

On parabolic subgroups of Artin-Tits groups Eddy Godelle

To cite this version:

| Eddy Godelle. On parabolic subgroups of Artin-Tits groups. 2022. hal-03723051

HAL Id: hal-03723051 <https://hal.science/hal-03723051>

Preprint submitted on 13 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON PARABOLIC SUBGROUPS OF ARTIN-TITS GROUPS

EDDY GODELLE

Abstract. We address the conjecture which states that an intersection of parabolic subgroups of an Artin-Tits group is a parabolic subgroup. We prove that the conjecture is equivalent to a, a priori, weaker conjecture. We also prove the conjecture in a specific case. Along the way, we provide short and almost self-contain algebraical proofs of several classical results on Artin-Tits groups, such as those of Van der Lek on intersection of standard parabolic subgroups.

INTRODUCTION

We fix a finite simplicial labelled graph $\Gamma = (I, E, m)$ with vertex set I, edge set E and label map $m: E \to \mathbb{N}_{\geq 2}$. We also fix two sets $\Sigma_I = \{\sigma_i \mid i \in I\}$ and $S_I = \{s_i \mid i \in I\}$ that are indexed by I. If X is a subset of I, by $\Gamma_X = (X, E_X, m_X)$ we denote the full (labelled) subgraph of Γ spanned by X. We set $\Sigma_X = \{ \sigma_i \in \Sigma_I \mid i \in X \}$ and $S_X = \{ s_i \in S_I \mid i \in X \}$. If S is a set, by S^* we denote the monoid of words on S. The length of a word w on S is denoted by $\ell_S(w)$. For convenience, for $\{i, j\}$ in E, we will often write $m(i, j)$ for $m(\{i, j\})$. The Artin-Tits group A_I generated by Σ_I and associated with Γ is defined by the following presentation of group:

(E.1)
$$
A_I = \left\langle \sum_I \left| \underbrace{\sigma_i \sigma_j \sigma_i \cdots}_{m(e) \text{ terms}} = \underbrace{\sigma_j \sigma_i \sigma_j \cdots}_{m(e) \text{ terms}} \text{ for } e = \{i, j\} \in E \right\rangle
$$

The Coxeter group W_I generated by S_I and associated with Γ is defined by the following presentation:

(E.2)
$$
W_I = \left\langle S \mid \begin{array}{c} s^2 = 1 & \text{for } s \in S \\ \frac{s_i s_j s_i \cdots}{m(e) \text{ terms}} = \frac{s_j s_i s_j \cdots}{m(e) \text{ terms}} & \text{for } e = \{i, j\} \in E \end{array} \right\rangle
$$

To speak about the relations that appear in the presentation of A_I or to their corresponding relations in the presentation of W_I , we will speak of the *braid relations* of the presentation.

Example 0.1. Consider $I = \{a, b, c\}$ and Γ_I as below. Then, A_I is the braid group on four strands. The groupe W_I is the permutation group on 4 elements where S_I consists on the elementary transpositions.

Note that Γ is not the classical Coxeter graph associated with the above presentation (here no edge means no relation, and a commutation relation corresponds to an edge labelled with 2). If w is a word on S_I or on $\Sigma_I \cup \Sigma_I^{-1}$, by w (in bold) we denote the corresponding element in W_I , or A_I , respectively. We will simply write ℓ_I for both ℓ_{S_I} and $\ell_{\Sigma_I \cup \Sigma_I^{-1}}$. If w' is another word on the same set, we write $w \equiv_I w'$ when $w = w'$ in the corresponding group. Let $\theta_I^* : (\Sigma_I \cup \Sigma_I^{-1})^* \to S_I^*$ be the morphism of monoids that sends both σ_i and σ_i^{-1} onto s_i . Clearly, the morphism θ_I^* induces a morphism of groups $\theta_I : A_I \to W_I$.

2 EDDY GODELLE

The kernel of θ_I is called the colored Artin-Tits group and will be denoted by CA_I . The length $\ell_I(\boldsymbol{w})$ of w in W_I is defined as $\ell_I(\mathbf{w}) = \min{\{\ell_I(v) | v \in S_I^* \text{ with } \mathbf{v} = \mathbf{w}\}}$. When $\ell_I(\mathbf{w}) = \ell_I(\mathbf{w})$, we say that w is a reduced word. If $X \subseteq I$, it is immediate that the inclusion maps $\Sigma_X \to \Sigma$ and $S_X \to S$ extend to morphisms of groups $\iota_X : A_X \to A_I$ and $\tau_X : W_X \to W_I$. This is well-known that these morphisms are into [12]. But we are going here to provide a new direct and short algebraical proof that ι_X is into. So, in the sequel we identify W_X with its image by τ_X in W_I . But, at this stage, we do not consider as known that ι_X is into. We denote by A_I^+ the submonoid of A_I generated by S_I . This is known by [8] that A_I^+ and A_I , possess the same presentation, but considered as a presentation of monoid for the former, and considered as a presentation of group for the latter. However, we do not need to assume this result known when proving our results. We define $\theta_X^*, \theta_X, A_X^+, \ell_X$ and \equiv_X similarly to $\theta_I^*, \theta_I, A_I^+, \ell_I$ and \equiv_I , respectively. Our first objective it to prove Proposition 0.2. This proposition claims the existence of two maps $\pi_{I,X}^*$ and $\pi_{I,X}$ and states several of their properties. We will see (Proposition 2.7 and Corollary 2.8) that these two maps are indeed the map $\hat{\pi}_X$ and π_X defined in [1] (see also [3, 6]).

Proposition 0.2. Let $X \subseteq I$. There exists a map $\pi_{I,X}^* : (\Sigma_I \cup \Sigma_I^{-1})^* \to (\Sigma_X \cup \Sigma_X^{-1})^*$ such that

- (i) For any word ω on $\Sigma_I \cup \Sigma_I^{-1}$, we have $\ell_X(\pi_{I,X}^*(\omega)) \leq \ell_I(\omega)$. The equality holds if and only if ω is a word on $\Sigma_X \cup \Sigma_X^{-1}$. In the latter case, $\pi^*_{I,X}(\omega) = \omega$.
- (ii) if ω and ω' are words on $\Sigma_I \cup \Sigma_I^{-1}$, then $\pi^*_{I,X}(\omega)$ is a prefix of $\pi^*_{I,X}(\omega\omega')$.
- (iii) [1] The map $\pi_{I,X}^*$ induces a map $\pi_{I,X} : A_I \to A_X$.
- (iv) If ω lies in A_I then $(\theta_X(\pi_{I,X}(\omega)))^{-1}\theta_I(\omega)$ is (X,\emptyset) -reduced and

$$
\ell_I(\theta_I(\boldsymbol{\omega})) = \ell_I(\theta_X(\pi_{I,X}(\boldsymbol{\omega}))) + \ell_I\bigg(\big(\theta_X(\pi_{I,X}(\boldsymbol{\omega}))\big)^{-1}\theta_I(\boldsymbol{\omega})\bigg)
$$

- (v) [1] The set map $\pi_{I,X} : A_I \to A_X$ restricts to an homomorphism $\pi_{I,X} : CA_I \to CA_X$.
- (vi) We have $\pi_{I,X}(A_I^+) = A_X^+$.
- (vii) For any word ω on $\Sigma_X \cup \Sigma_X^{-1}$ and any ω' in A_I , one has $\pi_{I,X}(\omega \omega') = \pi_{I,X}(\omega) \pi_{I,X}(\omega')$.
- (viii) If ω lies in CA_I then for any ω' in A_I , one has $\pi_{I,X}(\omega\omega') = \pi_{I,X}(\omega)\pi_{I,X}(\omega')$.
- (ix) If $Y \subseteq I$ and ω is a word on $\Sigma_Y \cup \Sigma_Y^{-1}$, then $\pi_{I,X}^*(\omega)$ is a word on $\Sigma_{Y \cap X} \cup \Sigma_{Y \cap X}^{-1}$ and the restriction of $\pi_{I,X}^*$ to $(\Sigma_Y \cup \Sigma_Y^{-1})^*$ is $\pi_{Y,Y \cap X}^*$.
- (x) Let $X, Y \subseteq I$ and ω be a word on $\Sigma_I \cup \Sigma_I^{-1}$, then $\pi_{I,Y}^*(\pi_{I,X}^*(\omega)) = \pi_{I,X}^*(\pi_{I,Y}^*(\omega)) = \pi_{I,X \cap Y}^*(\omega)$
- (xi) Let $X \subseteq Y \subseteq I$ and ω be a word on $\Sigma_I \cup \Sigma_I^{-1}$, then $\pi_{Y,X}^*(\pi_{I,Y}^*(\omega)) = \pi_{I,X}^*(\omega)$.

Note that, since at this stage we do not identify A_X with its image $\iota_X(A_X)$ in A_I , in Point (vii) of the above proposition we distinguish ω and $\pi_{I,X}(\omega)$ (see Corollary 0.4 below). Some points in the above proposition, such as Point (vi), are not explicitely stated in [1], but can be deduced from the definition of $\hat{\pi}_X$ given in [1]. As a consequence of Proposition 0.2, we will deduce :

Proposition 0.3. Let X be a subset of I .

- (i) [12] Let ω, ω' be in $(\Sigma_X \cup \Sigma_X^{-1})^*$, if $\omega \equiv_I \omega'$, then $\omega \equiv_X \omega'$. In particular, ι_X is into. So one can identify A_X with its image in A_I .
- (ii) [12] If Y is another subset of I then $A_X \cap A_Y = A_{X \cap Y}$ in A_I .
- (iii) We have $A_X^+ = A_I^+ \cap A_X$.
- (iv) [3] The subgroup A_X is convex : if ω is in A_X , any of its representative words of minimal length on $\Sigma_I \cup \Sigma_I^{-1}$ is actually a word on $\Sigma_X \cup \Sigma_X^{-1}$.

The statements in Proposition 0.3 are already known. Howewer previous proofs were long and based on topological arguments. The interest of the present proof is that it is is short, only uses algebraical arguments and is only based on elementary prerequisites. Indeed we only refer to the first pages of [2, Chapter 4], were Coxeter groups are defined, and to a result of [10], which is a easy consequence of the same pages in [2, Chapter 4]. With Proposition 0.3(i) at hand, we deduce from Proposition 0.2 that

Corollary 0.4. Let $X \subseteq I$ and identify A_X with its image in A_I .

- (i) [3] The morphism $\pi_{I,X} : A_I \to A_X$ is a retraction.
- (ii) For any ω in A_X and any ω' in A_I , one has $\pi_{I,X}(\omega \omega') = \omega \pi_{I,X}(\omega')$.
- (iii) Let $X, Y \subseteq I$. For any ω in A_I , $\pi_{I,Y}(\pi_{I,X}(\omega)) = \pi_{I,X}(\pi_{I,Y}(\omega)) = \pi_{I,X \cap Y}(\omega)$.
- (iv) Let $X \subseteq Y \subseteq I$.
	- (a) The restriction of $\pi_{I,X}$ to A_Y is $\pi_{Y,X}$;
	- (b) For any ω in A_I , $\pi_{Y,X}(\pi_{I,Y}(\omega)) = \pi_{I,X}(\omega)$.

In Point (iii) above, the equalities can be written as $\pi_{X,X\cap Y}(\pi_{I,X}(\omega)) = \pi_{Y,Y\cap X}(\pi_{I,Y}(\omega)) = \pi_{I,X\cap Y}(\omega)$ by $(iv)(a)$.

If X is a subset of I, then the subgroups of A_I and W_I generated by Σ_X and S_X , respectively, are called *standard parabolic subgroups*. A *parabolic subgroup* of A_I is a subgroup that is conjugated to one of its standard parabolic subgroups. In the framework of Artin-Tits groups, a main open conjecture states that the family of parabolic subgroups of an Artin-Tits group is closed under intersection. This conjecture can be formulated as it follows:

Conjecture 1. Let A_I be an Artin-Tits group, X, Y be in I and ω be in A_I . Then, $(\omega A_Y \omega^{-1}) \cap A_X$ is a parabolic subgroup of A_I .

By [1], when the conjecture holds, then $(\omega A_Y \omega^{-1}) \cap A_X$ is a parabolic subgroup of $\omega A_Y \omega^{-1}$ and a parabolic subgroup of A_X . Conjecture 1 has been proved to hold when one restricts to some particular families such has the family of Artin-Tits groups of spherical type [4], of FC type [7] or of large type [5]. However, the question in the general case remains open. Our second objective is to prove that Conjecture 1 is equivalent to the following conjecture:

Conjecture 2. Let A_I be an Artin-Tits group. Let X be in I and ω be in CA_I . Then $(\omega A_X \omega^{-1}) \cap A_X$ is a parabolic subgroup of A_I .

Clearly, Conjecture 1 implies Conjecture 2, so we address the other implication.

Theorem 0.5. Conjecture 2 implies Conjecture 1.

In order to prove Theorem 0.5 we need to prove Conjecture 1 in the case of specific elements ω of A_I . The morphism $\theta_I : A_I \to W_I$ possesses a well-defined and well-known set section $\kappa_I : W_I \to A_I$ (see Section 1). We will prove that

Theorem 0.6. Let X, Y be in I and **w** be in W_I . Set $\boldsymbol{\omega} = \kappa_I(\boldsymbol{\omega})$. Then, there exists \boldsymbol{w}_1 in W_X , $Y_1 \subseteq Y$, and $X_1 \subseteq X$ so that $(\omega A_Y \omega^{-1}) \cap A_X = (\omega A_{Y_1} \omega^{-1}) = \kappa_I(\mathbf{w}_1) A_{X_1} \kappa_I(\mathbf{w}_1)^{-1}$.

Section 1 is devoted to the necessary backgrounds on Coxeter groups. In Section 2, we turn to the proof of Propositions 0.2 and 0.3. We also prove that the retraction $\pi_{I,X}$ is the same as the retraction π_X defined in [1]. Finally, in Section 3 we prove Theorems 0.5 and 0.6.

1. Background on Coxeter groups

We start with the elementary properties on Coxeter groups that we shall need. They can all be found in [2, chap. IV,§1], except Proposition 1.8 that can be found in [10] and which is a direct consequence of Proposition 1.7 below.

Definition 1.1. Let $w = s_{i_1} \cdots s_{i_k}$ be a word on S.

(i) By $r_j(w)$, or r_i when no confusion is possible, we denote the word $s_{i_1}s_{i_2}\cdots s_{i_{j-1}}s_{i_j}s_{i_{j-1}}\cdots s_{i_2}s_{i_1}$. We set $R(w) = (r_1(w), r_2(w), \ldots, r_k(w)).$

- (ii) By $\mathbf{R}(w)$ we denote the associated sequence $(\mathbf{r}_1(w), \mathbf{r}_2(w), \ldots, \mathbf{r}_k(w))$ of elements of W_I .
- (iii) By $N(w)$ we denote the set of elements of W_I that appear an odd number of times in $R(w)$.

Example 1.2. Consider Example 0.1 and the word $w = s_a s_b s_c s_a s_c s_b$. Then $N(w) = \{s_b; s_a s_b s_a\}$ because $R(s) = \{s_a; s_a s_b s_a; s_a s_b s_c s_b s_a; s_a s_b s_c s_a s_c s_b s_a; s_a s_b s_c s_a s_c s_b s_a; s_a s_b s_c s_a s_c s_b s_a\}$ with $s_a s_b s_c s_a s_c s_b s_c s_a s_c s_b s_a = s_a$ and $s_a s_b s_c s_a s_c s_b s_a = s_a s_b s_c s_b s_a$, and $s_a s_b s_c s_a s_c s_b s_a = s_b$.

Remark 1.3. It follows from Definition 1.1 that for any two words w, w' on S, the sequence $\mathbf{R}(ww')$ is the concatenation of the two sequences $\mathbf{R}(ww')$ and $\mathbf{w} \mathbf{R}(w') \mathbf{w}^{-1}$.

Proposition 1.4. [2, chap. IV §1] Let w and w' be two words on S_I .

- (i) If w and w' represent the same element in W, then $N(w) = N(w')$.
- (ii) The word w is reduced if and only if the cardinality of $N(w)$ is equal to the length of w, in other words when all the elements of $\mathbf{R}(w)$ are distinct.

Example 1.5. Consider Example 1.2. Since $N(w) = \{s_b; s_a s_b s_a\}$, the length on S of w is 2. Indeed, $\label{eq:weight} w = s_a s_b s_c s_a s_c s_b = s_b s_a.$

Proposition 1.6. [2, chap. IV, §1] Let w and w' be two words on S_I .

- (i) Let s_{i_0} be in S_I and write $w = s_{i_1} \cdots s_{i_k}$. If w is a reduced word, but $s_{i_0}w$ is not, then there exists j so that $s_{i_1} \cdots s_{i_k} \equiv_I s_{i_0} s_{i_1} \cdots s_{i_{j-1}} s_{i_{j+1}} \cdots s_{i_k}$.
- (ii) If w and w' are reduced with $w \equiv_I w'$, then the word w can be transformed into the word w' by using the braid relations of the presentation of W_I , only.
- (iii) Let w be a word on S_I and s, t be in S_I so that both words sw and wt are reduced, but the word swt is not. Then $sw \equiv_I wt$. In other words $sw = wt$ in W_I .

The above proposition implies several important properties. First, the map $S_I \to W_I, s_i \mapsto s_i$ is into and we can identify S_I with its image S_I in W_I . Depending on the situation, we will write s_i or s_i . Moreover for $X \subseteq I$ we have $S_I \cap W_X = S_X$, and for any two subsets X, Y of I, we have $W_X \cap W_Y = W_{X \cap Y}$. It also follows that the morphism $\Theta_I : A_I \to W_I$ possesses a well-defined set section $\kappa_I : W_I \to A_I$ defined in the following way : for w in W_I and any reduced representative word $w = s_{i_1} \cdots s_{i_k}$ on S_I of w, we have $\kappa_I(w) = \sigma_{i_1} \cdots \sigma_{i_k}$. Indeed, two reduced words on S represent the same element in W_I if and only if one can be transformed into the other by using braid relations only. As a consequence, for any X included in I, the subgroup W_X is convex : if w is in W_X and w is one of its reduced representative word, then w is a word on S_X . In other words, if the product $\boldsymbol{u} \boldsymbol{v}$ lies in W_X and $\ell_I (\boldsymbol{u} \boldsymbol{v}) = \ell_I (\boldsymbol{u}) + \ell_I (\boldsymbol{v})$ then both \boldsymbol{u} and \boldsymbol{v} lie in W_X , too. In addition, the equality $\ell_I (uv) = \ell_I (u) + \ell_I (v)$ holds if and only if the equality $\kappa_I (uv) = \kappa_I (u) \kappa_I (v)$ holds. Finally, we recall that for i, j in I and distint, then the order of the product $s_i s_j$ in W_I is $m(i, j)$, the label of the edge $\{i, j\}$ in the graph Γ (see [2, Chap V §4]).

Proposition 1.7. [2, chap. IV,§1] Let X, Y be included in I and w be in W_I . The double-coset W_XwW_Y possesses a unique element w_0 of minimal length in W_I . Moreover:

- (i) For any w_1 in W_XwW_Y there exist x in W_X and y in W_Y so that $w_1 = x w_0 y$ with $\ell_I(w_1) =$ $\ell_I (\boldsymbol{x}) + \ell_I (\boldsymbol{w}_0) + \ell_I (\boldsymbol{y})$. One says that w_0 is (X, Y) -reduced.
- (ii) For any x in W_X and any y in W_Y , one has $\ell_I (xw_0) = \ell_I (x) + \ell_I (w_0)$ and $\ell_I (w_0 y) =$ $\ell_I (\boldsymbol{w_0}) + \ell_I (\boldsymbol{y}).$
- (iii) The element w is (X, Y) -reduced if and only if it is both (X, \emptyset) -reduced. and (\emptyset, Y) -reduced.

The following result corresponds to Proposition 0.2, but in the context of Coxeter groups. It was annonced in [10] and has been proved in [11] and [9]. This is an almost direct consequence of Proposition 1.7.

Proposition 1.8. [9] Let $X, Y \subseteq I$ and w be in W_I. Then, there exist w_1 in W_X , $Y_1 \subseteq Y$, and $X_1 \subseteq X$ so that $(\boldsymbol{w}W_Y\boldsymbol{w}^{-1}) \cap W_X = (\boldsymbol{w}W_{Y_1}\boldsymbol{w}^{-1}) = \boldsymbol{w}_1 W_{X_1}\boldsymbol{w}_1^{-1}$. Moreover, if \boldsymbol{w} is (X,Y) - reduced, then $\boldsymbol{w}_1 = 1$ and $\mathbf{w} S_{Y_1} \mathbf{w}^{-1} = \mathbf{w} S_Y \mathbf{w}^{-1} \cap S_X = S_{X_1}$.

Remark 1.9. In [9], the author considered the case (X, Y) -reduced, only. If w is not (X, Y) -reduced, then we can write $w = w_1 w' w_2$ with w_1 in W_X , w_2 in W_Y and w' that is (X, Y) -reduced. Then $(wW_Yw^{-1}) \cap W_X = w_1(w'W_Yw'^{-1} \cap W_X)w_1^{-1}.$

Corollary 1.10. Let $X \subseteq I$, i, j be in I and distinct and w be in W. There are only three possibilities: $\pmb{w} W_{\{i,j\}} \pmb{w}^{-1} \cap W_X$ is trivial, or $\pmb{w} W_{\{i,j\}} \pmb{w}^{-1}$ is included in W_X , or $\pmb{w} W_{\{i,j\}} \pmb{w}^{-1} \cap W_X$ contains only one not trivial element.

Remark 1.11. In the above corollary consider the case $wW_{\{i,j\}}w^{-1}$ is included in W_X . Let $X_1 = \{i',j'\}$ be as in Proposition 1.8. Then, $m(i',j') = m(i,j)$ because $m(i,j)$ and $m(i',j')$ are the orders of $s_i s_j$ and $s_i s_{j'}$, respectively, as recalled above.

Lemma 1.12. Let $X \subseteq I$. Let **u** be in W_I and s_i be in S_I . Write $u = v$ **w** such that **v** lies in W_X and w is (X, \emptyset) -reduced. Then

$$
u s_i u^{-1} \in W_X \iff w s_i w^{-1} \in S_X \iff w s_i \text{ is not } (X, \emptyset)\text{-reduced}
$$

Moreover, in this case, \boldsymbol{w} is $(X, \{i\})$ -reduced.

Proof. The first equivalence is clear. Implication " $w s_i w^{-1} \in S_X \Rightarrow w s_i$ is not (X, \emptyset) -reduced" follows from Proposition 1.8, considering $Y = \{i\}$. Assume $w s_i$ is not (X, \emptyset) -reduced. If w were not $(X, \{i\})$ reduced, by Proposition 1.7(iii) it would be not $(\emptyset, \{i\})$ -reduced, and we could write $\mathbf{w} = (\mathbf{w} s_i) s_i$ with $\ell_I (\mathbf{w}) = \ell_I (\mathbf{w} s_i) + 1$, which contradicts the fact that w is (X, \emptyset) -reduced. The last implication then follows from Proposition 1.6(iii) : let w be a reduced representative word of w. if w is $(X, \{i\})$ -reduced and $w s_i$ is not (X, \emptyset) -reduced, then there is s_j in S_X so that $s_j w$ and ws_i are reduced words, but $s_j ws_i$ is not. Then $w s_i = s_j w$.

The following result is implicit in [2, §1 Sec. 4] and is well-known from specialists. As we will need it when proving Proposition 0.2, we prove it for completness.

Lemma 1.13. Let i, j be in I distinct with $\{i, j\}$ in E. Set $m = m(i, j)$. Let $s_{i,j} = s_i s_j s_i \cdots$ ${m \ terms}$ and $s_{j,i} = s_j s_i s_j \cdots$. Then, for all n with $1 \le n \le m$ we have $r_n(\underline{s}_{i,j}) = r_{m-n+1}(\underline{s}_{j,i}).$

 ${m \ term}$

Proof. By formula (15) in [2, §1 Sec. 4] we have $r_n(\underline{s}_{i,j}) = (s_i s_j)^{n-1} s_i$ and $r_{m-n+1}(\underline{s}_{j,i}) = (s_j s_i)^{m-n} s_j$. So $\bm{r_n}(\underline{s}_{i,j}) (\bm{r_{m-n+1}}(\underline{s}_{j,i}))^{-1} = (\bm{s_i}\bm{s_j})^{n-1} \bm{s_i}\bm{s_j} (\bm{s_i}\bm{s_j})^{m-n} = (\bm{s_i}\bm{s_j})$ $m = 1.$

2. THE RETRACTION MAP

Definition 2.1. Let $w = s_{i_1} \cdots s_{i_k}$ be a word on S. Consider the notation in Definition 1.1. Let $X \subseteq I$.

- (i) We set $r_{j,X}(w) = r_j(w)$ when $r_j(w)$ lies in W_X , and $r_{j,X}(w) = \varepsilon$, the empty word, otherwise. When no confusion is possible, we will write $r_{j,X}$ for $r_{j,X}(w)$. By $R_X(w)$, we denote the k-uple of words on S defined by $R_X(w) = (r_{1,X}, r_{2,X}, \ldots, r_{k,X})$. By $\mathbf{R}_X(w) =$ $(r_{1,X}(w), r_{2,X}(w), \ldots, r_{k,X}(w))$ we denote the corresponding k-uple of elements of W_X .
- (ii) By $R_X(w)$ we denote the subsequence of $R_X(w)$ obtained by keeping the nonempty words only and by $\mathbf{R}_{\mathbf{X}}(w)$ we denote the corresponding subsequence of $\mathbf{R}_{\mathbf{X}}(w)$.

6 EDDY GODELLE

Note that for w in X^* , one has $\widehat{\mathbf{R}}_{\mathbf{X}}(w) = \mathbf{R}_{\mathbf{X}}(w) = \mathbf{R}(w)$. Let $w = s_{i_1} \cdots s_{i_k}$ be a word on S and $1 < j_1 < \cdots < j_n \le k$. In the following proposition, by $s_{i_1} \cdots \hat{s}_{i_{j_1}} \cdots \hat{s}_{i_{j_n}} \cdots s_{i_k}$ we denote the word obtained from w by removing the letters with a hat. For instance in Example 1.2 $s_a s_b \hat{s_c} s_a s_c \hat{s_b} = s_a s_b s_a s_c$.

The first crucial result is the following:

Proposition 2.2. Let $X \subseteq I$ and $w = s_{i_1} \cdots s_{i_k}$ be a non-empty word on S. Write $R_X(w) =$ $(r_{j_1,X}, r_{j_2,X}, \ldots, r_{j_p,X})$. Set $w_0 = 1$ and for $1 \leq j \leq k$ write $s_{i_1} \cdots s_{i_j} = v_j w_j$ with v_j in W_X and w_j that is (X, \emptyset) -reduced. For $1 \leq n \leq p$, let $t_n = w_{j_n-1}s_{j_n}w_{j_n-1}^{-1}$.

- (i) (a) For $1 \le n \le p$, t_n lies in S_X .
	- (b) Set $j_0 = 0$ and $j_{p+1} = k + 1$. For n in $\{1, ..., p+1\}$ and j in $\{j_{n-1}, \dots, j_n-1\}$, we have $w_j = s_{i_1} \cdots \hat{s}_{i_{j_1}} \cdots \hat{s}_{i_{j_2}} \cdots \hat{s}_{i_{j_{n-1}}} \cdots s_{i_j}$ and $v_j = t_1 \cdots t_{n-1}$.
- (ii) Set $w_X = t_1 \cdots t_p$. Then, $\mathbf{R}(w_X) = \mathbf{R}_X(w)$.

Proof. (i) (a) and (b) are consequences of Lemma 1.12: (a) is clear. Now, for any j in $\{1, \ldots, k\}$ but not in $\{j_1,\ldots,j_p\}$, the element w_j is (X,\emptyset) -reduced and $w_{j-1}s_jw_{j-1}^{-1}$ is not in W_X , because $v_{j-1}w_{j-1}s_jw_{j-1}^{-1}v_{j-1}^{-1}$ is not. So, $w_{j-1}s_j$ is (X, \emptyset) -reduced. In particular, $v_j = v_{j-1}$ and $w_j = w_{j-1}s_j$. If $j = j_n$ for n in $\{1, ..., p\}$, then $v_{j_n} w_{j_n} = v_{j_n-1} w_{j_n-1} s_{i_{j_n}} = v_{j_n-1} t_n w_{j_n-1}$. So, $v_{j_n} = v_{j_n-1} t_n$ and $w_{j_n} = w_{j_n-1}$. Point (ii) follows directly from (i): write $u_n = s_{i_{j_{n-1}+1}} \cdots s_{i_{j_n-1}}$. By (i)(b), for all n we $\text{have } \bm{w_{j_n-1}} = \bm{u_1}\cdots \bm{u_n} \text{ and } \bm{t_1t_2}\cdots \bm{t_n} = (\bm{u_1}s_{j_1}\bm{u_1^{-1}})(\bm{u_1u_2}s_{j_2}\bm{u_2^{-1}}\bm{u_1^{-1}})\cdots(\bm{u_1}\cdots\bm{u_n}s_{j_n}\bm{u_n^{-1}}\cdots\bm{u_1^{-1}}) =$ $u_1s_{j_1}u_2s_{j_2}\cdots s_{j_{n-1}}u_ns_{j_n}u_n^{-1}\cdots u_1^{-1} = s_1\cdots s_{j_n}u_n^{-1}\cdots u_1^{-1}$. By symmetry, we have $t_{n-1}\cdots t_2t_1 =$ $u_1\cdots u_{n-1}s_{j_{n-1}}\cdots s_1$. Therefore, we deduce that $r_n(w_X)=s_1\cdots s_{j_n}u_n^{-1}\cdots u_1^{-1}u_1\cdots u_{n-1}s_{j_{n-1}}\cdots s_1$ $= s_1 \cdots s_{j_n} u_n^{-1} s_{j_{n-1}} \cdots s_1 = r_{j_n,X}(w).$

Remark 2.3. In Point (ii), t_n is uniquely defined by t_n . Moreover, w_X is uniquely defined by $\hat{R}_X(w)$ since $t_1 = r_{j_1,X}$; $t_2 = r_{j_1,X}r_{j_2,X}r_{j_1,X}$; ...; $t_n = r_{j_1,X} \cdots r_{j_{n-1},X}r_{j_n,X}r_{j_{n-1},X} \cdots r_{j_1,X}$.

Lemma 2.4. Let $X \subseteq I$ and $w = s_{i_1} \cdots s_{i_k}$, $w' = s_{i'_1} \cdots s_{i'_{k'}}$ be two non-empty words on S.

- (i) Let $1 \leq n \leq \min(k, k')$. If for all $1 \leq m \leq n$, $i_m = i'_m$ then $r_{n,X}(w) = r_{n,X}(w')$.
- (ii) Let $1 \leq n \leq k$ and $1 \leq n' \leq k'$. Assume $s_{i_1} \cdots s_{i_{n-1}} = s_{i'_1} \cdots s_{i'_{n'-1}}$ and $i_n = i'_{n'}$. Then $r_{n,X}(w) = r_{n',X}(w').$

Proof. (i) $r_{n,X}(w)$ and $r_{n,X}(w')$ only depend on the prefixes $s_{i_1} \cdots s_{i_n}$ and $s_{i'_1} \cdots s_{i'_n}$, respectively. (ii) $r_{n,X}(w)$ and $r_{n',X}(w')$ only depend on the pair $(s_{i_1}\cdots s_{i_{n-1}}, s_{i_n})$ and the pair $(s_{i'_1}\cdots s_{i'_{n'-1}}, s_{i'_{n'}})$, respectively.

Definition 2.5. Let $X \subseteq I$. We define the map $\pi_{I,X}^* : (\Sigma_I \cup \Sigma_I^{-1})^* \to (\Sigma_X \cup \Sigma_X^{-1})^*$ in the following way. Let $\omega = \sigma_{i_1}^{\varepsilon_1} \cdots \sigma_{i_k}^{\varepsilon_k}$ be a word on $\Sigma_I \cup \Sigma_I^{-1}$, where ε_i lies in $\{\pm 1\}$. Set $w = \theta_I^*(\omega)$ and let $w_X = s_{q_1} \cdots s_{q_p}$ be the word on S_X provided by Proposition 2.2 so that $\mathbf{R}(w_X) = \hat{\mathbf{R}}_{\mathbf{X}}(w) = (r_{j_1,X}(w), \ldots, r_{j_p,X}(w)).$ We set $\pi_{I,X}^*(\omega) = \sigma_{q_1}^{\varepsilon_{j_1}} \cdots \sigma_{q_p}^{\varepsilon_{j_p}}.$

Note that $(\varepsilon_1, \ldots, \varepsilon_k)$ and $\hat{\mathbf{R}}_{\mathbf{X}}(w)$ do not fix $\pi^*_{I,X}(w)$ because they do not fix the exponents. However, $\pi_{I,X}^*(\omega)$ is fixed by $(\varepsilon_1 \ldots, \varepsilon_k)$ and $\mathbf{R}_{\mathbf{X}}(w)$. So the sequence of steps that define $\pi_{I,X}^*$ can be summarized as it follows :

$$
\omega \to w \to R(w) \to \mathbf{R}_X(w) \to \widehat{\mathbf{R}}_{\mathbf{X}}(w) = \mathbf{R}(w_X) \to w_X \to \pi_{I,X}^*(\omega)
$$

Proposition 2.6. Let $X \subseteq I$ and ω , ω' be two words on $\Sigma_I \cup \Sigma_I^{-1}$. If $\omega \equiv_I \omega'$, then $\pi_{I,X}^*(\omega) \equiv_X \pi_{I,X}^*(\omega').$

Proof. Let $\omega = \sigma_{i_1}^{\varepsilon_1} \cdots \sigma_{i_k}^{\varepsilon_k}$ and ω' be two words on $\Sigma_I \cup \Sigma_I^{-1}$ so that $\omega \equiv_I \omega'$. Set $w = \theta_I^*(\omega) = s_{i_1} \cdots s_{i_k}$ and $w' = \theta_I^*(\omega')$. Consider the notation of Definition 2.5. In particular, $\widehat{R}_X(w) = (r_{j_1,X}(w), \ldots, r_{j_p,X}(w));$

 $w_X = s_{q_1} \cdots s_{q_p}$ and $\pi_{I,X}^*(\omega) = \sigma_{q_1}^{\varepsilon_{j_1}} \cdots \sigma_{q_p}^{\varepsilon_{j_p}}$. Since $\omega \equiv_I \omega'$, there exists a finite sequence $\omega_0 =$ $\omega, \omega_1, \ldots, \omega_n = \omega'$ of words on $\Sigma_I \cup \Sigma_I^{-1}$ so that ω_{i+1} is obtained from ω_i by using either a braid relation or one of the two relations $\sigma_i \sigma_i^{-1} = \varepsilon$ and $\sigma_i^{-1} \sigma_i = \varepsilon$. Clearly it is enough to consider the case $n = 1$. Case 1: $ω$ is transformed into $ω'$ by using a relation $σ_i σ_i^{-1} = ε$ or $σ_i^{-1} σ_i = ε$. Up to exchanging $ω$ and $ω'$ we may assume that $\omega' = \sigma_{i_1}^{\varepsilon_1} \cdots \sigma_{i_{n-1}}^{\varepsilon_{n-1}}$ $\sum_{i_{n-1}}^{\varepsilon_{n-1}} \sigma_i^{\rho} \sigma_i^{-\rho} \sigma_{i_n}^{\varepsilon_n} \cdots \sigma_{i_k}^{\varepsilon_k}$ with $\rho \in \{-1,1\}$. Then, $w' = s_{i_1} \cdots s_{i_{n-1}} s_i s_i s_{i_n} \cdots s_{i_k}$. By Lemma 2.4(i), for $m \leq n-1$ we have $r_{m,X}(w') = r_{m,X}(w)$ and, by Lemma 2.4(ii), for $m \geq n$, we have $r_{m,X}(w) = r_{m+2,X}(w')$. Moreover, $r_n(w') = r_{n+1}(w')$. So either both $r_n(w')$ and $r_{n+1}(w')$ are in W_X or both of them are not. In the second case, $\mathbf{R}_{\mathbf{X}}(w) = \mathbf{R}_{\mathbf{X}}(w')$ and $\pi_{I,X}^*(\omega) = \pi_{I,X}^*(\omega')$. Assume the first case. Let $w'_X \in S_X^*$ so that $\mathbf{R}(w'_X) = \mathbf{R}_X(w')$. Since $r_{n,X}(w') = r_{n+1,X}(w') \neq 1$ there is $0 \leq m \leq p$ so that $\hat{\mathbf{R}}_{\mathbf{X}}(w') = (\mathbf{r}_{j_1,\mathbf{X}}(w), \dots, \mathbf{r}_{j_m,\mathbf{X}}(w), \mathbf{r}_{n,\mathbf{X}}(w'), \mathbf{r}_{n,\mathbf{X}}(w'), \mathbf{r}_{j_{m+1},\mathbf{X}}(w), \dots, \mathbf{r}_{j_p,\mathbf{X}}(w)).$ In particular, there is j in X so that $w'_X = s_{q_1} \cdots s_{q_m} s_j s_j s_{q_{m+1}} \cdots s_{q_p}$ (see Remark 2.3) and $\pi^*_{I,X}(\omega') =$ $\sigma_{q_1}^{\varepsilon_{j_1}} \cdots \sigma_{q_m}^{\varepsilon_{j_m}} \sigma_j^{\rho} \sigma_j^{-\rho} \sigma_{q_{m+1}}^{\varepsilon_{j_{m+1}}} \cdots \sigma_{q_p}^{\varepsilon_{j_p}}$. Thus, $\pi_{I,X}^*(\omega) \equiv_X \pi_{I,X}^*(\omega')$. Case 2: ω' is obtained from ω by using a braid relation. For i, j in I, write $\underline{\sigma}_{i,j} = \sigma_i \sigma_j \sigma_i \cdots$ and $\underline{s}_{i,j} = s_i s_j s_i \cdots$. We can write ${m(i,j)}$ terms ${m(i,j)}$ terms

 $\omega \ = \ \sigma_{i_1}^{\varepsilon_1} \cdots \sigma_{i_{n-1}}^{\varepsilon_{n-1}}$ $\frac{\varepsilon_{n-1}}{i_{n-1}} \underline{\sigma}_{i,j} \sigma_{i_{n+m}}^{\varepsilon_{n+m}}$ $\epsilon_{i_{n+m}}^{\varepsilon_{n+m}} \cdots \sigma_{i_k}^{\varepsilon_k}$ and $\omega' = \sigma_{i_1}^{\varepsilon_1} \cdots \sigma_{i_{n-1}}^{\varepsilon_{n-1}}$ $\epsilon_{n-1}^{\varepsilon_{n-1}} \underline{\sigma}_{j,i} \sigma_{i_{n+m}}^{\varepsilon_{n+m}}$ $\frac{\varepsilon_{n+m}}{i_{n+m}} \cdots \sigma_{i_k}^{\varepsilon_k}$ with $i = i_n, j = i_{n+1}$ and $m = m(i, j)$. It follows that we have $w = s_{i_1} \cdots s_{i_{n-1}} s_{i,j} s_{i_{n+m}} \cdots s_{i_k}$ and $w' = s_{i_1} \cdots s_{i_{n-1}} s_{j,i} s_{i_{n+m}} \cdots s_{i_k}$. As in Case 1, by Lemma 2.4, $r_h(w) = r_h(w')$ when either $1 \leq h \leq n-1$ or $n+m \leq h \leq k$. Since $\sigma_{i,j}$ is a reduced word, all the elements of $\mathbf{R}(\sigma_{i,j})$ are distinct (see Proposition 1.4). It follows that $r_n(w), r_{n+1}(w), \ldots, r_{n+m-1}(w)$ are all distinct. Moreover, by Lemma 1.13, for h in $\{1, \ldots, m\}$ we have $r_h(\underline{\sigma}_{i,j}) = r_{m-h+1}(\underline{\sigma}_{j,i})$, and $r_{n-1+h}(w) = r_{n+m-h}(w')$. Therefore, if none of the elements $r_n(w), r_{n+1}(w), \ldots, r_{n+m-1}(w)$ lie in W_X then $\mathbf{R}_X(w) = \mathbf{R}_X(w')$ and $\pi_{I,X}^*(\omega) \equiv_X \pi_{I,X}^*(\omega')$. If only one of them lies in W_X , say $r_{n-1+\tilde{h}}(w)$, then $R_X(w)$ and $R_X(w')$ are not equal, but differ only at positions $n-1+\tilde{h}$ and $n-1+m-\tilde{h}$ and $\widehat{R}_{\boldsymbol{X}}(w')=\widehat{R}_{\boldsymbol{X}}(w)$. Then $\pi^*_{I,X}(\omega)$ and $\pi^*_{I,X}(\omega')$ because the exponents in position $n-1+\tilde{h}$ and $n-1+m-\tilde{h}$, respectively, are both equal to 1. Assume finally that at liest two terms among $r_n(w), r_{n+1}(w), \ldots, r_{n+m-1}(w)$ lie in W_X . By construction, all the terms of the previous list be- \log to $(s_{i_1}\cdots s_{i_{n-1}})W_{i,j}(s_{i_1}\cdots s_{i_{n-1}})^{-1}$. Since $(s_{i_1}\cdots s_{i_{n-1}})W_{i,j}(s_{i_1}\cdots s_{i_{n-1}})^{-1}\cap W_X$ contains at least two distinct elements different from 1, Corollary 1.10 implies that $(s_{i_1}\cdots s_{i_{n-1}})W_{i,j}(s_{i_1}\cdots s_{i_{n-1}})^{-1}$ is included in the parabolic subgroup W_X , and $r_n(w), r_{n+1}(w), \ldots, r_{n+m-1}(w)$ all belong to W_X . Recall the notations given in the introduction for $\widehat{R}_X(w)$, w_X and $\pi^*_{t,x}(w)$. Let p' be such that $j_{p'} = i_n$. Set $i' = q_{p'}$ and $j' = q_{p'+1}$. If v_j and w_j are defined like in Proposition 2.2, then, by Point(i)(b) of this proposition, $w_n = w_{n+1} = \cdots = w_{n+m-1}$. Now by Remark 1.11 we have $m(i',j') = m(i_n,i_{n+1})$. It follows that $s_{q_{p'}} \cdots s_{q_{p'+m-1}} = \underline{s}_{i',j'}, w_X = s_{q_1} \cdots s_{q_{p'-1}} \underline{s}_{i',j'} s_{q_{p'+m}} \cdots s_{q_p}$ and $w'_X = s_{q_1} \cdots s_{q_{p'-1}} \underline{s}_{j',i'} s_{q_{p'+m}} \cdots s_{q_p}$ Thus, $\pi_{1,X}^*(\omega) = \sigma_{q_1}^{\varepsilon_{j_1}} \cdots \sigma_{q_{p'-1}}^{\varepsilon_{j_{q'-1}}} \underline{\sigma}_{i',j'} \sigma_{j_{p'+m}}^{\varepsilon_{j_{p'+m}}}$ $\frac{\varepsilon_{j_{p'+m}}}{j_{p'+m}} \cdots \sigma_p^{\varepsilon_{j_p}}$ and $\pi^*_{I,X}(\omega') = \sigma^{\varepsilon_{j_1}}_{q_1} \cdots \sigma^{\varepsilon_{j_{q'-1}}}_{q_{p'-1}} \underline{\sigma}_{j',i'} \sigma^{\varepsilon_{j_{p'+m}}}_{j_{p'+m}}$ Thus, $\pi_{I,X}^*(\omega) = \sigma_{q_1}^{\varepsilon_{j_1}} \cdots \sigma_{q_{p'-1}}^{\varepsilon_{j_{q'-1}}} \underline{\sigma}_{i',j'} \sigma_{j_{p'+m}}^{\varepsilon_{j_{p'+m}}} \cdots \sigma_p^{\varepsilon_{j_p}}$ and $\pi_{I,X}^*(\omega') = \sigma_{q_1}^{\varepsilon_{j_1}} \cdots \sigma_{q_{p'-1}}^{\varepsilon_{j_{q'-1}}} \underline{\sigma}_{j',i'} \sigma_{j_{p'+m}}^{\varepsilon_{j_{p'+m}}} \cdots \sigma_p^{\varepsilon_{j_p}}$
and we ar

We are now ready to prove Propositions 0.2 and 0.3.

Proof of Proposition 0.2. Let ω be a word on $\Sigma_I \cup \Sigma_I^{-1}$. Set $w = \theta_I^*(\omega)$. The length of ω is equal to the length of w, which in turn is equal to the number of terms of $\mathbf{R}(w)$. Similarly the length of $\pi_{I,X}^*(\omega)$ is equal to the length of $\theta^*_X(\pi^*_{t,X}(\omega))$. But, by definition, the latter word is w_X whom length is equal to the number of terms of $\mathbf{R}(w_X)$, that is of $\mathbf{R}_X(w)$. Thus, $\ell_X(\pi_{I,X}^*(\omega)) \leq \ell_I(\omega)$. The equality holds when $\mathbf{R}(w_X) = \mathbf{R}(w)$, which is equivalent to have $w_X = w$, which, in turn, is equivalent to have $\pi_{I,X}^*(\omega) = \omega$. So Point (i) holds. Let ω' be another word on $\Sigma_I \cup \Sigma_I^{-1}$ and set $w' = \theta_I^*(\omega')$. By definition, $\mathbf{R}_X(ww')$ starts with $\mathbf{R}_{\mathbf{X}}(w)$. Therefore, w_X is a prefix of $(ww')_X$ and Point (ii) follows. Point (iii) follows from Proposition 2.6. Since $\theta_X(\pi_{I,X}(\omega)) = \omega_X$, Point (iv) follows from Proposition 2.2 (i)(b) and (ii). Assume ω lies in CA_I . Then, $\omega = 1$ in W_I . By Proposition 1.4, $\mathbf{N}(w)$ has to be empty and all terms of

8 EDDY GODELLE

 $\mathbf{R}(w)$ appear an even number of times. But in this case, all of its terms that are in $W(X)$ appear an even number of times, too, and $\mathbf{N}(w_X)$ is empty. Then $\mathbf{w}_X = 1$. But $\theta^*_X(\pi^*_{t,X}(w)) = w_X$. Then, $\pi_{t,X}(\omega)$ lies in CA_X and the map $\pi_{I,X}$ restricts to an application from CA_I to CA_X . The fact that $\pi_{I,X} : CA_I \rightarrow CA_X$ is an homomorphism, and Point (v), will follow from Point (viii). Point (vi) is clear from the definition: with the notation of Definition 2.5, if all the ϵ_n are equal to 1, so are the ε_{j_n} . Let w' be as above, set $k = \ell_S(w)$ and write $(ww')_X = w_Xw''$. If ω lies in CA_I or if ω is on $\Sigma_X \cup \Sigma_X^{-1}$, then for $n \geq k+1$, $r_n(ww')$ lies in W_X if and only if $w r_{n-k}(w')w^{-1}$ lies in W_X. So in both cases, $R_X(ww')$ is the concatenation of $R_X(w)$ and $wR_X(w')w^{-1}$. It follows that $R((ww')_X)$ is the concatenation of $R(w_X)$ and $wR(w'_X)w^{-1}$. By Remark 1.3, we deduce that $\mathbf{R}(w'') = (\mathbf{w}_{\mathbf{X}}^{-1} \mathbf{w}) \mathbf{R}(w'_{X})(\mathbf{w}^{-1} \mathbf{w}_{\mathbf{X}})$. But if $\boldsymbol{\omega}$ lies in CA_I , then $\pi_{I,X}(\mathbf{w})$ lies in CA_X and $w = w_X = 1$. On the other hand, if ω is a word on $\Sigma_X \cup \Sigma_X^{-1}$, then $w_X = w$ and $w_X^{-1}w = 1$. So in both cases, $\mathbf{R}(w'') = \mathbf{R}(w'_{X})$, which implies $w'' = w'_{X}$. This proves Points (vii) and (viii). Note that the exponents in $\pi_{I,X}^*(\omega\omega')$ are the expected ones because $R_X(ww')$ is the concatenation of $R_X(w)$ and $wR_X(w)w^{-1}$. Assume $Y \subseteq I$ and ω is a word on $\Sigma_Y \cup \Sigma_Y^{-1}$. Then w is a word on S_Y and the terms of $\mathbf{R}(w)$ are in W_Y . Therefore, they are in W_X if and only if they are in $W_X \cap W_Y$, that is in $W_{X \cap Y}$. So the terms of $\mathbf{R}_{\mathbf{X}}(w)$ are in $W_{X\cap Y}$ and w_X is a word on $S_{X\cap Y}$. Point (ix) follows. Finally, assume $Y \subseteq I$ and $\omega = \sigma_{i_1}^{\varepsilon_1} \cdots \sigma_{i_k}^{\varepsilon_k}$ is a word on $\Sigma_I \cup \Sigma_I^{-1}$. Set $w = \theta_I^*(\omega) = s_{i_1} \cdots s_{i_k}$ and, as in Definition 2.5, $\widehat{R}_X(w) = (r_{j_1,X}(w), \ldots, r_{j_p,X}(w)); w_X = s_{q_1} \cdots s_{q_p}$ and $\pi_{I,X}^*(\omega) = \sigma_{q_1}^{\varepsilon_{j_1}} \cdots \sigma_{q_p}^{\varepsilon_{j_p}}$. Let us prove (x). By symmetry, it is enough to prove that $\pi_{I,Y}^*(\pi_{I,X}^*(\omega)) = \pi_{I,X\cap Y}^*(\omega)$. Write $\pi_{I,Y}^*(\pi_{I,X}^*(\omega)) = \sigma_{q_1'}^{\varepsilon_{j_1'}} \cdots \sigma_{q_{p'}'}^{\varepsilon_{j_{p'}'}}$ with $j'_1, \ldots, j'_{p'}$ in $\{j_1, \ldots, j_p\}$. Write $\pi^*_{I, Y \cap X}(\omega) = \sigma_{q''_1}^{\varepsilon_{j''_1}} \cdots \sigma_{q''_{p''_r}}^{\varepsilon_{j''_{p''_r}}}$ with $j''_1, \ldots, j''_{p''_r}$ in $\{1, \ldots, k\}$. We have $(w_X)_Y = s_{q'_1} \cdots s_{q'_{p'}}$ and $w_{X \cap Y} = s_{q''_1} \cdots s_{q''_{p'}}$. By construction $\hat{\mathbf{R}}_{\mathbf{Y}}(\theta_I^*(\pi_{I,X}^*(\omega)))$ is obtained from $\mathbf{R}(\theta_I^*(\pi_{I,X}^*(\omega)))$ by removing the terms that do not belong to W_Y . But $\theta_I^*(\pi_{I,X}^*(\omega)) = w_X$ and $\mathbf{R}(w_X)$ is obtained from $\mathbf{R}(w)$ by removing the terms that do not belong to W_X . So, $\mathbf{R}_Y(\theta_I^*(\pi_{I,X}^*(\omega)))$ is obtained from $\mathbf{R}(w)$ by removing the terms that do not belong to $W_X \cap W_Y$, that is to $W_{X \cap Y}$. Thus $\mathbf{R}((w_X)_Y) = \hat{\mathbf{R}}_{\mathbf{Y}}(\theta_I^*(\pi_{I,X}^*(\omega))) = \hat{\mathbf{R}}_{\mathbf{Y} \cap \mathbf{X}}(w) = \mathbf{R}(w_{Y \cap X})$ and $(w_X)_Y = w_{Y \cap X}$. In particular $p' = p''$ and $q'_{\tilde{p}} = q''_{\tilde{p}}$ for \tilde{p} in $1, \dots, p'$. Now, let \tilde{p} be in $1, \dots, p'$. Then, $j'_{\tilde{p}}$ is the position of the \tilde{p}^{th} term of $\mathbf{R}(w)$ that belongs to $W_Y \cap W_X$, that is to $W_{X \cap Y}$. Therefore, $j'_{\tilde{p}} = j_{\tilde{p}}^{\tilde{p}}$ and $\pi_{I,Y}^*(\pi_{I,X}^*(\omega)) = \pi_{I,X \cap Y}^*(\omega)$. Hence, (x) holds. Finally, by Point (ix), Point (xi) is a special case of Point (x). Indeed, since $\pi^*_{I,Y}(\omega)$ is a word on $\Sigma_Y \cup \Sigma_Y^{-1}$, we have $\pi_{I,X}^*(\pi_{I,Y}^*(\omega)) = \pi_{Y,X}^*(\pi_{I,Y}^*(\omega)).$

Proof of Proposition 0.3. Let ω, ω' be in $(\Sigma_X \cup \Sigma_X^{-1})^*$ and such that $\omega \equiv_I \omega'$. By Proposition 0.2(i), $\pi_{I,X}^*(\omega) = \omega$ and $\pi_{I,X}^*(\omega') = \omega'$ and by Proposition 2.6, $\pi_{I,X}^*(\omega) \equiv_X \pi_{I,X}^*(\omega')$. So Point (i) holds. Let $Y \subseteq$ I. Clearly $A_{X\cap Y} \subseteq A_X \cap A_Y$. Let w be in $A_X \cap A_Y$. Since w lies in A_Y , by Proposition 0.2(ix), $\pi_{I,X}(w)$ lies in $A_{X\cap Y}$. Since w lies in A_X , by Corollary 0.4 (i) (that we can apply as Point (i) is proved), $\pi_{I,X}(\omega) = \omega$. So, $A_X \cap A_Y \subseteq A_{X \cap Y}$ and Point (ii) holds. Similarly $A_X^+ \subseteq A^+ \cap A_X$. The argument to prove the inverse inclusion is similar as the one used to prove (ii), replacing Proposition $0.2(ix)$ with Proposition $0.2(xi)$. Finally, Point (iv) follows from almost the same argument : if ω is a word representative of an element of A_X then, by Proposition 0.2(i) and (iii), $\pi_{I,X}^*(w)$ is another word representative of the same element whom length is not greater than the one of ω . If moreover ω is a minimal word representative, then ω and $\pi_{I,X}^*(w)$ must have the same length. By Proposition 0.2(i) this imposes $\omega = \pi_{I,X}^*(\omega)$. Hence A_X is \Box

Proposition 2.7. the map $\pi_{I,X}^*$ coincides with the map $\hat{\pi}_X$ defined in [1].

Proof. Let $X \subseteq I$ and $\omega = \sigma_{i_1}^{\varepsilon_1} \cdots \sigma_{i_k}^{\varepsilon_k}$ be a word on $\Sigma_I \cup \Sigma_I^{-1}$ where ϵ_i lies in $\{\pm 1\}$. Let us recall the definition of $\hat{\pi}_X$ given in [1]. Set $w = \theta_I^*(\omega) = s_{i_1} \cdots s_{i_k}$. For $1 \leq j \leq k$, let $s_{i_1} \cdots s_{i_j} = v_j w_j$ with v_j in W_X and w_i that is (X, \emptyset) -reduced. If $\varepsilon_j = 1$, set $t_j = w_{j-1} s_{i_j} w_{j-1}^{-1}$. If $\varepsilon_j = -1$, set $t_j = w_j s_{i_j} w_j^{-1}$. If

 t_j lies in S_X set $\tau_j = \sigma_{q_j}^{\epsilon_j}$ so that $t_j = s_{q_j}$. Otherwiese, set $\tau_j = \varepsilon$, the empty word. Then $\hat{\pi}_X(\omega)$ is defined by $\hat{\pi}_X(\omega) = \tau_1 \cdots \tau_k$. Now, if $w_{j-1} s_{i_j} w_{j-1}^{-1}$ lies in S_X then $w_j = w_{j-1}$; otherwise $w_j = w_{j-1} s_{i_j}$ (see the proof of Proposition 2.2(i)(b)). In both cases, $w_j s_{i_j} w_j^{-1} = w_{j-1} s_{i_j} w_{j-1}^{-1}$. So, in the above definition of $\hat{\pi}_X$, this is not necessary to distinguish whether ε_i is equal to 1 or to -1 and $\hat{\pi}_X(\omega) = \pi_{I,X}^*(\omega)$. \square

Corollary 2.8. The map $\pi_{I,X}$ coincides with the map π_X defined in [1].

3. Intersection of parabolic subgroups

We turn now to the proof of Theorems 0.5 and 0.6. We start with two preliminary lemmas. We recall that $\kappa_I : W_I \to A_I$ is the set section of the morphism $\Theta_I : A_I \to W_I$.

Lemma 3.1. Let X be a subset of I and ω, ω' be in A_I with ω in CA_I . If $\omega \omega' \omega^{-1}$ lies in A_X then $\omega\omega'\omega^{-1}=\pi_{\scriptscriptstyle I,X}(\omega\omega'\omega^{-1})=\pi_{\scriptscriptstyle I,X}(\omega)\pi_{\scriptscriptstyle I,X}(\omega')\pi_{\scriptscriptstyle I,X}(\omega)^{-1}.$

Proof. Since $\omega \omega' \omega^{-1}$ lies in A_X , the first equality follows from Corollary 0.4(i). We have $\omega \omega' =$ $(\omega \omega' \omega^{-1}) \omega$. So $\pi_{I,X}(\omega \omega') = \pi_{I,X}((\omega \omega' \omega^{-1}) \omega)$. By Proposition 0.2(viii) $\pi_{I,X}(\omega \omega') = \pi_{I,X}(\omega) \pi_{I,X}(\omega')$ and by Corollary 0.4(ii), $\pi_{I,X}((\omega\omega'\omega^{-1})\omega) = (\omega\omega'\omega^{-1})\pi_{I,X}(\omega)$.

Note that Lemma 3.1 extends [1, Lemma 2.4].

Lemma 3.2. Let $X, Y \subseteq I$ and $w \in W_I$ that is (\emptyset, Y) -reduced. Write $w = w_1w_2$ with w_1 in W_X and $w_2(X,Y)$ -reduced. Then, $\pi_{I,X}(\kappa_I(\boldsymbol{w})A_Y) = \pi_{I,X}(\kappa_I(\boldsymbol{w}))A_{X_1}$ with $S_{X_1} = S_X \cap w_2 S_Y w_2^{-1}$.

Proof. Let $\omega = \kappa_I(w)$, $\omega_1 = \kappa_I(w_1)$ and $\omega_2 = \kappa_I(w_2)$. Then, $\ell_S(w) = \ell_S(w_1) + \ell_S(w_2)$ and $\omega = \omega_1\omega_2$ with ω_1 in A_X . First, we have $\pi_{I,X}(\omega_2) = 1$ and $\pi_{I,X}(\omega) = \pi_{I,X}(\omega_1) = \omega_1 = \pi_{I,X}(\omega_1)\pi_{I,X}(\omega_2)$ (see Proposition 0.2(iv)). For any ω' in A_Y , by Corollary 0.4(ii), $\pi_{I,X}(\omega \omega') = \pi_{I,X}(\omega_1) \pi_{I,X}(\omega_2 \omega')$. So we may assume $w_1 = 1$ and $w = w_2$. Now, let $w = s_{i_1} \cdots s_{i_k}$ be a representative word of w of minimal length. Then $\sigma_{i_1} \cdots \sigma_{i_k}$ is a word representative of w. Let ω' be in A_Y and $\omega' = \sigma_{i'_1}^{\varepsilon_1} \cdots \sigma_{i'_{k'}}^{\varepsilon_{k'}}$ be a representative word of ω' of minimal length. Set $w' = \pi_{I,X}^*(\omega') = s_{i_1'} \cdots s_{i_{k'}}$. Then all the i_j' lie in Y and $\sigma_{i_1} \cdots \sigma_{i_k} \sigma_{i'_1}^{\varepsilon_1} \cdots \sigma_{i'_{k'}}^{\varepsilon_{k'}}$ is a representative word of $\omega \omega'$. Since w is $(X, \hat{\emptyset})$ -reduced and w is a minimal word representative of w, the k first entries of $R_X(ww')$ are equal to 1 and all the next ones lie in $wW_Yw^{-1} \cap W_X$. By Proposition 1.8, there is $X_1 \subseteq X$ and $Y_1 \subseteq Y$ such that $wS_{Y_1} = S_{X_1}w$ and $\mathbf{w}W_Y\mathbf{w}^{-1} \cap W_X = W_{X_1} = \mathbf{w}W_{Y_1}\mathbf{w}^{-1}$. Then, $(ww')_X$ is a word on S_{X_1} . Since $\theta_I^*(\omega\omega') = ww'$, we get that $\pi_{I,X}(\omega\omega')$ lies in A_{X_1} and $\pi_{I,X}(\kappa_I(\omega)A_Y) \subseteq A_{X_1}$. Conversely, let ω'' lie in A_{X_1} . Then $\omega^{-1}\omega''\omega$ lies in A_{Y_1} . Indeed, since $wS_{Y_1} = S_{X_1}w$ and w is (X, Y) -reduced, for any i in X_1 there is j in Y₁ so that $ws_j = s_iw$ with $\ell_I (ws_i) = \ell_I (s_jw) = \ell_I (w) + 1$. Therefore, $\omega \sigma_j = \sigma_i \omega$. Now, $\pi_{I,X}(\kappa_I(\boldsymbol{w})\boldsymbol{\omega}^{-1}\boldsymbol{\omega''\omega}) = \pi_{I,X}(\boldsymbol{\omega''\omega}) = \pi_{I,X}(\boldsymbol{\omega''})\pi_{I,X}(\boldsymbol{\omega}) = \boldsymbol{\omega''}.$ So, the other inclusion holds.

The following result proves Theorem 0.6.

Proposition 3.3. Let $X, Y \subseteq I$ and $w \in W_I$. Let $w = w_1w_2w_2'$ with w_1 in W_X , w_2' in W_Y and $w_2(X,Y)$ -reduced. Write $\omega = \kappa_I(w), \omega_1 = \kappa_I(w_1),$ and $\omega_2' = \kappa_I(w_2').$ Let X_1, Y_1 be defined as in Proposition 1.8. Then $\omega A_Y \omega^{-1} \cap A_X = \omega_1 A_{X_1} \omega_1^{-1}$ and $\omega^{-1} A_X \omega \cap A_Y = \omega_2'^{-1} A_{Y_1} \omega_2'$.

Proof. We have $\ell_I(\boldsymbol{w}) = \ell_I(\boldsymbol{w_1}) + \ell_I(\boldsymbol{w_2}) + \ell_I(\boldsymbol{w_2'})$ and $\boldsymbol{\omega} = \boldsymbol{\omega_1 \omega_2 \omega_2'}$ with $\boldsymbol{\omega_1}$ in A_X and $\boldsymbol{\omega_2'}$ in A_Y . So $\omega A_Y \omega^{-1} \cap A_X = \omega_1 \left(\omega_2 A_Y \omega_2^{-1} \cap A_X \right) \omega_1^{-1}$. Similarly, $\omega^{-1} A_X \omega \cap A_Y = \omega_2'^{-1} \left(\omega_2^{-1} A_X \omega_2 \cap A_Y \right) \omega_2'.$ So, we may assume $w_1 = w_2' = 1$ and w is (X, Y) -reduced. In this case, $\theta_I(\omega) = w$ and $\pi_{I,X}(\omega) = 1$ (see Proposition 0.2(iv)). Let ω' lie in A_Y . Set $\omega'' = \omega \omega' \omega^{-1}$ and assume ω'' lies in A_X . Then $\omega\omega' = \omega''\omega$ and $\pi_{I,X}(\omega\omega') = \pi_{I,X}(\omega''\omega) = \pi_{I,X}(\omega'')\pi_{I,X}(\omega) = \omega''$. But, by Lemma 3.2, $\pi_{I,X}(\omega\omega')$ lies in A_{X_1} . So $\omega A_Y \omega^{-1} \cap A_X \subseteq A_{X_1}$. Conversely, A_{X_1} is included in A_X and, as seen in the end of

the proof of Lemma 3.2, $\omega^{-1}A_{X_1}\omega = A_{Y_1}$. So $A_{X_1} \subseteq \omega A_Y \omega^{-1}$ and the other inclusion holds. Thus, $\omega A_Y \omega^{-1} \cap A_X = A_{X_1}$ and $\omega^{-1} A_X \omega \cap A_Y = \omega^{-1} (A_X \cap \omega A_Y \omega^{-1}) \omega = \omega^{-1} A_{X_1} \omega = A_{Y_1}$.

Proof of Theorem 0.5. Assume Conjecture 2 holds. Let X, Y be in I and ω be in A_I . We want to prove that $(\omega A_Y \omega^{-1}) \cap A_X$ is a parabolic subgroup of A_I . Write $\theta_I(\omega) = \omega = w_1 w_2 w_2'$ with w_1 in W_X , w_2' in W_Y and w_2 (X, Y) -reduced. Then

$$
(\boldsymbol{\omega} A_Y \boldsymbol{\omega}^{-1}) \cap A_X = \kappa_I(\boldsymbol{w}_1) \Big(\big(\kappa_I(\boldsymbol{w}_1)^{-1} \boldsymbol{\omega} \kappa_I(\boldsymbol{w}_2')^{-1} \big) A_Y \big(\kappa_I(\boldsymbol{w}_2') \boldsymbol{\omega}^{-1} \kappa_I(\boldsymbol{w}_1) \big) \cap A_X \Big) \kappa_I(\boldsymbol{w}_1)^{-1}
$$

and $\theta_I((\kappa_I(\boldsymbol{w_1})^{-1}\boldsymbol{\omega}\kappa_I(\boldsymbol{w'}_2)^{-1}) = \boldsymbol{w_1}^{-1}\boldsymbol{w}\boldsymbol{w'}_2^{-1} = \boldsymbol{w_2}$. So we can assume $\boldsymbol{w_1} = \boldsymbol{w'_2} = 1$ and \boldsymbol{w} is (X, Y) -reduced. We set $\omega_2 = \kappa_I(\omega)$. Then $\theta_I(\omega_2) = \omega$. Let ω' be in A_Y . As already seen, w being (X, Y) -reduced, we have $\pi_{I,X}(\omega_2) = 1$ and, by Lemma 3.2, $\pi_{I,X}(\omega_2 A_Y) = A_{X_1}$ where $S_{X_1} =$ $S_X \cap wS_Yw^{-1}$. Then $\pi_{I,X}(\omega_2\omega')$ lies in A_{X_1} . Assume $\omega\omega'\omega^{-1}$ belongs to A_X . Then $\pi_{I,X}(\omega\omega'\omega^{-1})$ = $\omega \omega' \omega^{-1}$. On the other hand, $\theta_I(\omega \omega_2^{-1}) = \theta_I(\omega) \theta_I(\omega_2^{-1}) = w w^{-1} = 1$ and $\omega \omega_2^{-1}$ lies in CA_I . Now, $(\omega \omega' \omega^{-1})(\omega \omega_2^{-1}) \omega_2 = (\omega \omega_2^{-1}) \omega_2 \omega'$. So, by Proposition 0.2(vii) and (viii), applying $\pi_{I,X}$ we get, $(\omega \omega' \omega^{-1}) \pi_{I,X} (\omega \omega_2^{-1}) \pi_{I,X} (\omega_2) = \pi_{I,X} (\omega \omega_2^{-1}) \pi_{I,X} (\omega_2 \omega') \in \pi_{I,X} (\omega \omega_2^{-1}) A_{X_1}$ and $\omega \omega' \omega^{-1}$ lies in $\pi_{I,X}(\omega \,\omega_2^{-1})A_{X_1}\left(\pi_{I,X}(\omega \,\omega_2^{-1})\right)^{-1}$. Hence, $\omega A_Y \omega^{-1} \cap A_X \subseteq \pi_{I,X}(\omega \,\omega_2^{-1})A_{X_1}\left(\pi_{I,X}(\omega \,\omega_2^{-1})\right)^{-1} \subseteq A_X$ and $\omega A_Y \omega^{-1} \cap A_X = \omega A_Y \omega^{-1} \cap \left(\pi_{I,X} (\omega \omega_2^{-1}) A_{X_1} (\pi_{I,X} (\omega \omega_2^{-1}))^{-1} \right)$. By Proposition 3.3, $A_{X_1} =$ $\omega_2 A_Y \omega_2^{-1} \cap A_X = \omega_2 (A_Y \cap \omega_2^{-1} A_X \omega_2) \omega_2^{-1} = \omega_2 A_{Y_1} \omega_2^{-1}$, so we get

$$
\omega A_Y \omega^{-1} \cap A_X = \omega \bigg(A_Y \cap \bigg(\big(\omega^{-1} \pi_{I,X} \big(\omega \omega_2^{-1} \big) \omega_2 \big) A_{Y_1} \big(\omega^{-1} \pi_{I,X} \big(\omega \omega_2^{-1} \big) \omega_2 \big)^{-1} \bigg) \bigg) \omega^{-1}
$$

Now, $\omega^{-1}\pi_{I,X}(\omega\omega_2^{-1})\omega_2 = (\omega^{-1}\omega_2)\omega_2^{-1}\pi_{I,X}(\omega\omega_2^{-1})\omega_2$ and $\omega^{-1}\omega_2$ lies in CA_I , then, $\pi_{I,X}(\omega\omega_2^{-1})$ lies $\text{in } CA_X \text{ and } \omega^{-1}\pi_{I,X}(\omega \omega_2^{-1})\omega_2 \text{ lies in } CA_I.$ So, up to replacing (X,Y,ω) with $(Y,Y_1,\omega^{-1}\pi_{I,X}(\omega \omega_2^{-1})\omega_2),$ we may assume $Y \subseteq X$ with ω in CA_I . In this case $w_2 = 1$ and $A_{X_1} = A_Y$. Thus $\omega A_Y \omega^{-1} \cap A_X =$ $\omega A_Y \omega^{-1} \cap \left(\pi_{I,X}(\omega) A_Y(\pi_{I,X}(\omega))^{-1} \right) = \omega \left(A_Y \cap \left((\omega^{-1} \pi_{I,X}(\omega)) A_Y(\omega^{-1}(\pi_{I,X}(\omega))^{-1} \right) \right) \omega^{-1}$ and we are done.

Acknowledgement: I thanks François Digne and Jean Michel for useful comments.

REFERENCES

- [1] Blufstein, M., and Paris, L. Parabolic subgroups inside parabolic subgroups of Artin groups. arXiv:2204.05142.
- [2] BOURBAKI, N. Groupes et Algèbres de Lie chapitres 4,5,6. Hermann, 1968.
- [3] CHARNEY, R., AND PARIS, L. Convexity of parabolic subgroups in Artin groups. Bull. Lond. Math. Soc. 46 (2014), 1248–1255.
- [4] CUMPLIDO, M., GEBHARDT, V., GONZALEZ-MENESES, J., AND WIEST, B. On parabolic subgroups of Artin-Tits groups of spherical type. Advances in Mathematics 352 (2019), 572–610.
- [5] Cumplido, M., Martin, A., and Vaskou, N. Parabolic subgroups of large-type Artin groups. Preprint. arXiv:2012.02693.
- [6] GODELLE, E., AND PARIS, L. $K(\pi, 1)$ and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups. Math. Z. 272 (2012), 1339–1364.
- [7] Morris-Wright, R. Parabolic subgroups in FC-type Artin groups. Journal of Pure and Applied Algebra 225, 1 (2021), 106468.
- [8] PARIS, L. Artin monoids inject in their groups. Comment. Math. Helv. 77 (2002), 609-637.
- SOLOMON, L. A Mackey formula in the group ring of a Coxeter group. J. Algebra 41 (1976), 255–268.
- [10] TITS, J. Groupe et géométries de Coxeter. mimeographed notes, IHES (1961).
- [11] TITS, J. Buildings of spherical Type and Finite type BN-pairs, vol. 386. Sringer-Verlag, 1974.
- [12] Van der Lek, H. The homotopy type of complex hyperplane complements. PhD thesis, Nijmegen, 1993.