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Introduction . -Water transfer in unsaturated porous media displays phenomena that are still poorly understood such as fingering instability of the wetting front, water trapping and intermittent flow in heterogeneous media. These phenomena are enhanced in the presence of hydrophobicity due, for instance, to organic matter. Experimental observation shows that the water infiltrates into the hydrophobic layer via fingered flows even if the layer is homogeneous [1]. Then, the fingered flows result from an imbibition front instability. In Darcy-Richards modelling, the wetting property is defined via capillary rise and the pressure head. In such a model, the water content diffuses towards the drier region and thus can reproduce neither the water trapping nor the fingering instability [2].

Since work in the seventies of [3,4] devoted to the study of the imbibition front instability, this problem has been the subject of many studies in order to understand and model this phenomenon in homogeneous or heterogeneous media. However, this problem still remains an open question as shown by [2]. It is known that the Richards equation is unable to reproduce this instability. Many variants of the Richards equation, such as dynamic capillary pressure [5] and hypo-diffusion [6] have been developed to obtain out-of-equilibrium dynamics. However, the quantitative results are not in agreement with experiment, especially concerning the oversaturation observed at the infiltration front. Cueto-Felgueroso and Juanes [7] introduced a surface energy in unsaturated media. The front instability then appears as a Saffman-Taylor type instability. Oversaturation at the front induces a greater mobility, leading to fingering in a homogeneous porous medium. However, this model does not capture the instabilities of an initially blocked front, for instance, at the interface of a hydrophilic layer on a hydrophobic layer. To take into account the front hysteresis, models based on the analogy of the contact angle of a water front on the surface are found in the literature, for instance in [8]. The hydrophobicity of the soil is another factor inducing instabilities which is not taken into account by classic models [9][10][11]. One of the hypotheses of the link between hydrophobicity and digitation is the existence of the hysteresis of the contact angle which is revealed through the hysteresis of the infiltration curves [5,12]. Rätz and Schweizer [8] showed the existence of an unstable front due to a contact angle hysteresis introduced directly into a Richards-type equation. Concretely, in order to advance the "charge" must pass a threshold such as a depinning phenomenon. The role of contact angle hysteresis and hydrophobicity in front instability phenomena led to focus on wettability in porous media. In contrast, in the present study, we aim at describing the wettability via surface energy at the interfaces. An effective term of short-range repulsion is introduced to model the interaction between the porous matrix and thin water films. According to [13], this term is non negligible at low saturation. The sum of this repulsive term with the capillary pressure constitutes the analogous of con-and dis-joining pressures describing the interaction of a partial wetting liquid [START_REF] Kalliadasis | Thin films of soft matter[END_REF]. An effective surface tension proposed in [7,[START_REF] Cueto-Felgueroso | [END_REF] is also taken into account. After detailing the model, we apply the model to stratified media with different wettabilities.

Modelling. -Governing equation. Let us consider a homogeneous porous medium with porosity φ, capillary height H c and the conductivity K s at saturation. If the medium is unsaturated, we define the saturation s ∈ [0; 1] as the ratio between the water volume over the interpore volume for a dry medium. The dimensionless Darcy-Richards governing equation reads:

∂s ∂t = -∇ • Φ(s), (1) 
where the flux Φ is proportional to the relative permeability k r (s) and the pressure gradient due to the static pressure and the capillary pressure h c (s):

Φ = k r (s)∇ (h c (s) + z) (2) 
with positive z-axis downwards. The space is scaled by H c , the time by φH c /K s and the pressure by ρgH c , ρ is water density. In a hydrophilic medium, the dimensionless suction h c (s) is a positive and decreasing function. In this paper, we use the Genutchen Mualem model [16] 

h c (s) = (s n-1 n -1) 1/n , (3) 
with n a parameter taking the values typically in the range [1,10] depending on the soil type. In this paper, we fixed the value to n = 10 which is relevant for a hygiene sandstone and widely used in the literature [START_REF] Cueto-Felgueroso | [END_REF]17].

Because h c (s) suction is a decreasing function of the saturation, the water diffuses from high saturation to low saturation in a horizontal thin layer. Then, the final state of water imbibition is a uniform distribution s(x) ≡ s m , where s m is the mean water content. In the presence of hydrophobic matter, water diffusion may be stopped due to the hydrophobicity, thus, the Darcy-Richards equation does not apply. The latter behavior is analogous to partial wetting of a fluid on a substrate. The droplet does not spread totally and makes a finite contact angle. The contact angle results from competition between attractive and repulsive interaction acting at different scales between the substrate and the free surface. Usually, the repulsive term acts at short range and the attractive term at longer range [18,19]. These interactions define the substrate wettability. Our approach is to introduce a similar wettability term in porous media.

For unsaturated porous media, there is an interaction between the free surface of water and the matrix that is represented by the suction h c (s). If hydrophobic matter is present, we modify the potential h c (s) by h c (s) -h r (s) where the repellent term h r > 0 represents the repellent action. This term depends on the concentration of hydrophobic molecules but also on water saturation [13]. Indeed, if the hydrophobic molecules are surrounded by water, their hydrophobicity is weaker. Then, the repellent term h r (s) should be a strongly decreasing function. We chose an exponential function:

h r (s) = h f exp(- s s rg ) + δ, (4) 
where h f is the magnitude of hydrophobicity, s rg is the saturation range affected by the hydrophobicity and δ > 0 stands for the remaining repellent pressure at saturation. The resulting dimensionless pressure is then

Π(s) = h c (s) -h r (s). (5) 
In this paper, we fixed s rg = 0.2, h f = 0.9, δ = 0.1, for hydrophobic media. The delta value means that the suction is reduced by 10% close to saturation. The values h f and s rg were chosen in order to induce fingering instability phenomena. The resulting curve Π(s) is shown in Fig. 1. The function is no longer monotonic: Π(s) increases on the [s 1 ; s 2 ] = [0.045; 0.471] interval (see Fig. 1). Then, in the range bounded by the extrema [Π(s 1 ); Π(s 2 )] = [0.588; 0.842] there is no longer uniqueness of the saturation for a given suction Π 0 . The consequence is that an equilibrium exists between low saturation which has a value in the interval [0.0045; 0.0449] and high saturation in the interval [0.471, 0.977] allowing a finite water diffusion in contrast to Darcy-Richards modeling. As a result a uniform profile s = s m in the range [s 1 ; s 2 ] is linearly unstable, leading to a heterogeneous distribution of dry regions with humid regions. This aspect is studied in detail in the next Section.

In unsaturated porous media, the presence of the water/air interface implies the existence of a free surface energy. The pressure term T ∆s was added in [7,[START_REF] Cueto-Felgueroso | [END_REF] in the context of porous media where ∆s is the Laplacian operator applied to s and T represents the effective surface tension. This term is analogous to the linearized Laplace pressure of a thin liquid film. Recently, [20] proposed a more complex expression for the surface energy. In our context, such a surface energy term is crucial since it plays a regularizing role. In the absence of this effective surface tension T , our model with hydrophobicity leads to infinitely small structures and a diverging growth rate as shown later (see Eq. ( 10)). In this paper we focus on the simplest model in [START_REF] Cueto-Felgueroso | [END_REF] to reproduce fingering and water trapping. Therefore, the flux Φ is now given by:

Φ = k r (s)∇ (Π(s) + z + T ∆s) . (6) 
In the case of a stratified medium, we assume that the properties depend only on the depth z. In the hydrophilic layer, the medium follows the Genuchten-Mualem law, i.e. h f = 0 in our model Eq. 4, and in the hydrophobic layer h f = h o f = 0. We introduce the function ξ(x, z) that realizes a continuous and derivable transition of the parameter h f between the different layers such that h f (x, z) = ξ(x, z)h o f and ξ(x, z) 0 in the hydrophilic layer while ξ(x, z) 1 in the hydrophobic layer. Then the wettability function reads

Π(s, x, z) = h c (s) -ξ(x, z)h r (s). (7) 
The equation can be written :

∂s ∂t = ∇ • k r (s)∇ δF δs - ∂k r (s) ∂z (8) 
where δF δs = -Π(s, z) -T ∆s is the functional derivative of the functional F:

F(s) = D 1 s Π(s, z)ds -T 1 2 |∇s| 2 dx dz. (9)
The functional F is also a Lyapunov functional and represents the free energy of the system [21]. Eq. ( 8) is a fourth order and nonlinear Partial Differential Equation (PDE). This equation is reminiscent of the lubrication equation with wettability in thin film theory [START_REF] Kalliadasis | Thin films of soft matter[END_REF]. We then expect front instability and intermittent flow as shown in [22,23].

Horizontal diffusion in a hydrophobic medium. -We consider the 1D model of a horizontal imbibition with periodic boundary conditions at x = ±L/2 where L is the domain size. For profiles that are symmetric by the reflection x ↔ -x, the latter condition also implies the no-flux condition ∂s ∂n = 0 at these boundaries. In this geometry the water content is conserved and we denote s m the mean water content.

Homogeneous medium. The constant distribution s ≡ s m is the trivial solution of the 1D horizontal problem but this solution may be unstable because of the repellent term h r . The linear stability is given by the eigenmodes of the linearization of the right hand expression in (8). Because of the periodic condition and the translation invariance in the x direction, the eigenmodes are the Fourier modes.

A standard derivation shows that the eigenvalue of the k wavenumber is

β(k) = k r (s m )k 2 (Π (s m ) -T k 2 ). The film is unstable if β(k) > 0 which requires i) Π (s m ) = Π m > 0 and ii): k < k c = Π m T . The condition i) is realized if s m is in the interval [s 1 , s 2 ] and the condition ii) is realized for longwaves λ such that λ > λ c = 2π k c = 2π T Π m . (10) 
The maximum growth rate corresponds to the wavelength λ m = λ c √ 2 [START_REF] Kalliadasis | Thin films of soft matter[END_REF]. When the linear instability evolves an alternation of dry and wet regions periodically appears with the characteristic length of about λ m . Note that T > 0 ensures that λ m > 0 and hence a finite size of the structure as mentioned in the description of the Modelling. The development of instability is analogous to dewetting on a substrate or spinodal decomposition [24]. The resulting dry and wet regions coalesce through a coarsening phenomenon due to the action of the macroscopic surface tension. The coalescence finishes when a unique wetted region coexists with a dry region. This steady-state corresponds to the minimum of the free energy F(s). We expect, then, the imbibition dynamics to converge towards this steady-state s min (x) as in [22]. The profiles of s min displayed in Fig. 2 show that the moist area is localized in a finite domain if s m is below a critical value s c = 0.739. In order to better understand the origin of the transition at s = s c , we analyse the bifurcation diagram of steadystate Fig. 3 by increasing the mean saturation s m . From the trivial solution s ≡ s m , a solution branch emerges subcritically at s 1 = 0.0449. The solution is unstable till a turning point s sn1 = 0.02. The branch from this turning point corresponds to the minimum free energy and therefore it is stable. For a water content, three equilibria coexist in the narrow range [s 1 , s sn1 ]: The trivial solution (stable) and the pair of stable/unstable nonuniform solutions. for the unstable equilibrium while for the stable equilibrium the main water content is concentrated in a small range and the saturation maximum is about 0.53. Increasing the mean saturation along this stable branch, the water remains localized and the saturation maximum increases till s w = 0.78 is reached for s m about 0.10 (Fig. 2). For a mean saturation greater than 0.10, this time it is the saturation maximum which remains almost constant at s w and only the width of the wetted domain increases with the water content. Thus, water distribution is divided into two zones, one wet with a constant saturation about s w = 0.78, the other dry with a low saturation s d = 0.009 (see the profiles for s m = 0.40 and s m = 0.70). These saturation values are such that Π(s w ) Π(s d ) which is the equilibrium condition when T ∆s is negligible. The width of the wet area increases with mean water content s m till the dry region vanishes due to the finite size domain. Then, the solution branch ends at a second turning point corresponding to s c = 0.739 (Fig. 3). The turning unstable branch connects the trivial solution at s 2 0.47. We represent the equilibrium for s m = 0.70 of this unstable branch in Fig. 2. There is no longer a dry area and the saturation contrast between the minimum, 0.08, and the maximum, 0.73, of saturation is weaker than for the stable solution. For s m > s 2 the uniform water distribution is also stable and then in the interval [s 2 , s c ], the trivial uniform solution coexists with the non-uniform profile and both are stable. The final state depends on the initial conditions. Beyond s c the final state corresponds to the uniform distribution as for the hydrophilic medium.

To conclude, for a domain that is large enough the water spreads over a finite area in a homogeneous medium. In the wet area, the water saturation s w is almost constant and its value depends on the Π(s) function. We find numerically that s w 0.78 for our parameters. Note that there are many solution branches emerging from the points s 1 and s 2 which correspond to patterns with the periodicity L/n, n ≥ 2. Nevertheless, as discussed before all these branches remain unstable.

Inhomogeneous medium.

We consider an inhomogeneous medium consisting of a hydrophobic medium containing a hydrophilic region, i.e. h f = 0. The wettability Π(s, x) is given by Eq. 7 with

ξ(x) = 1 2 - 1 2 tanh 5 cos π tanh( 2π L 1.8x) (11) 
The function ξ(x) 10 is displayed Fig. 4. The region where ξ(x)

1 corresponds to a hydrophilic medium. The steady-states for different water contents s m show that water is confined in the hydrophilic region for small s m (Fig. 4). When the maximum saturation in the hydrophilic region is about 0.50 (see the profile for s m = 0.13 in Fig. 4) a small amount of water invades the hydrophobic region. Then, the water content in the hydrophobic region increases progressively with s m . The saturation maximum ceases to increase when the mean water content s m reaches 0.40. Then, the saturation maximum is about 0.92 and a further increase in water content implies a spread in the hydrophobic region (Fig. 4). As for the homogenous medium, the spread is finite and the saturation maximum is about 0.80.

The model reproduces a finite diffusion of water in homogeneous or inhomogeneous media. In the following, we focus on a vertical stratified medium.

Stratified medium. -In this section, we consider a periodic vertical stratification of a hydrophobic/hydrophilic medium such that the heterogeneity depends only on z, i.e. in the horizontal x direction, the medium is assumed to be homogeneous. We focus on a spatially periodic flow in the z direction. The vertical domain length is fixed to L z = 1 and we apply periodic boundary conditions at z = 0 and z = 1.

The function ξ(z) characterizes the wettability variation and it is given by Eq. 11 replacing the variable x by z + 0.35. Then the hydrophilic layer is localized in the vertical range z ∈ [0, 0.3]. In contrast to the horizontal case, the dynamics is no longer a relaxation dynamics to the minimum of F but we expect front instability and intermittent flow as shown in [23].

1D vertical stratified medium. Because of the periodic conditions, the mean water content noted s m is constant. We study steady-state solutions by increasing the water content s m . Compared to the horizontal case, the maximum of water is shifted downstream near the interface between the hydrophilic/hydrophobic layers. For low mean saturation, the hydrophilic layer can retain most of the water and the water is blocked at the interface resulting in a stationary state displayed in Fig. 5 (upper panel). On increasing the mean saturation s m , the saturation maximum approaches the interface and a small amount of water spreads downwards into the hydrophobic region. The bifurcation diagram Fig. 6 represents the flux Φ of the latter steady-states as a function of s m . The solution branch displays a first saddle-node at s m = s sn = 0.197383. For a saturation near the saddle-node s m > 0.19, the saturation profile of the steady-state changes noticeably. The saturation maximum decreases and a greater amount of water advances significantly into the hydrophobic part. The latter steady-states are stable till the value s h = 0.197345 corresponding to a Hopf bifurcation. This bifurcation leads to a subcritical branch of unstable small amplitude time periodic states. We argue that the bifurcation scenario is similar to the one described in [23] on ridge depinning on a wettability defect. The unstable branch of periodic orbit undergoes a global bifurcation at s g = 0.197170 < s h < s sn (not shown in Fig. 6) leading to an intermittent flow. The time integration for s m > s g shows a time-dependent dynamics. When s m is close to the global bifurcation, there are two main steps inducing an intermittent-like dynamics. In the first phase, the water from the hydrophilic layer spreads slowly in the hydrophobic region. There are two local maxima of the saturation profile, one near the interface and one at the head of the front in the hydrophobic region (t = 667 in Fig. 7). Between the two maxima the saturation is lower than s 2 implying a hydrophobic behavior of the medium. This results in a decrease in the water content in this region followed by the separation of the downstream water in the hydrophobic layer from the water remaining in the hydrophilic layer (t = 671). The water in the hydrophobic layer advances like a solitary wave and in its wake leaves a small amount of water, about 5% (t = 671-674). This wave joins the next hydrophilic layer and is rapidly absorbed by the hydrophilic layer where the water remains trapped for a considerable length of time: ∆t 500. Thus, the water infiltrates the hydrophobic layer in a similar manner and an intermittent-like dynamics takes place. Note that for mean saturation s m in the range [s g , s h2 ] there also exists a steady-state flow represented in Fig. 6 by the dashed line. However, this stationary flow is linearly unstable and the asymptotic dynamics remains the intermittent dynamics. On increasing the mean saturation s m , the dynamics loses its intermittent character and instead periodic oscillations of water content take place between the two layers. This branch of solutions ends at a Hopf bifurcation (s h2 = 0.44) with the steady-state solution branch. The profile resembles a wavy profile with higher water content in the hy- drophilic layer but both layers are moist (see the bottom panel in Fig. 5). The steady-state solution is stable for s m > s h2 and remains stable till complete saturation of the medium.

2D geometry: Fingering instability.

As for the instability analysis in a homogeneous medium, a longwave instability may arise in the transverse direction x if the lateral length is large enough. Since the problem is invariant in the x direction, the eigenmodes take the form u(x, z, t) = u x (z) exp(-ik x x + β(k x ) t), where k x is the wave number in the x-direction and β(k x ) the growth rate. In the limit k x → 0, every function u x (z) is an eigenmode from the 1D case except for one eigenmode called varicose and such that u x (z) is not zero averaged over z [25]. Since the mass is conserved in our problem, the eigenvalue associated with this mode is zero for k x = 0. Thus, we study the transverse stability from a stable 1D stationary state. The varicose mode may become strictly positive when k x becomes strictly positive, i.e. it is at the origin of the longwave instability [START_REF] Kalliadasis | Thin films of soft matter[END_REF]. Fig. 8 shows the eigenvalue β(k x ) of the varicose mode for two steady-states from the bifurcation diagram 6 at s m = 0.16 and s m = 0.1798. For s m = 0.16, the eigenvalues become strictly negative when k x > 0 and then the steady-state is also stable for the 2D problem. In contrast for s m = 0.1798, the eigenvalue β(k x ) is strictly postive in the interval ]0, k c [ (k c = 7.24) and reaches the maximum value β max = 0.0967 at k max = 4.1 and max = 1.53. The lateral instability of the 1D-steady-state is shown in red in the bifurcation diagram 6 corresponding to the interval [s ; s sn ]. This instability leads to the spontaneous formation of fingers as shown by the time integration starting from the 1D profile for s m = 0.1798. Adding a sinusoidal perturbation of 1% amplitude with period = 2, we observe the protrusion growing in a finger (Fig. 9) at t = 15. This time is consistent with the characteristic time t = 1/β = t c 12 of the linear growth. The water at the base of the protrusion recedes to the hydrophilic layer while the finger stretches (t = 21 in Fig. 9). At the fingerhead, we observe a oversaturation which corroborates the experimental observations in porous media [26]. In the tail of the finger the width decreases due to the hydrophilicity (t = 23). Thus a small amount of water like a drop is almost detached from the hydrophilic layer. However, the humidity in its wake is not negligible, creating a preferential path. This water travels through the hydrophobic layer and reaches the next hydrophilic layer (t = 24). Before the water has been completely absorbed by the hydrophilic part, a new finger appears in the previous finger path (t = 24.5). This scenario repeats but after each cycle the water saturation in the path increases until it converges to a stationary state (t = 61.75): most of the water is in the hydrophilic layer while a narrow rivulet connects these layers. This time simulation is reminiscent of experiments displaying finger flows in a hydrophobic sand [11,27] not only qualitatively (see, for instance, Fig. 6 in [11]) but also quantitatively. The finger width w ranges from 1 to 5 cm. Considering a grain size of about 0.3 mm, the capillary height H c is about 20 cm according to [START_REF] Fetter | Applied Hydrogeology: Fourth Edition[END_REF]. Then the relative finger width w/H c ranges from 0.05 to 0.25 which fits with the width 0.2 of the simulated rivulet.

Concluding remarks. -Taking into account surface energies especially wettability by a disjoining pressure in a variant model of the Darcy-Richards equation, we capture water trapping in hydrophilic layers, intermittentlike flow and fingering phenomena in a stratified medium. The keypoint of the modeling, by adding a hydrophobic term, is that the suction function is no longer monotonous. The hydrophobic term represents the effective action of hydrophobic molecules and then depends on the saturation. This term is added to the standard capillary pressure and there is a range over which hydrophobicity is 'visible' which corresponds to the positive slope of Π(s). According to [START_REF] Cueto-Felgueroso | [END_REF], we add a term related to the surface which takes water free surface energy into account. In a more general way, Eq. 8 with the free energy term (Eq. 9) belongs to mesoscopic models of complex wetting [21]. Using bifurcation analysis tools, we show that the 1D flow threshold results from a global bifurcation. This analysis has not only a theoretical interest but it makes it possible to determine the logarithmic time scale governing inter- The initial condition is the 1D steady-state for sm = 0.1798 (see Fig. 6) perturbed by the sinusoidal function cos(πx) with a relative amplitude of 1%. Colour code of the water content is identical to all the panels. Parameters as in Fig. 2. mittency. Moreover, the spontaneous formation of fingering constitutes a preferential path for water, inducing a hysteresis effect. This bifurcation scenario is similar to the one described in depth in [23] in the thin film flow context. As long as the wetting is only partial, the current model is relevant. Therefore, the instability term introduced in [20] to simulate fingering in sand can also be interpreted as a partial wetting property of sand.
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 1 Fig.1: Suction profile versus saturation. The fine line is the Genuchten-Mualem suction with n = 10 (Eq. 3), the bold line is the pressure Π taking into account the hydrophobicity given by Eqs(4)(5). Parameters are h f = 0.9, δ = 0.1, srg = 0.2.

Fig. 2 :

 2 Fig. 2: Horizontal saturation s(x) profile in hydrophobic medium for different values of mean saturation sm. Plain [dashed] line indicates stable [unstable] saturation distribution.Parameters are srg = 0.2; h f = 0.9; δ = 0.1, T = 0.001.

Fig. 3 :

 3 Fig. 3: Horizontal saturation profile in a heterogeneous hydrophobic medium for different values of mean saturation sm. Bold [fine] lines indicate stable [unstable] steady-state solutions. The horizontal line corresponds to solution branches with uniform distribution. Red symbols '+' indicate the steady-states whose profiles are depicted in Fig. 4 for sm = 0.03, 0.10, 0.40, 0.70. Parameters as in Fig. 2.
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 4 Fig. 4: [black dashed line] Heterogenous function ξ(x)/10 and [color plain lines] horizontal saturation profile in an inhomogenous medium for different values of mean saturation sm. The range where ξ(x)0 corresponds to the hydrophobic region while ξ(x)1 is the hydrophilic region. Parameters as in Fig.2.

Fig. 5 :

 5 Fig. 5: Saturation profiles of steady-states. [Upper panel] Profiles from sm = 0.04 to 0.185 and [lower panel] profiles from sm = 0.195 to 0.60 . Bold [fine] lines indicate stable [unstable] steady-states. Dashed bold lines indicate the profile at the bifurcations: [upper panel] saddle-node sc 0.19 and [lower panel] Hopf bifurcation s Hopf = 0.44. The black dotted line corresponds to ξ(x) 10 . Parameters as in Fig. 2.
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 6 Fig. 6: Flux Φ depending on sm for each 1D equilibrium in a vertical stratified medium. Bold plain [dashed] lines indicate stable [unstable] steady-state. The fine plain straight line is the flux associated to kr(sm). Black dots correspond, by increasing sm, to the s 2d , ssn and s h bifurcations. Steady-states corresponding to the profiles shown in Fig. 5 are indicated by + symbols. Mean flux ratios for time periodic flows are indicated by red dots. Parameters as in Fig. 2.
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 7 Fig. 7: Profiles of water saturation at different times t during the intermittent flow for sm = 0.1972. Parameters as in Fig. 2.

Fig. 8 :

 8 Fig. 8: Dispersion relation of the 1D steady-state in stratified medium for sm = 0.16 (fine line) and sm = 0.1798 (bold line). Parameters as in Fig. 2.

Fig. 9 :

 9 Fig. 9: (Colour on-line) Snapshots of the time evolution of water infiltration from hydrophobic layer into the hydrophilic layer.The initial condition is the 1D steady-state for sm = 0.1798 (see Fig.6) perturbed by the sinusoidal function cos(πx) with a relative amplitude of 1%. Colour code of the water content is identical to all the panels. Parameters as in Fig.2.