t s a )   , (59) 
where we utilize the fact that s,a λ sa = 1. To proceed next, recall that we have

∆ sa = γv s -v s -M 1 ζ sa + ∇ λ f (λ) s,a + i∈[I] u i ∇ λ h i (λ) s,a -M 2 (60) 
where ∇ f (λ)(s, a) and ∇ λ h i (λ)(s, a) are the (s, a) element of ∇ f (λ) and ∇ λ h i (λ), respectively. We note that

|γv s -v s | ≤ |γv s | + |v s | ≤ 4 L f 1 -γ + 4L f L h (1 -γ)ϕ . (61) 
Moreover, by Lemma 1

|∇ λ f (λ) s,a | ≤ L f , and 
i∈[I] u i ∇ λ h i (λ) s,a ≤ 8L f L h ϕ . (62) 
Hence, with the selection M 1 = 4

L f 1-γ + 4L f L h (1-γ)ϕ and M 2 = L f + 8L f L h ϕ , we can conclude that ∆ sa ≤ 0. Since exp(x) ≤ (1 + x + 1 2 x 2
) for x ≤ 0, we can upper bound the second term on the right hand side of (59) as

log   s ,a λ t s a • exp(β∆ t s a )   ≤ log s ,a λ t s a • (1 + β∆ t s a + 1 2 β 2 (∆ t s a ) 2 ) = log 1 + β s ,a λ t s a ∆ t s a + β 2 2 s ,a λ t s a (∆ t s a ) 2 = log 1 + β ∇λ L(λ t , u t , v t ), λ t + β 2 2 s ,a λ t s a (∆ t s a ) 2 ≤ β ∇λ L(λ t , u t , v t ), λ t + β 2 2 s ,a λ t s a (∆ t s a ) 2 , (63) 
where the last inequality holds by log(1 + x) ≤ x for all x > -1. By combining Eq. ( 59) and ( 63), we obtain

KL(λ||λ t ) -KL(λ||λ t+1 ) ≥β λ, ∇λ L(λ t , u t , v t ) -β ∇λ L(λ t , u t , v t ), λ t - β 2 2 s ,a λ t s a (∆ t s a ) 2 . ( 64 
)
Rearrange the items and divide both sides by β, to obtain

0 ≤ 1 β [KL(λ||λ t ) -KL(λ||λ t+1 )] + ∇λ L(λ t , u t , v t ), λ t -λ + β 2 s ,a λ t s a (∆ t s a ) 2 . ( 65 
)
Add ∇ λ L(λ t , u t , v t ), λλ t on both side to get the desired result.

C.5 Proof of Lemma 7

Proof We can combine the update rule in Eq. ( 18)-( 19) to obtain an update for w ∈ W := U × V.

For any w ∈ W, it holds that

w t+1 -w 2 = Π W (w t -α ∇w L(λ t , w t )) -w 2 ≤ w t -α ∇w L(λ t , w t ) -w 2 = w t -w 2 + α 2 ∇w L(λ t , w t ) 2 -2α ∇w L(λ, w), w t -w = w t -w 2 + α 2 ∇w L(λ t , w t ) 2 -2α ∇w L(λ, w) -∇ w L(λ, w) + ∇ w L(λ, w), w t -w ,
where the first inequality holds by the non-expansiveness of the Projection operator. The following equalities holds by expanding the squares and by adding subtracting the term 2α ∇ w L(λ, w), w tw .

After rearranging the terms in the above expression, we obtain

2α ∇ w L(λ, w), w t -w ≤ w t -w 2 -w t+1 -w 2 + α 2 ∇w L(λ t , w t ) 2 -2α ∇w L(λ t , w t ) -∇ w L(λ t , w t ), w t -w . (66) 
Next, divide the both sides by 2α > 0 to obtain the statement of Lemma 7.

C.6 Upper bound for E[T

1 ] E[T 1 ] = KL(λ * κ ||λ 1 ) T β = 1 T β s,a λ * κ,sa log λ * κ,sa λ 1 sa = 1 T β s,a λ * κ,sa [log λ * κ,sa -log λ 1 sa ] ≤ 1 T β s,a λ * κ,sa log(|S||A|) = log(|S||A|) T β . (67) 

C.7 Upper bound for E[T 2 ]

For any fixed u t , v t , λ t , we have

E[ s,a λ t sa (∆ t sa ) 2 |u t , v t , λ t ] = E st,at s,a λ t sa γv s -v s -M 1 ζ sa • 1 (s,a)=(st,at) + ∇ λ f (λ)(s, a) + i∈[I] u i ∇ λ h i (λ)(s, a) -M 2 2 (a) ≤ E st,at s,a λ t sa 2 γv s -v s -M 1 ζ sa • 1 (s,a)=(st,at) 2 + 2 ∇ λ f (λ)(s, a) + i∈[I] u i ∇ λ h i (λ)(s, a) -M 2 2 , (68) 
where in step (a), we use the inequality (a + b) 2 ≤ 2a 2 + 2b 2 . Next, we perform further simplifications as

E[ s,a λ t sa (∆ t sa ) 2 |u t , v t , λ t ] ≤ 2E st,at λ t stat γv s t -v st -M 1 ζ stat 2 + 2 s,a λ t sa ∇ λ f (λ)(s, a) + i∈[I] u i ∇ λ h i (λ)(s, a) -M 2 2 = 2 st,at λ t stat ζ t stat γv s t -v st -M 1 ζ t stat 2 + 2 s,a λ t sa ∇ λ f (λ)(s, a) + i∈[I] u i ∇ λ h i (λ)(s, a) -M 2 2 = 2 st,at λ t stat γv s t -v st -M 1 2 (1 -δ)λ t stat + δ |S||A| + 2 s,a λ t sa ∇ λ f (λ)(s, a) + i∈[I] u i ∇ λ h i (λ)(s, a) -M 2 2
(69) Next, after omitting the positive term in the denominator, we get

E[ s,a λ t sa (∆ t sa ) 2 |u t , v t , λ t ] ≤ 2 st,at λ t stat γv s t -v st -M 1 2 (1 -δ)λ t stat + 2 s,a λ t sa ∇ λ f (λ)(s, a) + i∈[I] u i ∇ λ h i (λ)(s, a) -M 2 2 (c) ≤ 2 st,at 4M 2 1 1 -δ + 2 s,a 4λ t sa M 2 2 = 8 |S||A|M 2 1 1 -δ + M 2 2 = 128|S||A|[ L f 1-γ + 4L f L h (1-γ)ϕ ] 2 1 -δ + 8 L f + 8L f L h ϕ 2 (d) ≤ 128L 2 f |S||A|(1 + 4L h ) 2 (1 -δ)(1 -γ) 2 ϕ 2 + 8L 2 f (1 + 8L h ) 2 (1 -δ)(1 -γ) 2 ϕ 2 ≤ 4000L 2 f L 2 h |S||A| (1 -δ)(1 -γ) 2 ϕ 2 .
(70) Step (c) holds because we use the boundness of dual variable and Lemma 1. Step (d) holds since 0 < ϕ < 1. Next, we write down the term E[T 2 ] as

E[T 2 ] = E[ β 2T T t=1 s,a λ t sa (∆ t sa ) 2 ] (a) = β 2T T t=1 E[ s,a λ t sa (∆ t sa ) 2 ] (b) = β 2T T t=1 E[E[ s,a λ t sa (∆ t sa ) 2 |u t , v t , λ t ]] ≤ 4000βL 2 f L 2 h |S||A| (1 -γ) 2 ϕ 2 , ( 71 
)
where step (a) holds by the linear of expectation and step (b) holds due to law of total expectation. The last inequality holds by δ ∈ (0, 1 2 ).

C.8 Expression for E[T 3 ]

For any fixed u t , v t , λ t , we have

E[ ∇λ L(λ t , u t , v t )|u t , v t , λ t ] = ∇ λ L(λ t , u t , v t ) -M 1 • 1 -M 2 • 1. (72) 
Thus,

E[T 3 ] = 1 T T t=1 E[ ∇λ L(λ t , w t ) -∇ λ L(λ t , w t ), λ t -λ ] = 1 T T t=1 E[ -(M 1 + M 2 ) • 1, λ t -λ ] = 0
(73) where the last step is true because

λ t • 1 = λ * • 1 = 1 C.9 Upper bound for E[T 4 ] For any u ∈ U u 1 -u 2 ≤ u 1 2 + u 2 + 2| u 1 , u | ≤ u 1 2 + u 2 + 2 u 1 u ≤ 256L 2 f ϕ 2 (74) 
where the last inequality holds by x 2 ≤ x 1 for any x and the definition of U. Similarly, for any

v ∈ V v 1 -v 2 ≤ v 1 2 + v 2 + 2 v 1 v t ≤ |S|( v 1 2 ∞ + v 2 ∞ + 2 v 1 ∞ v t ∞ ) ≤ 16|S|[ L f 1 -γ + 4L f L h (1 -γ)ϕ ] 2 ≤ 400|S|L 2 f L 2 h (1 -γ) 2 ϕ 2 (75) 
Finally, combine above two inequalities,

E[T 4 ] = 1 2T α w 1 -w † 2 = 1 2T α [ u 1 -u † 2 + v 1 -v † 2 ] ≤ 400|S|L 2 f L 2 h (1 -γ) 2 T αϕ 2 (76) 
C.10 Upper bound for E[T 5 ]

For any fixed u t , v t , λ t , we have

E ∇u L(λ t , u t , v t ) 2 u t , v t , λ t = h(λ t ) -κ1 2 ≤ 2 h(λ t ) 2 + 2κ 2 I ≤ 4I (77) 
where the last step holds because |h i (λ)| ≤ 1, ∀i ∈ [I] by the Lemma 2 and the fact 0 < κ ≤ 1.

E ∇v L(λ t , u t , v t ) 2 u t , v t , λ t = E st,at,s t ,s 0 (1 -γ)e s 0 + λ stat (γe s t -e st ) ζ stat 2 u t , v t , λ t ≤ E st,at,s t ,s 0 (1 -γ)e s 0 + λ stat (γe s t -e st ) (1 -δ)λ t stat + δ |S||A| 2 u t , v t , λ t ≤ E st,at,s t ,s 0 3(1 -γ) 2 + 3γ 2 + 3 (1 -δ) 2 ≤ 3 + 6 (1 -δ) 2 (78) 
Combined Eq. ( 77), ( 78) with the definition of w, Firstly, notice that T 6 is different from T 3 because w † depends on λ, which is a random variable. However λ * κ depends only on κ, which is a constant. Thus, in order to bound T 6 , we need following Lemma.

E[T 5 ] = α 2T T t=1 E ∇w L(λ t , w t ) 2 = α 2T T t=1 E ∇u L(λ t , u t , v t ) 2 + E ∇u L(λ t , u t , v t ) 2 ≤ α 2 3 + 6 (1 -δ) 2 + 4I ≤ 16αI ( 
Lemma 8 ( [START_REF] Beck | First-order methods in optimization[END_REF]) Let Z ⊂ R d be a convex set and ω : Z → R be a 1-strongly convex function with respect to norm • over Z. With the assumption that for all x ∈ Z we have ω(x) -min x∈Z ω(x) ≤ 1 2 D 2 , then for any martingale difference sequence {Z k } K k=1 ∈ R d and any random vector x ∈ Z, it holds that

E K k=1 Z k , x ≤ D 2 K k=1 E[ Z k 2 * ] (80) 
where • * denotes the dual norm of • For any fixed u t , v t , λ t , the gradient estimation is unbiased.

E[ ∇φ L(λ t , u t , v t )] = ∇ φ L(λ t , u t , v t ) (81) 
where φ = u or v. Thus,

E[T 6 ] = 1 T T t=1 E ∇ w L(λ t , w t ) -∇w L(λ t , w t ), w t -w † = 1 T T t=1 E ∇w L(λ t , w t ) -∇ w L(λ t , w t ), w † . ( 82 
)
To apply Lemma 8, let Z = W, ω(x) = 1 2 x 2 , x = w † and Z k = ∇w L(w k , λ k )-∇ w L(w k , λ k ), which is a martingale difference. Then, ω(x) -min x∈Z ω(x) = ω(w) = 1 2 w 2 ≤ 1 2 D 2 and thus D ≥ w . The norm of w can be bounded as

w 2 = u 2 + v 2 ≤ u 2 1 + |S| v 2 ∞ = ( 8L f ϕ ) 2 + 2|S| L f 1 -γ + 4L f L h (1 -γ)ϕ 2 ≤ 256L 2 f ϕ 2 + 2|S|L 2 f (1 -γ) 2 + 16|S|L 2 f L h (1 -γ) 2 ϕ + 32|S|L 2 f L 2 h (1 -γ) 2 ϕ 2 ≤ 324|S|L 2 f L 2 h (1 -γ) 2 ϕ 2 . (83) Thus, w ≤ 18L f L h √ |S| (1-γ)ϕ
=: D. Apply Lemma 8 to Eq. ( 82),

E[T 6 ] ≤ 18L f L h |S| T (1 -γ)ϕ T t=1 E[ ∇w L(w t , λ t ) -∇ w L(w t , λ t ) 2 ] ≤ 18L f L h |S| T (1 -γ)ϕ T t=1 E[ ∇w L(w t , λ t ) 2 ] = 18L f L h |S| T (1 -γ)ϕ 2T α E[T 5 ] ≤ 18L f L h |S| √ T (1 -γ)ϕ √ 32I = 200L f L h I|S| √ T (1 -γ)ϕ . ( 84 
)
Appendix D. Proofs for Section 5.2 D.1 Proof of Lemma 5

Proof Recall λ * is the optimal occupancy measure to the original problem, which gives

h i (λ * ) ≥ 0 (85) 
Further, under the Slater Condition Assumption 3, there exists at least one occupancy measure λ such that h i ( λ) ≥ ϕ (86)

Define a new occupancy measure λ = (1 -κ ϕ )λ * + κ ϕ λ. By the concavity of the cost function, it can be shown a feasible occupancy measure to the conservative problem.

h i ( λ) = h i (1 - κ ϕ )λ * + κ ϕ λ ≥ (1 - κ ϕ )h i λ * + κ ϕ h i λ ≥ κ ϕ ϕ = κ (87) a (I -γP T a ) λa = (1 - κ ϕ ) a (I -γP T a )λ * a + κ ϕ a (I -γP T a ) λa = (1 -γ)ρ (88) 
Then, we can bound the difference

f (λ * ) -f (λ * κ ) (a) ≤ f (λ * ) -f ( λ) = f (λ * ) -f (1 - κ ϕ )λ * + κ ϕ λ ≤ κ ϕ f (λ * ) - κ ϕ f ( λ) (b) ≤ κ ϕ f (λ * ) (c) ≤ κ ϕ (89) 
The first step (a) holds because λ * κ is the optimal solution of the conservative problem, which gives larger value function than any other feasible occupancy measure. We drop the negative term in the step (b) and the last step (c) is true because f (λ * ) ≤ 1 by the Lemma 2.

D.2 Proof of Theorem 2

Proof In order to construct the relation between duality gap and result in occupancy measure space, let us consider the expression for the Lagrangian function. By the feasibility of λ * κ , we can write

L(λ * κ , u t , v t ) =f (λ * κ ) + u t , h(λ * κ ) -κ + a (λ * κ,a ) T (γP a -I) -(1 -γ)ρ v t ≥f (λ * κ ). (90) 
Define the set

I = {i|h i ( λ) < 0}. Denote u = [u 1 , u 2 , • • • , u I ] T , where u i = u i if i ∈ I and u i = 0 otherwise. Define C 1 := 4L f ϕ and C 2 = L f 1-γ + 4L f L h
(1-γ)ϕ for simplicity, which is the bound for u * κ 1 and v * κ ∞ , respectively. By the definition of u

† , v † L( λ, u † , v † ) = min u∈U ,v∈V f ( λ) + u, h( λ) -κ + a ( λa ) T (γP a -I) -(1 -γ)ρ v (a) = min u ∈U ,v∈V f ( λ) + u , [h( λ) -κ] -+ a ( λa ) T (γP a -I) -(1 -γ)ρ v, (91 
) where the notation x -:= min{x, 0} and the equality holds because u i = 0, i ∈ I c for those constraints which are satisfied. Let us consider the second term on the right hand side of the above expression as follows

u , [h( λ) -κ] -≤ u 1 [h( λ) -κ1] -∞ ≤2C 1 [h( λ) -κ1] -∞ . (92) 
Notice that equality in the above inequality is achievable by selecting u † j = 2C 1 for j = argmax i |h i ( λ)-κ| and u

† k = 0 for k = j. Such u † gives the minimum of u , [h( λ) -κ] -= 2C 1 [h( λ) - κ1] -∞ . Similarly, v † = 2C 2 1 gives the minimum of a ( λa ) T (γP a -I) -(1 -γ)ρ v = 2C 2 a ( λa ) T (γP a -I) -(1 -γ)ρ
1 by Holder inequality. Hence, we could write the expression in (91) as

L( λ, u † , v † ) = λ, r -[h( λ) -κ1] -∞ -2C 2 a ( λa ) T (γP a -I) -(1 -γ)ρ 1 . (93) 
Combining Eq. ( 93) with ( 90) and then taking expectation, we obtain

E[L(λ * κ , u t , v t )-L( λ, u † , v † )] ≥ E f (λ * κ )-f ( λ)+ [h( λ)-κ1] -∞ +2C 2 a (λ t a ) T (γP a -I)+(1-γ)ρ 1 .
(94) Combining with the result in Theorem 1, there exists a constant c1 such that

E f (λ * κ ) -f ( λ) + [h( λ) -κ1] -∞ + 2C 2 a (λ t a ) T (γP a -I) + (1 -γ)ρ 1 ≤ c1 I|S||A| log(|S||A|) T • L f L h (1 -γ)ϕ . ( 95 
) Denote L := c1 I|S||A| log(|S||A|) T • L f L h
(1-γ)ϕ . By the Theorem 4 (see Appendix F for reference), we directly get

E[f (λ * κ ) -f ( λ)] ≤ L, (96a) 
E [h( λ) -κ1] -∞ ≤ 2L C 1 = Lϕ 2L f ≤ Lϕ, (96b) 
E a (γP T a -I) λa + (1 -γ)ρ 1 ≤ 2L C 2 = 2L L f 1-γ + 4L f L h (1-γ)ϕ ≤ (1 -γ)Lϕ L f L h . ( 96c 
)
Note that the result in (96a) is at λ * κ and in order to obtain the result for λ * , let us consider and by the statement of Lemma 5, we could write

E[f (λ * ) -f ( λ)] = E[f (λ * ) -f (λ * κ )] + E[f (λ * κ ) -f ( λ)] ≤ κ ϕ + L, (97) 
where we have utilized the upper bound developed in Lemma 5. Next, recall that

κ = 2c 1 I|S||A| log(|S||A|) T • L f L h 1 -γ ,
and from the definition of L, we can write

E[f (λ * ) -f ( λ)] ≤ 3c 1 I|S||A| log(|S||A|) T • L f L h (1 -γ)ϕ , (98) 
which establishes the upper bound for the optimally gap for the original optimization problem. Further, from the result in (96b), we have for all i ∈

[I] E|[h i ( λ) -κ] -| ≤ Lϕ. (99) 
Note that by the definition of [x] -:= min{x, 0}, it holds that |[x] -| = -min{x, 0} which holds due to the fact that min{x, 0} is either zero or negative. Therefore, it holds that |h

i ( λ) -κ| = -[h i ( λ) -κ] -and thus E [h i ( λ) -κ] -≥ -Lϕ. (100) 
Further, since [x] -is a concave function with respect to x, via Jensen's inequality, we can write

[E[h i ( λ) -κ]] -≥ E [h i ( λ) -κ] -≥ -Lϕ. (101) 
Again, by the definition of [x] -, we simplifies (101) to

min{E[h i ( λ)] -κ, 0} ≥ -Lϕ. (102) 
Thus, we obtain either

E[h i ( λ)] ≥ κ > 0 or E[h i ( λ)] ≥ κ -Lϕ.
The first case is trivial and for the second case, recall κ = 2c 1

I|S||A| log(|S||A|) T • L f L h 1-γ E[h i ( λ)] ≥ κ -Lϕ = c1 I|S||A| log(|S||A|) T • L f L h 1 -γ (103) Let T = c2 1 L 2 f L 2 h I|S||A| log(|S||A|) (1-γ) 2 ϕ 2 2
. By Eq. ( 96), we have the final result

E[f (λ * ) -f ( λ)] ≤ 3 (104a) E[h i ( λ)] ≥ ϕ ∀i ∈ [I] (104b) E a (γP T a -I) λa + (1 -γ)ρ 1 ≤ (1 -γ) ϕ L f (104c)
Recall that it is required κ ≤ min{ ϕ 2 , 1}, which gives

T ≥ 4c 2 1 L 2 f L 2 h I|S||A| log(|S||A|) (1 -γ) 2 ϕ 2 max{4, ϕ 2 } (105) D.3 Proof of Corollary 1
Proof Under the condition that κ = 0, it is obvious that λ * = λ * κ . Thus, we have

E[f (λ * ) -f ( λ)] ≤ L = c1 I|S||A| log(|S||A|) T • L f L h (1 -γ)ϕ (106) 
Furthermore, similar to Eq. ( 103)

E[h i ( λ)] ≥ κ -Lϕ = -c 1 I|S||A| log(|S||A|) T • L f L h 1 -γ (107) Let T = c2 1 L 2 f L 2 h I|S||A| log(|S||A|) (1-γ) 2 ϕ 2 2
, we derive the following result

E[f (λ * ) -f ( λ)] ≤ (108a) E[h i ( λ)] ≥ -∀i ∈ [I] (108b) E a (γP T a -I) λa + (1 -γ)ρ 1 ≤ (1 -γ) ϕ L f L h (108c)
Appendix E. Proofs for Section 5.3

E.1 Proof of Theorem 3

Proof By the result in Eq. ( 26b) and the definition of • 1 , we have

E s a λsa -γ a s P a (s , s) λs a -(1 -γ)ρ s ≤ (1 -γ) ϕ. L f L h (109) 
For each s ∈ S, let us define

a λsa -γ a s P a (s , s) λs a -(1 -γ)ρ s = (1 -γ) s . (110) 
We notice that the left hand side of Eq. ( 110) gives the physical meaning of occupancy measure, which can be seen in the following Eq. ( 111)-( 115). Furthermore, Notice that s is a random variable. It is obvious that s ≥ 0 and E[ s s ] ≤ ϕ L f l H by Eq. ( 109). Then, define the policy induced by λ as π(a|s) = λsa (111) Now define ρ sa = ρ s π(a|s) which can be considered as the initial distribution for state and action following policy π. Define P π(s, a, s , a ) = P a (s, s ) • π(a |s ), which can be considered as the transition matrix from current state and action pair (s, a) to next state and action pair (s , a ). Furthermore, define sa = s π(a|s) and it is obvious that a sa = s . Then, Eq. ( 111) can be simplified as λsa -γ 

where ± means the left hand side can be equal to (1 -γ)(ρ sa + sa ) or (1 -γ)(ρ sasa ).

Next, define ρ ∈ R |S||A| = [ρ s 1 a 1 , ρ s 1 a 2 , • • • , ρ s |S| a 1 , ρ s 2 a 1 , • • • , ρ s |S| a |A| ] T as a vector, define ˜ ∈ R |S||A| = [ s 1 a 1 , s 1 a 2 , • • • , s 2 a 1 , • • • , s |S| a |A| ]
T as a vector, and define P π ∈ R |S||A|×|S||A| as a matrix. Then, we could write the expression in Eq. ( 113) in the following compact form as

λ -γP T π λ = (1 -γ)(ρ ± ˜ ) (114) 
Notice that P T π 1 = max j |S||A| i=1 |P T π (i, j)| = 1 and thus γP T π ≤ γ. This means (I -γP T π ) is invertable and (I -γP T π ) -1 = ∞ i=0 γ i (P T π ) i . Thus, we have

λ = (1 -γ)(I -γP T π ) -1 (ρ ± ˜ ). ( 115 
)
Rearrange items, take inner-product with r and take absolute value, we have

λ -(1 -γ)(I -γP T π ) -1 ρ = (1 -γ)(I -γP T π ) -1 ˜ . ( 116 
)
Notice that

(1 -γ)(I -γP T π ) -1 ρ = (1 -γ) ρT + γ ρT P π + γ 2 ρT (P π) 2 + • • • = λ π (117)

The above equation can be bounded by 

E|f ( λ) -f (λ π)| (a) ≤ L f E λ -λ π = L f (1 -γ)E (I -γP T π ) -1 ˜ 2 (b) ≤ L f (1 -γ)E (I -γP T π ) -1 ˜ 1 (c) ≤ L f (1 -γ) (I -γP T π ) -1 1 E ˜ 1 (d) ≤ 1 -γ L h ∞ i=0 γ i (P T π ) i 1 ϕ (e) ≤ (1 -γ) ∞ i=0 γ i ϕ = ϕ, (118) 
Recall E[f (λ * ) -f ( λ)] ≤ 3 in Eq. ( 27), hence we can write

f (λ * ) -E[f (λ π)] = f (λ * ) -E[f ( λ)] + E f ( λ) -f (λ π) ≤4 , (120) 
which is for the objective suboptimality gap in the primal domain. Rescaling to 4 finishes the proof. Similarly, for the constraints in the primal domain, we could write

E[h i (λ π) -h i ( λ)] ≥ -ϕ. (121) 
From the result in Eq. (26a), note that we have E[h i ( λ)] ≥ ϕ. Hence, after rearranging the terms in (121), we obtain

E[h i (λ π)] ≥ -ϕ + E[h i ( λ)] = -ϕ + ϕ =0. ( 122 
)
Hence proved.

E.2 Proof of Corollary 2

Proof Recall the result in Eq. ( 27) and ( 119), we directly have

f (λ * ) -E[f (λ π)] ≤ 2 (123) 
Similarly, combine Eq. ( 26a) and ( 121), we have

E[h i (λ π)] ≥ -2 (124) 
Re-scaling to 2 finishes the proof. 

Appendix F. Optimization Theory

Then the dual problem can be written as

q opt = max y∈R m + ,z∈R d q(y, z) (128) 
Lemma 9 (Theorem 3.59 in [START_REF] Beck | First-order methods in optimization[END_REF]) (y,z) is an optimal solution of problem Eq. (128) if and only if -(y, z) ∈ ∂p(0, 0)

Theorem 4 (Theorem 3.60 in [START_REF] Beck | First-order methods in optimization[END_REF]) Let f, g be convex functions, X a nonempty convex set, A ∈ R d * n and b ∈ R d . Let f opt , q opt be the optimal values of the primal and dual problems Eq. ( 125) and (128), respectively. Suppose that f opt = q opt and that the optimal set of the dual problem is nonempty. Let (y * , z * ) be the optimal solution of the dual problem, Assume that x ∈ X satisfies

f (x) -f opt + C 1 g(x) + ∞ + C 2 Ax + b 1 ≤ δ ( 129 
)
where δ > 0 and C 1 , C 2 are constants satisfying

C 1 ≥ 2 y * 1 , C 2 ≥ 2 z * ∞ , then f (x) -f opt ≤ δ g(x) + ∞ ≤ 2δ C 1 Ax + b 1 ≤ 2δ C 2 (130)
Proof It is trivial that f (x) -f opt ≤ δ due to the fact that C 1 g(x) + ∞ and C 2 Ax + b 1 are both non-negative. Since (y * , z * ) is the optimal solution for the dual problem, it follows by Lemma 9 that -(y * , z * ) ∈ (0, 0). Therefore, for any (u, t) ∈ dom(p) p(u, t) -p(0, 0) ≥ -y * , u + -z * , t

Plugging u = ũ := [g(x)] + and t = t := Ax + b into Eq. ( 131), while using the inequality p(ũ, t) ≤ f (x) and the equality p(0, 0) = f opt , we obatin

(C 1 -y * 1 ) ũ ∞ + (C 2 -z * ∞ ) t 1 = -y * 1 ũ ∞ -z * ∞ t 1 + C 1 ũ ∞ + C 2 t 1 ≤ -y * , ũ + -z * , t + C 1 ũ ∞ + C 2 t 1 ≤ p(ũ, t) -p(0, 0) + C 1 ũ ∞ + C 2 t 1 ≤ f (x) -f opt + C 1 ũ ∞ + C 2 t 1 ≤ δ (132) It is clear that C 1 -y *
1 and C 2 -z * ∞ are both non-negative. Thus,

(C 1 -y * 1 ) ũ ∞ ≤ δ (C 2 -z * ∞ ) t 1 ≤ δ (133)
Finally, using the assumption 134) 

C 1 ≥ 2 y * 1 , C 2 ≥ 2 z * ∞ [g(x) + ] ∞ = ũ ∞ ≤ δ C 1 -y 1 ≤ 2δ C 1 [Ax + b] 1 = t 1 ≤ δ C 2 -z ∞ ≤ 2δ C 2 ( 

Algorithm 1

 1 Conservative Stochastic Primal-Dual Algorithm (CSPDA) for constrained RL Input: Sample size T. Initial distribution ρ. Discounted factor γ. Parameter: Step-size α, β. Slater variable ϕ, Shift-parameter M , Conservative variable κ and

Figure 1 :

 1 Figure 1: Learning Process of the proposed algorithm for linear objective and constraint value with κ = 0 and κ > 0. The total reward is the objective in (31) with c = 0 and the constraint value is the L.H.S. of the constraint in (31).

Figure 2 :

 2 Figure 2: Learning Process of the proposed algorithm for concave objective and constraint value with κ = 0 and κ > 0. The total reward is the objective in (31) with c = 1 and the constraint value is the L.H.S. of the constraint in (31).

Algorithm 2

 2 Unbiased estimator for Value Function Input: Initial distribution ρ. Discounted factor γ. Policy π Output: Value function V π r,1 1: Sample s 1 ∼ ρ, H ∼ Geo(1 -γ) 2: for Each state s 1 in S do 3: for h = 1, 2, ..., H do 4:Take action a h ∼ π(•|s h ), observe next state s h+1 and reward r(s h , a h )

  45) where the step (a) holds by the Lemma 3, step (b) holds by the definition of r, g i , step (c) comes from the triangle inequality, and step (d) is true because each row in PT adds up to 1. Finally, we have the bound v

  which means that the Hessian matrix ∇ w L(λ, u, v) is a zero matrix. Thus, Lagrange function is convex w.r.t w. Then, let us define w = [u T , v T ] T , w = 1 T T t=1 wt , and decompose the duality gap as

  where step (a) holds by Jensen inequality and the step (b) utilizes the convexity of L(λ, •) and concavity of L(•, w).

  79) where the last step holds by δ ∈ (0, 1 2 ) C.11 Upper bound for E[T 6 ]

  Multiply the both sides of Eq. (110) by π(a|s) to obtain λsa -γ a s P a (s , s)π(a|s) λs a -(1 -γ)ρ s π(a|s) = (1 -γ) s π(a|s), ∀a ∈ A, s ∈ S.

  s , a , s, a) λs a -(1 -γ)ρ sa = (1 -γ) sa , ∀a ∈ A, s ∈ S. (112)With a little abuse of notation ±, we can write λsa -γ a s P π(s , a , s, a) λs a = (1 -γ)(ρ sa ± sa ), ∀a ∈ A, s ∈ S,

  where step (a) holds by the Lipschitz assumption 2, step (b) holds by norm inequality, step (c) holds by definition of matrix norm, step (d) holds by triangle inequality and E ˜ 1 = E[ s s ] ≤ ϕ L f L h . The last step (e) is true because P T π 1 = 1. Finally, we get the result E|f ( λ) -f (λ π

  Consider the standard optimization problemf opt = min x∈X {f (x) : g(x) ≤ 0, Ax + b = 0}(125)whereA ∈ R d * n , b ∈ R d , x ∈ R n and g : R n → R m . Define the value function as p(u, t) = min x∈X {f (x) : g(x) ≤ u, Ax + b = t}(126)and the dual function asq(y, z) = min x∈X {f (x) + y T g(x) + z T (Ax + b)}, y ∈ R m + , z ∈ R d

AN EXAMPLE FOR UC-CFH IN (KALAGARLA ET AL., 2021) In the UC-CFH algorithm, the author proposed an -optimal result with at most Õ( |S||A|C 2 H 2 2 log( 1 δ )) episodes, where C is the upper bound on the number of possible successor states for a state-action pair. Thus, C < |S| and the above equation can be bounded by Õ(

Notice that this is already a PAC result and we begin converting it into infinite horizon discounted setting.

• Firstly, we know

Notice that UC-CFH algorithm doesn't assume horizon dependent transition dynamics (They assume in the model, however, not in the algorithm and theorem). Thus, by changing H to 1 1-γ , we have sample complexity

• Secondly, change δ to (1 -γ), we get the sample complexity in the form of expectation, which means with Õ(

Appendix B. Notations

For the purpose of analysis in the appendix, we have used the shorthand notation λ sa for λ(s, a).

Appendix C. Proofs for Section 5.1

C.1 Proof of Lemma 3

Proof Bound on u * κ 1 : Let us denote the optimal value of optimization problem in (9) as p * κ and write the corresponding dual problem as