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Abstract The generation of valid inequalities is central to solving non-convex
Mixed-Integer Nonlinear Programming (MINLP) problems to global
epsilon-optimality. Signomial Programming (SP), a.k.a. Generalized
Geometric Programming, is an important class of MINLP problems.
In this work, we study two kinds of cutting planes for the SP: inter-
section cuts and outer approximation cuts. The core ingredient in the
derivation of the intersection cuts is so-called S-free sets. Earlier stud-
ies considered S to be various non-convex sets such as the lattice and
outer-product sets. Here we consider the signomial set that appeared
in the SP. We first construct signomial-free sets, and we show that
these signomial-free sets are maximal in the non-negative orthant so
that they generate strong intersection cuts. Secondly, we explore a
combinatorial structure in the signomial set, namely supermodular-
ity. Using supermodularity, we construct a convex relaxation of the
signomial set and derive valid outer approximation cuts. We imple-
ment these cuts in the global solver SCIP and test their performance
on the instances from the MINLPLib.

Keywords: MINLP, signomial programming, intersection cuts, supermodular in-
equalities



2 Liding Xu, Claudia D’Ambrosio„ Sonia Haddad Vanier and Leo Liberti

1. Introduction

Given an n-dimensional multi-index α = (α1, α2, . . . , αn) ∈ Rn, a signo-
mial term is defined as xα :=

∏n
j=1 x

αj

j . We assume the variables are posi-
tive, thus allowing the multi-index α to have negative entries.

Signomial Programming (SP) problems generalize Polynomial Program-
ming (PP) problems with positive variables. The SP in general form is as
follows:

min c · x (1a)

∀i ∈ [m]
∑
k∈Ki

aikx
αk

≤0 (1b)

∀j ∈ [n] xj ∈[xj , xj ] ⊆ R++ (1c)

where m is the number of signomial constraints, n is the number of deci-
sion variables, [p] = {1, . . . p} for any integer p, [xj , xj ] is a range constraint
on variable xj , K is the index set of all signomial terms in the SP, Ki ⊆ K is
the index set of signomial terms in the i-th constraint, αk ∈ Rn, and aik ∈ R
for any k ∈ Ki, for any i ∈ [m].

The global solvers such as SCIP [1] use a factorization approach to trans-
form the SP into an extended formulation. The transformation replaces xαk

with an auxiliary variable yk and adds the equality constraint yk = xαk

. We
study the convexification of the following signomial set for some α ∈ RN

++:

Ss := {z := (x, y) ∈ Rn
+ × R+ : y = xα}.

2. Intersection Cuts

Intersection Cuts
We assume that there is an initial Linear Programming (LP) relaxation

of the SP. The LP relaxation gives a polyhedral outer approximation P of
Ss. We propose the intersection cuts to tighten P . We first introduce the
following concepts.

Definition 1. Given a signomial set Ss, a closed set C is called Ss-free or signomial-
free, if the following conditions are satisfied: C is convex; and int(C) ∩ Ss = ∅.

Usually, in the LP relaxation solution, we have the relaxation point z̃ not
in Ss. The separation requires: a translated simplicial cone R (containing
Ss) with apex z̃ such that Ss ⊆ R, and an Ss-free set C containing z̃ in its
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interior. Then, an intersection cut separates z̃ from conv (R∖ int(C)) (a set
which, we note, contains Ss) as follows.

Since z̃ is a vertex of P z̃ is defined by a basis of the simplex tableau of
the LP relaxation. The translated simplicial cone R is given in the following
half-space representation:

R = {z ∈ Rp : B(z − z̃) ≤ 0},

where B is a p× p invertible matrix extracted from the basis of the simplex
tableau. Define the step length η∗j ∈ (0,+∞] as η∗j := supηj≥0{ηj : z̃+ ηjr

j ∈
C}.

The intersection cut [2] is then obtained as

p∑
j=1

1

η∗j
Bj(z − z̃) ≤ −1, (2)

where Bj is the j-th row of B, and z̃ is cut off by the above linear inequality.
We show that, after change of variables, the signomial set can be trans-

formed to the following form:

Ss = {(u, v) ∈ Rh
+ × Rl

+ : uβ ≤ vγ}, (3)

where β ∈ Rh
++ and γ ∈ Rl

++ are h− and l−dimensional multi-indices.
After the normalization (by multiplying β and γ with a constant), we can
assume that max(∥β∥1, ∥γ∥1) = 1, and both uβ and vγ are concave.

Maximal signomial-free sets generate strong intersection cuts.

Proposition 2. If max(∥β∥1, ∥γ∥1) = 1,

Csv̆ := {(u, v) ∈ Rh
+ × Rl

+ : uβ − γv̆γ−1 · (v − v̆) ≥ 0}

is a maximal Ss-free set, where the linearization point is v̆ ∈ Rl
+.

3. Outer Approximation Cuts

In this section, we propose an alternative convex relaxation for the signo-
mial set. W.l.o.g., we consider Ss = {(u, v) ∈ Rh

+ × Rl
+ : uβ − vγ ≤ 0}

in the sequel. Moreover, we assume that v belongs to a range constraint
U := [u, u] ⊆ Rh

+. We rewrite Ss as {(u, v) ∈ U × Rl
+ : uβ ≤ vγ}.
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Definition 3. Given a function f defined on a closed set D, the convex enve-
lope convenvD(f) is the tightest convex underestimating function of f on D (i.e.,
convenvD(f)(x) ≤ f(x) for x ∈ P ).

Let convenvU (uβ) be the convex envelope of uβ on U . Then, we define

Ss := {u, v) ∈ U × Rl
+ : convenvU (uβ) ≤ vγ}, (4)

which is the convex relaxation of Ss. From this relaxation, we can separate
outer approximation cuts. We show that the function uβ on U satisfies the
following properties.

Proposition 4. The function uβ on U is concave and convex-extendable from
vertices vert(U) of U , i.e., convenvvert(U)(u

β) = convenvU (u
β). The function

uβ is a supermodular function on U , i.e., for every u, u′ ∈ U , uβ + u′β ≤
max{u, u′}β +min{u, u′}β , where max and min are evaluated element-wise.

After some transformation, it suffices to study the convex envelope of
the following function.

Definition 5. Define g : [0, 1]h → R : w → g(w) :=
∏

1≤j≤h((xj − xj)wj +

xj)
βj − uβ .

Proposition 6. Given a supermodular function g on {0, 1}h, let H := {1, · · · , h},
and for j ∈ H,S ⊆ H define ρ(j, S) := g(S∪{j})−g(S) the increment function
of g. Then,

g(S) +
∑

j∈H∖S

ρ(j, S)wj −
∑
j∈S

ρ(j,N ∖ {j})(1− wj) ≤ t,

g(S) +
∑

j∈H∖S

ρ(j, ∅)wj −
∑
j∈S

ρ(j, S ∖ {j})(1− wj) ≤ t,
(5)

for S ⊆ H are valid inequalities for convenv
{0,1}h

(g)(w) ≤ t (and convenv
[0,1]h

(g)(w) ≤
t).
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