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Abstract

We present a Finite Element Method (FEM)
based approach to capture plasmonic behaviors
in light scattering by metallic spheres. Surface
plasmons are highly oscillatory waves localized
to the interface between a dielectric (air, vac-
uum) and a metal (gold, silver). As surface
plasmons lead to large field enhancements, they
are useful for high-resolution imaging and other
applications. It is challenging to capture them
numerically, and standard methods do not suc-
ceed. In the context of spherical scatterers, we
identify where plasmonic excitations can arise,
and propose an approach to extract the fast-
scale plasmonic behavior from the formulation,
allowing FEM to approach the slow (smooth)
part of the solution.

Keywords: Finite Element Methods, Surface
Plasmons, Resonances, Scattering

1 Problem setting

For simplicity we consider time-harmonic scat-
tering of scalar waves in a homogeneous back-
ground medium. The plane wave u'® = e*?
with wavenumber k£ > 0 is incident on the metal
sphere corresponding to domain Q = {|z| < 1}
with boundary 02 = {|z| = 1} and closure
Q=QuUIN. Lete(x) =1,z € E:=R3\Q and
g(z) = em < —1, z € Q denote the piece-wise
constant permittivity characterizing this prob-
lem. The total field u satisfies the following
boundary value problem:

Find u = v + v € H}.(R?) such that:
V- (e'Vu)+ k*u=0, inR3
[u]ag =0, [Eflanu]ag =0

lim r(0, —ik)u* =0
r—r00

(1)

One can use T-coercivity theory to establish that
(1) is well-posed and FEM converges as long as
the mesh is locally symmetric at the vicinity of
the interface (e.g. [1]). We solve (1) using ex-
pansions in spherical harmonics, ¥, (6, ¢) with
0, ¢, denoting the azimuthal angle, polar angle,

respectively. Using the Jacobi-Anger expansion
for u'™, we find that

u(z) = > [Ady(kr) — Ciii(kr)] Y2 (6, ¢),
forx € E, vsl/i:t(il C = it\/(21 4+ 1)(47), and
u(z) =Y Biiy(kmr)Y,(0,¢)

for x € Q. Here,lTC?n = /—éemk, and hy, j;, i
are the spherical Hankel functions, the spherical
Bessel functions, and modified spherical Bessel
functions of the first kind and of order £, re-
spectively. Using the transmission (jump) con-
ditions in (1), the coefficients (4;, B;) € C x C
satisfy

Mo (k) [Al] _¢ [ _jlf’“)} with  (2)

Y
_hl k i (b,
= !hfl)’((k)) (—em>l(1/2i;)<—km> ¥

The top left plot of Fig. 1 shows a plot of [|u*°[| .2 (p)
where D is a ball containing €2 as a function
of k. We observe that the field peaks at some
wavenumbers (k, ), where the corresponding FEM
computations (see Fig. 1, top right) show plas-
monic fields. Additionally, we find that larger
errors occur at those peaks.

2 Plasmonic resonances

To identify the peaks seen in Fig. 1, we find the
zeros of det(M;(k)) = 0 with M;(k) defined in
(3), in particular those which correspond to sur-
face plasmon resonances. We find surface plas-
mon resonances (kp;); close to the real axis (see
Fig. 1, bottom). The large peaks of ||u*°||z2(p)
correspond to k = R(k, ;). For fixed [ the plas-
monic resonance kj, corresponds to plasmonic
resonant mode

@) = {‘LS’?;:)’ b)Y/ (0,0), w B
i (kpmr) Y™ (0, ), x €

where kpn, = /—emkp. The resonant mode u? is

highly oscillatory (sub-wavelength) with poten-

tial large amplitude @ when excited. The FEM

will fail to approximate the solution when these
highly oscillatory resonant modes occur.
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Figure 1: (Top left) L? norm of u*¢ (analytic solution)
with respect to k, for e, = —1.1. (Top right) Slice of the

absolute error (yz-plane) using FEM (P2) and 58k DOFs on
a truncated domain D (using DtN with 15 terms [3]) for k
indicated by the dashed arrow: plasmonic behaviors occur.
(Bottom) Associated resonances. The zoom contains the plas-
monic resonances (close to the real axis, their real part match
the wavenumbers obtained on the top figure).

3 Extracting plasmonic behaviors from

the formulation

In order to take into account the varying scale
of the resonant mode, we assume a solution u
for the total field given as the sum:

u=u"+u"+au’, acC, (5)
where « is related to the excitation source, and
u™® € H! (R?) is smooth. The goal is to com-
pute (u"®,«). Substituting (4) into (5), we de-
rive a system for (u"8,«r) based on weak forms of
(1). We compute discrete solution (uy®, ay) €
CN x C of:

Ke + k*M+S UP] [un®] _ [fn (©)
JY Col |ap | |C

for N degrees of freedom (DOFs). Above, K. is
a weighted stiffness matrix, M is the mass ma-
trix, S is the surface matrix (obtained using the
Dirichlet-to-Neumann (DtN) map on the trun-
cated domain D), fy is the discrete right-hand
side (related to u™), and C1, Cy € C are analytic
constants. Finally, JY, UP contain the coupling
terms (between u? and FEM basis function).

4 Asymptotic Quadrature

For the coupling terms in (6), one needs to ac-
curately compute integrals such as

/ Up(pidD7 (&S [[17N]]7
D

where ¢; is a FEM basis function. Looking at
(4), high frequency behavior from the spherical
harmonics combined with relatively coarse mesh
(in the case of limited computational resources
to approximate three-dimensional problems), or
low order FEM, leads to large errors. As an al-
ternative to refining the mesh, we make use of
the asymptotic expansion of the spherical har-
monics for large [. For example when m = 0,
we have the leading behavior (see [4, p. 140]):
¥9(0, ) ~ cos((l—i—1/2.)gi>—71'/4)7 7)
27l sin(¢)
when [ — oo. Here, we have an explicit expres-
sion for the fast oscillations in (7) which we can
use to develop a product quadrature method [2].
This product quadrature method uses exact in-
tegration of polynomials multiplied by those fast
oscillations to derive weights. Those weights, in
turn, analytically account for the fast oscilla-
tions in uP and relieve the FEM from having to
compute them. By extending this analysis, we
will develop a method for computing the cou-
pling terms in (6) without having to resort to
refining the mesh. Application to the scatter-
ing by multiple spheres (and other shapes start-
ing with ellipsoids) and comparison with en-
riched elements methods will be considered in
the future. Similar results could be observed
for dispersive materials (¢ = £(k)). Acknowl-
edgements This work is partially funded by
the National Science Foundation Grants: DMS-
2009366 and DMS-1840265.
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