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1. Introduction 
Today the construction sector is encountered with the gradual depletion of natural resources and growing 

difficulty in accessing them, but also the large quantities of CO2 emitted for the manufacture of cement. In 2018, 
the global cement output reached 82,000 million tons, including 35,700 million tons in China, 12,460 million tons 
in the United States and 25,640 million tons in Europe (Bildirici, 2019; Hagemann et al., 2019). About 8% of total 
CO2 emissions are assigned to ordinary Portland cement (OPC) production (Andrew, 2018; Zhang et al., 2014). In 
the context of climate change horizon, alkali-activated materials (AAM) seem to provide an effective alternative 
to OPC cement (Pacheco-Torgal et al., 2012) and because most of them are manufactured with industrial by-
products. That is why in late years their development has created the interest of the scientific community. 

AAM are fabricated from a mixture of aluminosilicate raw materials activated by an alkaline solution 
(Mackenzie & Welter, 2014). These materials can be separated into two main categories according on the 
calcium content of the raw materials (Li et al., 2010). When the calcium content is low, the AAM produced 
are named geopolymers. Geopolymers are obtained by reaction between solid precursors such as 
metakaolin, fly ash with an alkaline activator. The product obtained from this reaction is formed for a gel type 
N-A-S-H (Na2O-Al2O3-SiO2-H2O) (Gao et al., 2015). They have polymeric structure that is why Davidovits calls 
them “geopolymer” (Davidovits, 1994). Geopolymerisation is a procedure where the vitreous components of 
the aluminosilicate source materials are transformed into a compact binder (Fernandez et al., 2006). When 
the calcium content is very important in the used raw material, the reaction product is formed by a gel type 
C-A-S-H (CaO-Al2O3-SiO2-H2O). Ground granulated blast furnace slag (GGBFS) is a raw material with a high 
content of Ca. It is well known that GGBFS has high pozzolanic activity and can be alkali activated (Shi & 
Qian, 2000). The quantity of CaO content of the precursor materials was found to have significant impact 
on the resulting hardened geopolymer. Decrease in set- ting time and increase in strength was quoted with 
the increase of CaO content (Diaz et al., 2010). Many investigations have recently been made on the effect 
of calcium on geopolymerisation (Granizo et al., 2004; Yip et al., 2005, 2008). In both cases, the reaction 
mechanism is very different. Despite of the differences in nanostructure and constitution between N-A-S-H 
and C-A-S-H, both gels are estimated to have very good physicochemical and mechanical durability properties 
(Duxson et al., 2005; Provis & van Deventer, 2014). The reactivity of AAM is influenced by several parameters. 
These parameters include: fineness, mineral composition and morphology. Shi et al. (2006) have detailed the 
general properties of slag and metakaolin in their work on alkali-activated cements and concretes. In their 
book, Provis and Van Deventer (2009) summarised the different properties of the raw materials used in the 
manufacture of geopolymers. 

 
ABSTRACT 
Studies conducted on alkali-activated materials in late years  attested  that they 
could be a replacement to ordinary Portland cement (OPC).  Nevertheless, their 
performances in aggressive conditions require profound investigations to 
evaluate the ability to the fluid  transfer.  This  article  assesses the pore structure 
of alkali-activated mortars produced using one- part metakaolin combined with 
ground granulated blast furnace slag and other-part using only alkali-activated 
ground granulated blast furnace  slag. The pore characteristics of alkali-
activated mortars were compared to those   of OPC as a reference. Tests consist 
in the measurement of the porosity accessible to water, water absorption and 
sorptivity. The  results  revealed  that the alkali-activated based metakaolin 
combined with  ground  granu-  lated blast furnace slag have greater porosity, 
water  absorption,  sorptivity and rate of water saturated porosity than alkali-
activated based ground granulated blast furnace slag and Portland cement 
mortars. 
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Durability is a high concern for building materials. To study the compressive strength and sorptivity 
characteristics of a high performance GGBFS-based concrete, Sarathy and Dhinakaran (2014) conducted 
experimental research. These researchers found that concrete with GGBFS and manufactured sand gave better 
results than the traditional mix, both in terms of sorptivity and compressive strength. Hall and Yau (1987) studied 
the sorptivity in concrete and they showed how the sorptivity varies in a set of concrete samples of different mix 
and different degrees of compaction. The materials respond to moisture around them by absorbing water as vapor 
or liquid, redistributing it, and under drying conditions breathing it back into the air. The authors showed that a 
low water/binder ratio decreases the sorptivity of the materials and that careful compaction leads to higher sealing 
and lower sorptivity. Their results confirm those of Gu et al. (2022) who showed that a more homogeneous and 
compact microstructure improves the durability of magnesium oxysulfate cement under air hardening conditions. 

Hall (1989) showed that all simple water absorption test procedures in principle furnish data from which the 
sorptivity can be estimated. Borges et al. (2016) have studied the apparent porosity for the blended 
metakaolin/blastfurnace slag alkali-activated mortars calculated from the water saturation method and from 
mercury intrusion porosity (MIP). Overall, the water saturation method gave higher porosity results. According to 
Aligizaki (2005), the porosities measured by the water saturation method are higher than the porosities by MIP for 
cement pastes because the gel pores absorb water and swell during the saturation process, altering the results. 
This phenomenon appears to happen in alkali-activated systems as well. Borges et al. (2016) have shown similar 
pore size distribution for all mortars, irrespective   of the precursors used [metakaolin (MK) or MK/BFS] or 
composition of the matrices (SiO2/Al2O3 or   R SiO2/Na2O). Most curves present a bimodal pore distribution, with 
significant porosity between 10 and 100 nm and between 1 and 10 mm. This broad pore size distribution is typical 
for mortars and concretes, both of which with MIP results that differ from pastes (Cook & Hover, 1993). 

More understanding regarding pore size and pore distribution are needed for AAM mortars based 
metakaolin combined with ground granulated blast furnace slag. This article presents a study of durability 
parameters of AAM materials such as porosity, capillarity and sorptivity. In this study, ambient cured mortars, 
i.e. AAM employing ground granulated blast furnace slag (GGBS) as solid raw materials, meta- kaolin–
granulated blast furnace slag (MK-GGBS) alkali activated and Portland cement (PC) mortars were produced. 
The results of this work might be precious for the development of sustainable materials. 

 
2. Materials and experimental methods 

2.1. Components 
Four different binders including ground granulated blast furnace slag (GGBFS), metakaolin, ettringitic 

addition and cement were used as components of the mixes. Granulated blast furnace slag was supplied by 
Ecocem (Fos-sur-Mer (France)). Metakaolin type Argicem is provided by Argeco (France) and sulfo-aluminate 
binder Alicem supplied by Ciments Calcia (Italie). In this study, the Portland cement used is a CEM I 52.5 N 
(Lafarge – Le Teil (France)). The sand used in all formulations of the mortars is an alluvial quartz sand with a 
grain size 0/2. Superplasticizer Tempo 12 from Sika (Switzerland) was used to ensure sufficient flow of mortar 
and limit the segregation. In all formulations, tap water is used for the preparation of mortars. 

The elementary composition of the GGBFS, metakaolin, ettringitic addition and Portland cement are 
determined by X-ray fluorescence (XRF). Density and fineness of binders is determined on powder using a 
Blaine permeameter. The power X-ray diffraction pattern is recorded using a Panalytical X’PERT PRO  MD 
diffractometer equipped with a Ni-filtered Cu (45 kV–40 mA) Panalytical anti-cathodic tube (k 1.54 Å) and a 
high-resolution TRMS Panalytical X’Celerator fast detector in scanning mode (2.2 mm active length). 
Recording is performed between 50 and 750 in 2h. A laser particle size analyser was used to determine the 
particle size distribution of components. 

The elementary composition of the slag, metakaolin, ettringitic addition and cement determined by XRF 
are given in Table 1. This table shows that the slag and the cement contain the most quantities of silica and 
calcium responsible of the pozzolanic reaction, but the quantity of calcium of metakaolin is very small. 
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Table 1. Chemical composition of the metakaolin, ettringitic addition, slag and cement (wt%). 
 

Precursors 

Chemical composition Metakolin Ettringitic addition GGBFS Cement 
SiO2 55 6.7 37.3 20.4 
Al2O3 40 24.1 10.2 5.5 
CaO 0.3 37.3 43.2 64.2 
MgO 0.2 – 6.1 1.70 
Fe2O3 1.4 1.2 0.6 2.1 
TiO2 1.5 0.7 0.5 0.2 
K2O 0.8 0.6 0.6 0.4 
SO3 – 26.6 0.1 3.2 

 
 

The physical properties of ground granulated blast furnace slag, metakaolin, ettringitic addition and 
cement are presented in Table 2. The table shows that the metakaolin with a 2.5 of density is much lighter 
than other precursor materials. It has also a high-specific Brunauer, Emmett et Teller (BET) surface of 15.65 
m2/g. The specific surface of the metakaolin is very high and much higher than that of other binders. Indeed, 
this metakaolin is conventionally used to promote pozzolanic reaction in Portland cement concrete. 

Figure 1 shows the particle size distribution of the four precursor materials. These results showed that 
ettringite addition is much finer than the metakaolin, slag and cement. According to these results it is found 
that the granulometric curve of the metakaolin corresponds to coarse grains while the specific sur- face is 
very important. The morphology of the metakaolin is usually close to the morphology of the starting kaolinite, 
the latter being in the form of hexagonal sheets contiguous to each other and a thickness  of a few Angstroms, 
which explains this lack of dispersion. 

Figure 2 presents the XRD patterns of metakaolin, ettringitic addition, cement and ground granulated blast 
furnace slag. In the ettringitic addition, calcium sulfate (CaSO4) and calcium aluminum oxide sulfate 
(Ca4Al6O12SO4) are the main crystalline phase. Calcium silicate (Ca3SiO5) and gypsum (CaSO4.2H2O) are the 
main crystalline in the cement. The metakaolin contained large amounts of impurities such as quartz (SiO2), 
kaolinite (Al2Si2O5(OH)4 and muscovite (KAl2(AlSi3O10(OH,F)2). The XRD patterns of GGBS indicate that the 
majority of ground granulated blast furnace slag is practically completely amorphous. It is assumed to be 
100% glassy. 

The mixes include soda obtained by dissolving dry caustic pellets in water (to obtain 32% NaOH 
concentrated solution) or commercial VWR (Company specializing in the sale of products and services for Life 
Sciences and regulated industries) sodium silicate N (containing 26.3 wt% SiO2, 7.9 wt% Na2O and 65.8 
wt% H2O). In the case of sodium silicate, alkaline-activating solution was pre-formulated by mixing the sodium 
silicate with the NaOH solution. This leads to a partial dissolution of the silica. The alkaline solution is cooled 
at room temperature for 24 h before the manufacture of mortars. 

 

2.2. Sample preparation 
Table 3 shows the mix proportions of the cement mortar and mortars based on metakaolin combined with 

ground granulated blast furnace slag and the corresponding molar rations SiO2/Na2O for AAM binders. Table 
4 shows the mortars mix proportions based only on ground granulated blast furnace slag. The ratio W/B 
(total water content to binder) and the ratio S/B (sand to binder) are indicated. These molar ratios are 
calculated assuming a total dissolution of the silicon and sodium from the activator. Samples with alkali-
activated binders based on metakaolin combined with ground granulated blast furnace slag are denoted 
G001 and G002 respectively. The ettringite addition is used to regulate the setting. Samples with alkali-
activated binders based only on ground granulated blast furnace slag (without metakaolin) are denoted 
U001 and U002 respectively. C001 corresponds to the reference Portland cement mortar. 
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Table 2. Physicals properties of the precursors materials. 
Physical properties Metakaolin Ettringitic addition Slag Cement Sand 
Specific surface area (m2/g) 15.65 BET 0.5 Blaine 0.42 Blaine 0.35 Blaine – 
Density (g/cm3) 2.52 2.75 2.76 2.94 2.64 

 

Figure 1. Particle size distribution of the ettringitic addition, the metakaolin, the cement and the slag. 
 

Figure 2. XRD pattern of ettringitic addition, cement, slag and metakaolin. 
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Table 3. Mix proportions of the cement mortar and mortars based on metakaolin combined with ground granulated blast furnace 
slag (in g for the same sand content). 
 C001 G001 G002 
Metakaolin – 300 450 
GGBFS – 45 43 
Ettringitic binder – – 21 
Portland cement 450 – – 
Sand 0/2 1350 1350 1350 
Sodium silicate N – 210 298 
Soda 32% – 135 160 
Tempo 12  4.0 5.6 
Added water 225.0 – – 
SiO2/Na2O  1.14 1.28 
W/B 0.50 0.51 0.46 
S/B 3.00 3.00 2.06 

 
 

Table 4. Mix proportions of the mortars based on ground granulated blast furnace slag (in g for the same 
sand content). 
 U001 U002 
GGBFS 412 412 
Sodium metasilicate 66 66 
Sand 0/2 1350 1350 
Sodium fluoride  5 
Sodium carbonate 5  

Added water 190 190 
W/B 0.40 0.40 
S/B 2.82 2.82 

 
 
 

For activated slags, additives have been added. Their role is to prevent the penetration of water and impregnate 
the pores. It appears that the use of sodium carbonate increases drastically the setting time whereas the sodium 
fluoride accelerates the setting. 

The mortars were prepared in two steps. First, pure NaOH and water were added to the industrial waterglass 
solution to obtain the desired SiO2/Na2O molar ratio. After the total dissolution of the sodium hydroxide, the 
solution was cooled to 20 0C for 24 h. 

The mortars were mixed and made according to French standard EN 196-1 (NF EN 196-1, 2005) using   the 
activation solution instead of the mixing water. The precursors are mixed with the activation solution. In all 
formulations, the volume of paste is not constant. Standard sand having a controlled particle size between 0 and 
2 mm was used. The mortar specimens were cast in 40x40x160 mm PolyVinyl Chloride (PVC) moulds using a shock 
table. All specimens were cured at 20 0 C and 95% R.H. for 24 h and then demoulded and stored under the same 
conditions until testing. 

 

2.3. Tests methods 

2.3.1. Open porosity 
Open porosity measurements consist in the evaluation of the voids volume connected to the mortar sur- face. 

Tests are realised on prismatic specimens aged 28 days. The mortar samples are sawed to obtain two half-prismatic 
samples. Later, the half samples are dried at 60 0 C until a constant weight was achieved (Wd). The mass is 
considered constant when the difference between two measurements in 24 h  is <0.2%. The half samples are then 
placed in a sealed desiccator. Using a vacuum pump connected to the device, the pressure is reduced to reach 100 
mbar. Vacuum is maintained for 4 h, then water was gradually introduced until sample immersion. The reduced 
pressure is maintained for 44 h and then the container was opened. At the end of this step, a weighing in the air 
(Wa) is carried out followed by a hydrostatic weighing (Ww) of the samples. Finally, the open porosity accessible to 
water is calculated: 

𝑝𝑝 =  100 (𝑊𝑊𝑎𝑎 −  𝑊𝑊𝑑𝑑)/ (𝑊𝑊𝑎𝑎 −  𝑊𝑊𝑤𝑤) 
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Figure 3. Capillary absorption test.  

 
 

2.3.2. Capillarity absorption, sorptivity and pore structure analysis 
Capillary absorption of the mortars prims specimens (40 mm x 40 mm x 150 mm) is carried out on a test device 

made in the laboratory (see Figure 3). Samples are first rectified. They are sawed 0.8 cm on one of their ends to 
obtain a characteristic absorption surface representative of the heart of the sample. Mortar specimen is dried at 
60 0C until this weight became constant (the mass is considered constant when two successive weightings carried 
out at 24 h apart do not differ by more than 0.05% between them). All the lateral and upper surface of the sample 
is sealed using adhesive aluminum paper to avoid any phenomenon of water evaporation. One of the lateral 
surface is coated with a transparent waterproof film to visually record the height of the water rising. A graduated 
ruler is placed on this face to evaluate the absorption height. The dried sample mass is measured after preparation 
(Wd). The sample is then suspended under an electronic scale. Sample base is placed in a container filled with 
water using a water pump to maintain by mean of overflow a submerged height of 10 mm. The sample mass 
evolution is recorded from the start of immersion until 24 h. The sample mass (Ww) is conventionally measured 
after 15, 30 min and then 1, 2, 4, 8 and 24 h of immersion. At each term, the height (Hw) of the capillary front is 
quoted using the graduated ruler. 

A water pump powered the system to drop the water level until constant immersion is high. When the 
contact of the sample with water occurs, during the first few seconds, the apparent mass of the sample 
decreases. Archimedes’ principle explained this fact. At the beginning of the test, effect of buoyancy increases 
due to the elevation of water level in the cup and at the same time decreases as the water fill the accessible 
open porosity of immersed part of the sample and absorbed by capillarity in the emerged part of the sample. 
As a consequence, the apparent mass of the sample decreases initially, then goes through a minimum value 
and finally increases. This phenomenon must be taken into account to interpret the results. The initial value 
of the capillary coefficient has no meaning. 

Estimating a negative capillary coefficient at the beginning of the test is not interesting. An example of sample 
mass tracking as a function of time (logarithmic basis) is given in Figure 4. The data registered until 24 h of test 
are used to characterise the capillary absorption. 

For the characterisation of the mortars, capillary absorption, sorptivity and pore structure analysis are 
evaluated. 

The capillary absorption of the mortars specimens is calculated using: 

𝐶𝐶𝑎𝑎 = (𝑊𝑊𝑤𝑤 −𝑊𝑊𝑑𝑑)/ 𝑆𝑆 

where S is the absorption surface in square meter (m2). 

The capillary absorption is conventionally evaluated after 24 h of immersion. 
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Figure 4. Mass evolution of the U002 alkali-activated slag mortar during the capillary absorption. 

 
In this study, beyond 15 min, the absorption capillary at different time intervals follow a linear progression as a 

function of the square root of time which makes it possible to characterise each specimen by a  value of sorptivity. 

According to standard NF EN 13057 (2005), the sorptivity expressed in (kg m-2 h-1/2) is calculated between 1 
and 8 h of test. In their sorptivity calculation, Hall and Tse (1986) used this same time interval. Mermerdas¸ et al. 
(2017) consider that sorptivity can be considered as one of the easier test for evaluating permeability of mortar. 
These researchers showed that water could penetrate into the mortar specimens by capillary suction. In fact, 
Balayssac (1993) showed that two parameters can be released from these plots. In Figure 5, the first part of the 
curves located between 0 and 1 h reflects the filing of the largest pores. These larger pores can be characterised 
from the initial absorption in zone A of Figure 5 (amount of water absorbed between 0 and 1 h). This initial sorption 
is due also to rapid saturation of capillary pores. The second part of the curve (zone B), which extends beyond one 
hour, characterises the filing the internal capillaries, this filing process is made of the largest capillaries in the finest. 

Hall (1989) showed that sorptivity measurement can be made with any wetting fluid and that the sorptivity as 
classically measured is the water sorptivity or hydraulic sorptivity. This technique uses pure water as an absorbed 
fluid. 

The height (Hw) of the capillary front and the water mass absorbed by capillarity can be used to evaluate 
the porosity distribution versus the equivalent radius of the capillary. According to the law of Jurin, which 
stipulates that by capillarity a liquid rises in a tube up to a height h given by the formula below, we can 
connect the capillary rise to the pores diameter as follows: 

ℎ = (2 𝛾𝛾 cos𝜃𝜃)/ (𝑟𝑟 𝜌𝜌 𝑔𝑔)  

with: 
h the height of the liquid above the water level in m, 

𝛾𝛾  the surface tension of the liquid in N m-1. By hypothesis, the surface tension was estimated at  
73 x 10-3 N m-1, corresponding to the surface tension of pure water at 20 °C. In cements and geopolymers, this 
tension can be different due to the solubility of the basics ions. 

𝜃𝜃 the wetting angle between the liquid and the tube wall. The value chosen is 0°C. The contact angle of a fluid 
on a surface depends on the nature of the surface. It is not certain that this value is the same for a geopolymer, an 
alkali-activated slag or a cement. 

𝜌𝜌 is the density of the liquid in kg m-3, 

r is the diameter of the tube in m, 

g is the acceleration of gravity, it is a constant worth about 9.81 m s-2 . 

The assumption linked to this calculation is strong. The pore size calculation is based on perfect tubular 
pores and using static-state calculation. Therefore, the results are not intrinsic and can be only used for 
comparison. 

However, under these conditions, the wetting angle is not known, which leads us to estimate an absorption 
range by calculating the radius r of the sample by its final radius rf. 

On the other hand, using the measurements of capillary absorption, it is possible to evaluate from Δ𝑚𝑚 
the absorbed water volume trapped into the filled pore at all times. Using the inhibition front position h the water 
saturated porosity of the mortars can be calculated at all times. Using the law of Jurin and Δℎ, the variation 
of height corresponding to the filing of finer pores, the range of pore radius filled by water can be evaluated 
at all times. Details are presented in Figure 6. 
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Figure 5. Example of the schematic representation of the sorptivity (expressed in kg m-2 h-1/2) of U002 mortar. 

 

Figure 6. Kinetics of water absorption according to the square root of time. 

 
 

3. Results and discussions 

3.1. Open porosity 
The porosity results obtained at 28 days (average of two measurements) are shown in Figure 7 and Table 5. 

The porosity of the Portland cement mortar C001 was about 14%. The porosities of the AAM realised with 
sodium silicate G001 and G002 are respectively 19.3% and 21.5%. Their porosity is higher than C001. G001 presents 
a same S/B ratio than C001 but higher porosity showing that this AAM paste is more porous than Portland cement 
paste. Introducing ettringitic binder (G002) but with lower S/B ratio than G001 leads to increases in porosity. 
Effect of ettringitic binder on porosity is not clear. 

This increase in the water absorption and porosity of the AAMs could be due to the voids or fissures that 
occurred during the initial condition of the samples for this test (i.e. oven curing at 60 0C till a constant mass 
was achieved). The formation of these voids/fissures would result in a corresponding increase in the water 
absorption of the AAMs. 
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Figure 7. Porosity of mortars at 28 days. 

 
Table 5. Porosity, capillary absorption, imbibition front position and sorptivity data of the alkali activated materials. 
  

 
Capillary 

absorption after 

 
 

Imbibition front 
position after 

Sorptivity 
between 1 h 

and 
8h  

 
 

Water saturated 
porosity after 

W/B Porosity (%) 24 h (kg m–2) 24 h (mm) (kg m–2 s–1=2) 24 h (%) 
C001 0.50 14.6 07.1 50 0.030 14 
G001 0.51 19.3 13.0 61 0.050 21 
G002 0.46 21.5 13.4 56 0.054 24 
U001 0.40 16.9 11.2 81 0.041 14 
U002 0.40 13.0 06.7 61 0.029 11 

 
U001 and U002 mortars based on activated slag present a porosity (16.9% and 13.0%) close to the Portland 

cement mortar C001 (with close S/B but lower W/B). Substitution of sodium carbonate by sodium fluoride allows 
to reduce the porosity. Unfortunately, the use of sodium fluoride increases drastic- ally the setting time whereas 
the sodium carbonate accelerates the setting. The results showed that the onset of setting time of mortar U001 is 
40 min and its end of setting time is 95 min. However, the start   of setting time for mortar U002 is 130 min and its 
end of setting time is 265 min. It is thus observed that the setting time does not depend solely on the quantity of 
water present in the two mixtures. Mortars U001 and U002 have the same water/binder ratios ¼ 0.40 but very 
different onset times. This difference can be attributed to the additives used. 

Such results are in accordance with those of Al-Otaib (2008). He reported in his study that alkali-activated slag 
concrete has higher porosity value compared with cement Portland. He obtained a range of porosity of 13%–10% 
at the age of 7–360 days, while Portland cement concrete showed a porosity of 10.4%–8% for the same age. 

These results show that GGBS mortars with additives greatly reduce the porosity accessible to water. Provis et 
al. (2012) show that slag in AAM decrease the total porosities when slag content reach 70%. They showed that 
this difference is due to the better space filling effect of C-A-S-H gel than N-A-S-H. 

 
 

3.2. Capillarity absorption, sorptivity and pore structure analysis 

3.2.1. Capillarity absorption 
The capillary absorption curves presented in Figure 8 and in Table 5 are arbitrarily drawn starting from data 

measured at 15 min. This figure shows that between 15 min and 24 h, all the tested mortars present the 
same behavior. The curves are quite linear and the capillary absorption at 24 h can be used for the discussion. 
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Figure 8. Capillary absorption evolution of the specimens. 

 
 

The Portland cement mortar presents a capillary absorption at 24 h of 7.1 kg m-2. G001 and G002 AAM have 
higher absorption (respectively 13.0 kg m-2 and 13.4 kg m-2) than all others mortars. This result can most likely 
be attributed to their high porosity (respectively 19.3% and 21.5%) favoring their water absorption. In fact, 
water absorption is related to the open porosity. The introduction of ettringitic addition in G002 does not 
lead to drastic change in the capillary absorption. Higher water absorption of AAMs mortars at 28 days could 
be also due to the slow process of geopolymerisation. 

At 24 h, the capillary absorption of U001, U002 based on activated slag are respectively 11.2 kg m–2 and 
6.7 kg m–2. The low U002 mortar capillary absorption is partly due to a lower porosity and to effect of the 
additive. A repellent effect of sodium fluoride can be suspected. This low in the water absorption can be 
attributed to increase in pozzolanic reaction, higher degree of geopolymerisation and filler effect due to 
addition of additives as time progresses, which can help to densify the micro- structure of mortars by 
increasing the amount of hydration products and by filling the micropores and microcracks. Water absorption 
of the present study showed good agreement with the study conducted by Mermerdas¸ et al. (2017), where 
water absorption of two-part FA-based AAM varied from 8% to 11%. 

Adam (2009) found that the capillary absorption of the alkali-activated slag concrete did not perform well. Chi 
and Huang (2013) studied the effect of cement, fly ash and slag on water absorption. These researchers obtained 
water absorption of 7.5% for cement Portland mortar, but they found that absorption reduced considerably for 
the alkali-activated binder (1.1%–6.1%). These researchers showed that this decrease depends on the ratio of 
slag-to-fly ash and activator contents. 

 

3.2.2. Sorptivity 
Figure 9 shows the water sorptivity of different specimens estimated between 1 h and 8 h (values in Table 5). 

These results showed that specimens G001 and G002 have very high sorptivity equal to 0.05 kg m-2 s–1/2 and 
0.054 kg m-2 s–1/2 respectively. Their sorptivity are higher than that of C001 that was 0.030 kg m–2/s–1/2. The 
addition of ettringitic does not modify the sorptivity. 

The sorptivities of U001, U002 and C001 are 0.041 kg m–2 s–1/2, 0.029 kg m–2 s–1/2  and 0.030 kg m–2 s–1/2 

respectively. We observe that U002 and C001 have approximately the same sorptivities. Their difference in 
W/B and additives type did not have a significant effect on their sorptivity. These results indicate that the 
capillary forces of U002 AAM transport less water than U001 mortar. This phenomenon demonstrated that 
U002 mortar is more sustainable and durable in regard to limiting the water access (Albitar et al., 2017). This 
phenomenon is partially attributed to the difference in the capillary mechanism and the size pore 
distribution. 
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Figure 9. Sorptivity of different specimens between 1 h and 8 h. 

 

Figure 10. Imbibition curves of the different specimens. 
 
 

The addition of sodium fluoride significantly improves the impermeability of mortars by reducing porosity, 
connectivity and inducing hydrophobic surfaces. The increase in the amount of additive causes a decrease in 
the sorptivity. These results showed that additive has strongly modified the microstructure of mortars. This 
phenomenon is reflected in an improvement of the sorptivity. 

 

3.2.3. Structure pore analysis 
The imbibition curves for the different specimens are presented in Figure 10. The capillary absorption and 

imbibition curves for the different specimens presented in Figures 8 and 10 show that all curves tend towards a 
stabilisation of the capillary rise while the weight can continue to grow. The progressive filing of the macro porosity 
(occluded air) can justify this phenomenon. Generally, the secondary absorption (Figure 5B) is controlled by the 
air voids whereas the capillary forces control the initial absorption (Figure 5A). Capillary absorption and imbibition 
front results allow to calculate the water saturated porosity and the corresponding r/rf ratio. 

Figure 11 shows the water saturated porosity of the materials according to the r/rf ratio where r is the finer 
filled radius for a given time and rf the finer filled radius obtained at the end of the test (after 24 h).  The start of 
the test corresponds to large values of r/rf as the end of the test corresponds to r/rf = 1. 
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Figure 11. Water saturated porosity of specimens. 

 
 

Figure 12. Rate of the water saturated porosity to the open porosity versus the r/rf ratio of specimens. 
 
 

The obtained curves are highly indicative and using r/rf, the strong hypothesis required to perform the filled 
radius calculation (surface tension and wetting angle must be measured as they probably differ for each 
mortar) are not necessary. However, the calculation does not take into account any dynamic effect such as 
phenomenon of slow filling of the pores. 

For C001 (Portland cement mortar), the water saturated porosities evolves quite linearly with the r/rf ratio while 
a large curvature of the curves obtained for alkali-activated binder is quoted. 

The maximum water saturated porosity is 14% for C001, 21% and 24% for G001 and G002 alkali-activated 
mortars respectively. We notice that G002 has the higher water saturated porosity. However, we note that G001 
is characterised by quite range of r/rf ratio. 

For U001 and U002, alkali-activated slag mortars, the water saturated porosity is 14% and 11% respectively. 
According to Provis et al. (2012), the presence of fine particles of slag reduced the filled radius range. U001 and 
C001 mortars present the same water saturated porosity, but different range of r/rf ratio. The low U002 mortar 
water saturated porosity is partly due to a lower porosity and to the effect of the additive. A repellent effect of 
sodium fluoride can be suspected. Alkali activators except sodium fluoride are strong acid salt whose pH is more 
than 12. Sodium fluoride is ionised into Naþ and F–. And F ion absorbs H ion, then becomes acid. Although hydrogen 
exponent (pH) change of sodium fluoride based binder was decreased with HF concentration, binder was hardened 
(Song et al., 2010). Although hydrogen exponent (pH) of sodium fluoride activated mortar is about 10, sodium 
fluoride could accelerate hydration ground granulated blast furnace slag (GGBS) (Song et al., 2010). 
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Hence, it can be concluded that the inclusion of this additive imparted positive results on U002 mortar  by 

densifying the microstructure due to this chemical (formation of addition hydration products and increase in 
geopolymerisation process) and physical effects (filling the microcracks and micropores in the AAM mortar). 

The water saturated porosity can be compared to the open porosity measured for each type of mortar. The 
results are presented Figure 12 showing the evolution of the ratio of the water saturated porosity to the open 
porosity versus the r/rf ratio. At 24 h, the ratio of water saturated porosity for C001 (Portland cement), G001 and 
G002 alkali-activated mortars is very close to 1. This means that the open porosity of these mortars are completely 
filled with imbibed water. Capillary forces are sufficient to saturate all the open porosity. The ettringite addition in 
G002, the finer particle among the binders (Figure 1),  did not prevent the complete pore filling. 

The r/rf ratio obtained for U001 and U002 alkali-activated slags mortars are 81% and 84% respectively. The filling 
of the open porosity is not complete but remains important. Capillary forces are not sufficient to saturat1e all the 
open porosity. 

 
4. Conclusion 

This article presents the results of an experimental study based on the measurement of the porosity, the 
capillary absorption, the sorptivity and the water saturated porosity of different alkali activated mortars. The 
interpretation of these data made it possible to characterise the pore structure of the different mortars and thus 
underlines the differences in morphology. Based on the results obtained and their discussions, the following 
conclusions are highlighted. 

For mixes of metakaolin and ground granulated blast furnace slag: 

 
• The porosity of such alkali-activated mortars is higher than Portland cement mortar with the same W/B 

ratio. This higher porosity favors the water absorption and increases the sorptivity. 
• Introducing ettringitic binder leads to increases in the porosity even with lower S/B ratio but does not 

lead to drastic change in the capillary absorption and sorptivity. The pore structure of this AAM mortar 
is characterised by a shorter range of r/rf ratio than Portland cement mortar. At 24 h, the ratio  of water 
saturated porosity is very close to 1 showing that the porosity is well connected. 

 
For mixes of activated ground granulated blast furnace slag: 

 
• The porosity of such mortars is close to those of Portland cement mortar. 
• The pore structure of such AAM mortars is characterised by a shorter range of r/rf ratio than Portland 

cement mortar. However, the water saturated porosity is close to those of Portland cement mortar. 
• The substitution of sodium carbonate by sodium fluoride reduces the porosity, the capillary absorption 

and the range of r/rf ratio. However, the sorptivity is only slightly reduced. 
 

This study highlights that ground-granulated blast furnace slag activated materials may provide improved 
performances regarding porosity and sorptivity. Such AAM mortar can considerably increase the lifetime and 
reduce the maintenance costs of concrete structures. 
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