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Abstract

Stochastic rounding (SR) offers an alternative to the deterministic IEEE-754 floating-point round-
ing modes. In some applications such as PDEs, ODEs and neural networks, SR empirically improves
the numerical behavior and convergence to accurate solutions while the theoretical background re-
mains partial. Recent works by Ipsen, Zhou, Higham, and Mary have computed SR probabilistic
error bounds for basic linear algebra kernels. For example, the inner product SR probabilistic bound
of the forward error is proportional to

√
nu instead of nu for the default rounding mode. To compute

the bounds, these works show that the errors accumulated in computation form a martingale.
This paper proposes an alternative framework to characterize SR errors based on the computation

of the variance. We pinpoint common error patterns in numerical algorithms and propose a lemma
that bounds their variance. For each probability and through Bienaymé–Chebyshev inequality, this
bound leads to better probabilistic error bound in several situations. Our method has the advantage
of providing a tight probabilistic bound for all algorithms fitting our model. We show how the method
can be applied to give SR error bounds for the inner product and Horner polynomial evaluation.

Keywords— Stochastic rounding, Floating-point arithmetic, Concentration inequality, Inner product, Poly-
nomial evaluation, Horner algorithm.

AMS subject classifications— 65G50, 65F05

1 Introduction

Stochastic rounding (SR) is an idea proposed in the 1950s by von Neumann and Goldstine [27]. First, it can be
used to estimate empirically the numerical error of computer programs; SR introduces a random noise in each
floating-point operation and then a statistical analysis of the set of sampled outputs can be applied to estimate the
effect of rounding errors. To make this simulation available, various tools such as Verificarlo [13], Verrou [14] and
Cadna [21] have been developed. Second, SR can be used as a replacement for the default deterministic rounding
mode in numerical computations. It has been demonstrated that in multiple domains such as neural networks,
ODEs, PDEs, and Quantum mechanics [9], SR provides better results compared to the IEEE-754 default rounding
mode [3]. Connolly et al. [8] show that SR successfully prevents the phenomenon of stagnation that takes place
in various applications such as neural networks, ODEs and PDEs. In particular, Gupta et al show in [15] that
deep neural networks are prone to stagnation during the training phase. For PDEs, solved via Runge-Kutta finite
difference methods in low precision, SR avoids stagnation in the computations of the heat equation solution as
proved in [10].

Hardware units proposing stochastic rounding are still unavailable in most computers. However, it has been
introduced in various specialized processors such as Graphcore IPUs [1] which supports SR for 32 bits floating
point, binary32, and 16 bits floating point, binary16, or Intel neuromorphic chip Loihi [12] to improve the accuracy
of biological neuron and synapse models. Also, AMD [2], NVIDIA [4], IBM [6, 7], and other computing compa-
nies [16, 22, 23] own several related patents. These developments support the idea of hardware implementations
using SR becoming more available in the future.

Most current hardware implements the IEEE-754 standard, that defines five rounding modes for floating-
point arithmetic which are all deterministic [3]: round to nearest ties to even (default), round to nearest ties
away, round to zero, round to +∞ and round to −∞. SR, on the other hand, is a non-deterministic rounding
mode: for a number that cannot be represented exactly in the working precision, it randomly chooses the next
larger or smaller floating-point number. In the literature, several properties and results of SR have been proven.



Connolly et al show in [8] show that under SR-nearness the expected value coincides with the exact value for a
large family of algorithms.

Based on the Azuma-Hoeffding inequality and the martingale theory, recent works on the inner product [20]
show that SR probabilistic bound of the forward error is proportional to

√
nu rather than nu when nu� 1. Also,

the martingale central limit theorem implies that under certain conditions, the error converges in distribution to
a normal distribution that is characterized by its mean and variance [11]. This behaviour is often observed in
practice. In this case, the number of significant digits can be estimated by − log( σ

|µ| ) where σ is the standard

deviation (the square root of the variance) and µ is the expected value [26]. However, the results of this paper
don’t use any of these assumptions.

Variance also allows to use several probabilistic properties such as concentration inequalities that provide a
bound on how a random variable deviates from some value (typically, its expected value) [5]. To our knowledge,
the variance analysis of a SR computation has not attracted any attention in the literature. The purpose of this
paper is to further the probabilistic investigation of SR with the following contributions:

0. We review the works proposed by M. P Connolly, N.J. Higham and T. Mary [8] and I.C.F. Ipsen, H.
Zhou [20] that show the forward error for the inner product is proportional respectively to

√
n ln(n)u and√

nu at any probability λ ≤ 1 rather than to the deterministic bound of nu [20].

1. Under stochastic rounding and without any additional assumption, we propose Lemma 3.1, a general
framework applicable to a wide class of algorithms that allows to compute a variance bound. We choose
the inner product and Horner algorithms as applications. Our bound is deterministic and depends on the
condition number, the problem size n and the unit roundoff of the floating-point arithmetic in use u.

2. We extend the method proposed in [20] to derive a new forward error bound of the Horner algorithm in
O(
√
nu). This illustrates how these tools can be applied (with some work) to any algorithm based on a

fixed sequence of sum and products.

3. We introduce a new approach to derive a probabilistic bound in O(
√
nu) based on the variance calculation

and Bienaymé–Chebyshev inequality. This approach gives a tighter forward error bound than the previous
bounds [8, 20] for a probability at most 0.758. This bound remains tight from a rank n high with respect
to u.

Interestingly, the variance method introduces a tight probabilistic error bound in low precision. In this regard,
studying algorithms under stochastic rounding in low precision, especially bfloat-16 is becoming increasingly
attractive due to its higher speed and lower energy consumption. Recent works show that in various domains
such as PDEs [10], ODEs [19] and neural networks [15], SR provides positive effects compared to the deterministic
IEEE-754 [3] default rounding mode in this precision format.

Section 2 presents the background on floating-point arithmetic and more particularly SR-nearness, a stochastic
rounding mode introduced in [25, p. 34], that has the important property of being unbiased. It also satisfies the
mean independence property, an assumption weaker than independence yet powerful enough to yield important
results by martingale theory.

Section 3 is articulated around Lemma 3.1 that bounds the variance of the numerical error for a wide class of
algorithms. We apply this result to the inner product and Horner algorithms in Theorem 3.1 and Theorem 3.2,
respectively.

Section 4 shows that, under SR-nearness rounding, the numerical error of these two algorithms is probabilisti-
cally bounded in O(

√
nu) instead of the deterministic bound in O(nu). We first prove it with the Azuma–Hoeffding

inequality and martingale theory: we analyze techniques used for the inner product in works by Higham and
Mary [8, 18] and Ipsen and Zhou [20], point the difference in these two works, and adapt them to compute the
relative error of the Horner method for polynomial evaluation. We then use the Bienaymé–Chebyshev inequality
which, combined to the previous variance bound, leads to a probabilistic bound in O(

√
nu).

The probabilistic bounds above depend on three parameters: the precision u, the problem size n, and the
probability λ that a SR-nearness computation has an error greater than the bound. In Section 5, we analyze these
probabilistic bounds and we show that the one obtained by the Bienaymé-Chebyshev inequality is tighter in many
cases; in particular for any given λ and u, there exist a problem size n above which the Bienaymé–Chebyshev
bound is tighter.

Numerical experiments in Section 6 illustrate the quality of these bounds on the two aforementioned algorithms
and compare them to deterministic rounding.

2 Notations and definitions

2.1 Notation

Throughout this paper, for a random variable X, E(X) denotes its expected value, V (X) denotes its variance
and σ(X) denotes its standard deviation. The conditional expectation of X given Y is E[X/Y ].



2.2 Floating-point background

A normal floating-point number in such a format is a number x for which there exists a triple (s,m, e) such that
x = ±m × βe−p, where β is the basis, e is the exponent, p is the working precision, and m is an integer (the
significand) such that βp−1 ≤ m < βp. We only consider normal floating-point numbers; detailed information on
the floating-point format most generally in use in current computer systems is defined in the IEEE-754 norm [3].

Let us denote F ⊂ R the set of normal floating-point numbers and x ∈ R. Upward rounding dxe and downward
rounding bxc are defined by:

dxe = min{y ∈ F : y ≥ x}, bxc = max{y ∈ F : y ≤ x},

by definition, bxc ≤ x ≤ dxe, with equalities if and only if x ∈ F . The floating-point approximation of a real
number x 6= 0 is one of bxc or dxe:

fl(x) = x(1 + δ), (2.1)

where δ = fl(x)−x
x

is the relative error: |δ| ≤ β1−p. In the following, we use the same notation as [8,20] u = β1−p.
IEEE-754 mode RN (round to nearest, ties to even) has the stronger property that |δ| ≤ 1

2
β1−p = 1

2
u. In many

works focusing on IEEE-754 RN, u is chosen instead to be 1
2
β1−p.

For x, y ∈ F , the considered rounding modes verify fl(x op y) ∈ {bx op yc, dx op ye} for op ∈ {+,−, ∗, /}.
Moreover, for IEEE-754 rounding modes [3] and stochastic rounding [8] the error in one operation is bounded:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, (2.2)

specifically for RN we have |δ| ≤ 1
2
u. Let us assume that x is a real that is not representable: x ∈ R \ F . The

machine-epsilon or the distance between the two floating-point numbers enclosing x is ε(x) = dxe − bxc = βe−p.
Since βp−1 ≤ m < βp, then βe−1 ≤ |x| < βe and

|ε(x)| = βe−1u ≤ |x|u. (2.3)

The fraction of ε(x) rounded away, as shown in Figure 1, is θ(x) = x−bxc
dxe−bxc .

bxc dxex

1
2ε(x)

θ(x)ε(x)

Figure 1: θ(x) is the fraction of ε(x) to be rounded away.

Let us denote a problem of size n and precision u, in this paper nu� 1 means n→∞, u→ 0 and nu→ 0.

2.3 Stochastic rounding definition

Throughout this paper, fl(x) = x̂ is the approximation of the real number x under stochastic rounding. For
x ∈ R \ F , we consider the following stochastic rounding mode, called SR-nearness:

fl(x) =

{
dxe with probability θ(x),
bxc with probability 1− θ(x).

bxc dxex

1− θ(x)
θ(x)

Figure 2: SR-nearness.

SR-nearness mode is unbiased [25, p. 34].

E(x̂) = θ(x)dxe+ (1− θ(x))bxc
= θ(x)(dxe − bxc) + bxc = x.

In the following, we focus on this stochastic rounding mode. In general and under SR-nearness, the error terms in
algorithms appear as a sequence of random variables such that the independence property does not hold. However,
a weaker, and yet fruitful, assumption, called mean independence, does.



Definition 2.1. A random variable Y is said to be mean independent from random variable X if its conditional
mean E[Y/X] = E(Y ). The random sequence (X1, X2, . . .) is mean independent if E[Xk/X1, ..., Xk−1] = E(Xk)
for all k.

Proposition 2.1. Let X and Y be two real random variables:

1. If X and Y are independent then X is mean independent from Y .

2. If X is mean independent from Y then X and Y are uncorrelated.

The reciprocals of these two implications are false.

For a, b ∈ F , and c← a op b the result of an elementary operation op ∈ {+,−, ∗, /} obtained from SR-nearness,
the relative error δ, such that ĉ = (a op b)(1 + δ), is a random variable verifying E(δ) = 0 and |δ| ≤ u.

The following lemma has been proven in [8, Lem 5.2] and shows that SR-nearness satisfies the property of
mean independence.

Lemma 2.1. Consider a sequence of elementary operations ck ← ak opk bk, with δk the error of their kth

operation, that is to say, ĉk = (âk opk b̂k)(1 + δk). The δk are random variables with mean zero such that
E[δk/δ1, . . . , δk−1] = E(δk) = 0.

3 The variance of the error for stochastic rounding

We now turn to bounding the variance of the error in a computation. If x̂ = x(1+δ) is the result of an elementary
operation rounded with SR-nearness, then E(x̂) = x and

V (x̂) = E(x̂2)− x2 = dxe2θ(x) + bxc2(1− θ(x))− x2

= θ(x)(dxe2 − bxc2)− (x2 − bxc2)

= θ(x)ε(x)(dxe+ bxc)− θ(x)ε(x)(x+ bxc)
= θ(x)ε(x)(dxe − x)

= ε(x)2θ(x)(1− θ(x)).

Using (2.3) leads to V (x̂) ≤ x2 u2

4
, in particular V (x̂) ≤ x2u2. Lemma 3.1 below allows to estimate the variance of

the accumulated errors in a sequence of additions and multiplications. Let K a subset of N of cardinal n. Assume
that δ1, δ2, ... in that order are random errors on elementary operations obtained from SR-nearness. Let us denote

ψK =
∏
k∈K

(1 + δk).

Since |δk| ≤ u for all k ∈ K we have |ψK | ≤ (1 + u)n. Throughout this paper, let γn(u) = (1 + u)n − 1 and
K4K′ = (K ∪K′) \ (K ∩K′). The following lemma gives some properties of ψ that allows to bound the variance
of errors in an algorithm consisting in a fixed sequence of sums and products.

Lemma 3.1. Under SR-nearness ψK satisfies

1. E(ψK) = 1.

2. Let K′ ⊂ N such that |K ∩K′| = m, under the assumption that ∀ j ∈ K4 K′, k ∈ K ∩K′, with j < k we
have

0 ≤ Cov(ψK , ψK′) ≤ γm(u2).

3. V (ψK) ≤ γn(u2),

where γn(u2) = (1 + u2)n − 1 ≈ exp (nu2)− 1 = nu2 +O(u4).

Proof. The first point is an immediate consequence of [8, lem 6.1]. The third point is a particular case of the
second with K = K′. Let us prove point 2.

Cov(ψK , ψK′) = E(ψKψK′)− E(ψK)E(ψK′) = E(ψKψK′)− 1.

Assume that K ∩K′ = {k1, ..., km}. Let us denote

Qm := ψKψK′ =
∏

j∈K4K′
(1 + δj)

km∏
l=k1

(1 + δl)
2,

such that j < ki for all j ∈ K4K′ and i ∈ {1, ...,m}.



We prove by induction over m that 1 ≤ E(Qm) ≤ (1 + u2)m. For m = 0, we have K ∩ K′ = ∅ and
Q0 =

∏
j∈K4K′(1 + δj), from the first point E(Q0) = 1. Assume that the inequality holds for Qm−1.

Qm = (1 + δkm)2

km−1∏
l=k1

(1 + δl)
2

∏
j∈K4K′

(1 + δj) = (1 + δkm)2Qm−1.

Let us denote SK4K′ = {δj , j ∈ K4K′)}, using the law of total expectation E(X) = E(E[X/Y ]) and lemma 2.1
we have

E(Qm) = E
(
(1 + δkm)2Qm−1

)
= E

(
E[(1 + δkm)2Qm−1/SK4K′ , δk1 , ..., δkm−1 ]

)
= E

(
Qm−1E[(1 + δkm)2/SK4K′ , δk1 , ..., δkm−1 ]

)
= E

(
Qm−1E[1 + δ2

km/SK4K′ , δk1 , ..., δkm−1 ]
)
.

Since |δkm | ≤ u, we have

E(Qm−1) ≤ E
(
Qm−1E[1 + δ2

km/SK4K′ , δk1 , ..., δkm−1 ]
)
≤ E

(
Qm−1(1 + u2)

)
.

Thus, 1 ≤ E
(
Qm
)
≤ (1 + u2)m. Finally, by induction, the claim is proven

0 ≤ E
(
Qm
)
− 1 = Cov(ψK , ψK′) ≤ γm(u2).

Under SR-nearness, Lemma 3.1 can now be used to derive a variance bounds for many algorithms, such
as inner products, matrix-vector and matrix-matrix products, solutions of triangular systems, and the Horner
algorithm. In the following, we chose the inner product and Horner algorithms as applications.

3.1 Inner product

Consider the inner product sn = y = a1b1 + . . .+ anbn, evaluated from left to right, i.e, si = si−1 + aibi, starting
with s1 = a1b1. In this paper, we address the sequential method which has a deterministic bound proportional to
nu. However, the accumulator implementation of the inner product using a binary tree leads to a deterministic
error bound in O(ln (n)u).

Let δ0 = 0, the computed ŝi satisfies ŝ1 = a1b1(1 + δ1) and

ŝi = (ŝi−1 + aibi(1 + δ2i−2))(1 + δ2i−1), |δ2i−2|, |δ2i−1| ≤ u,

for all 2 ≤ i ≤ n, where δ2i−2 and δ2i−1 represent the rounding errors from the products and additions, respectively.
We thus have

ŷ = ŝn =

n∑
i=1

aibi(1 + δ2i−2)

n∏
k=i

(1 + δ2k−1).

Theorem 3.1. Under SR-nearness, the computed ŷ satisfies E(ŷ) = y and

V (ŷ) ≤ y2K2
1γn(u2), (3.1)

where K1 =
∑n

i=1|aibi|
|
∑n

i=1 aibi|
is the condition number using the 1-norm for the computed y =

∑n
i=1 aibi.

Proof. For all 1 ≤ i ≤ n, we have

ŷ =

n∑
i=1

aibi(1 + δ2i−2)

n∏
k=i

(1 + δ2k−1) =

n∑
i=1

aibiψKi ,

with Ki = {2i− 2, 2i− 1, 2i+ 1, . . . , 2n− 1}. Lemma 3.1 shows that E(ψKi) = 1 for all 1 ≤ i ≤ n, hence

E(ŷ) = E
( n∑
i=1

aibiψKi

)
=

n∑
i=1

aibiE(ψKi) = y.



For all 1 ≤ i < j ≤ n, Kj ∩Ki = {2j − 1, 2j + 1, ..., 2n− 1} and Card(Kj ∩Ki) = n− j + 1.

V (ŷ) = V
( n∑
i=1

aibiψKi

)
≤

(
n∑
i=1

|aibi|
√
V (ψKi)

)2

since σ(X + Y ) ≤ σ(X) + σ(Y )

≤

(
n∑
i=1

|aibi|
√
γn−i+1(u2)

)2

by Lemma 3.1

≤ γn(u2)(

n∑
i=1

|aibi|)2 since γn−i+1(u2) ≤ γn(u2)

= y2K2
1γn(u2).

Remark 3.1. Because E(ŷ) = y, under a normality assumption, the number of significant bits can be lower-
bounded by

− log2

(
σ(ŷ)

|E(ŷ)|

)
≥ − log2

(
K1

√
γn(u2)

)
≈ − log2(K1)− log2(u)− 1

2
log2(n).

3.2 Horner algorithm

Horner algorithm is an efficient way of evaluating polynomials. When performed in floating-point arithmetic, this
algorithm may suffer from catastrophic cancellations and yield a computed value less accurate than expected.

Model 3.1. Let P (x) =
∑n
i=0 aix

i, Horner rule consists in writing this polynomial as

P (x) = (((anx+ an−1)x+ an−2)x . . .+ a1)x+ a0.

We define by induction the following sequence

Operation Floating-point arithmetic Exact computation

r̂0 = an r0 = an

∗ r̂2k−1 = r̂2k−2x(1 + δ2k−1) r2k−1 = r2k−2x

+ r̂2k = (r̂2k−1 + an−k)(1 + δ2k) r2k = r2k−1 + an−k

Output r̂2n = P̂ (x) r2n = P (x)

for all 1 ≤ k ≤ n, with δ2k−1 and δ2k the rounding errors from the products and the additions respectively.
Let δ0 = 0, we thus have

r̂2n =

n∑
i=0

aix
i

2n∏
k=2(n−i)

(1 + δk).

Theorem 3.2. Using SR-nearness, the computed r̂2n satisfies E(r̂2n) = r2n and

V (r̂2n) ≤ r2
2nK2

1γ2n(u2), (3.2)

where K1 =
∑n

i=0|aix
i|

|
∑

i=0

n

aix
i| is the condition number using the 1-norm for the computed P (x) =

∑n
i=0 aix

i.

Proof. We have

r̂2n =

n∑
i=0

aix
i

2n∏
k=2(n−i)

(1 + δk) =
n∑
i=0

aix
iψKi ,

with Ki = {2(n − i), 2(n − i) + 1, ..., 2n} for all 0 ≤ i ≤ n. Lemma 3.1 implies E(ψKi) = 1, then E(r̂2n) =



E
(∑n

i=0 aix
iψKi

)
=
∑n
i=0 aix

iE(ψKi) = r2n. Therefore, because δ0 = 0 we have

V (r̂2n) = V
( n∑
i=0

aix
iψKi

)
≤

(
n∑
i=0

|aixi|
√
V (ψKi)

)2

since σ(X + Y ) ≤ σ(X) + σ(Y )

≤

(
n∑
i=0

|aixi|
√
γ2i(u2)

)2

by Lemma 3.1

≤ γ2n(u2)(

n∑
i=0

|aixi|)2 since γ2i(u
2) ≤ γ2n(u2)

= r2
2nK2

1γ2n(u2).

Remark 3.2. Because E(r̂2n) = r2n, under a normality assumption, the number of significant bits can be lower-
bounded by

− log2

(
σ(r̂2n)

|E(r̂2n)|

)
≥ − log2

(
K1

√
γ2n(u2)

)
≈ − log2(K1)− log2(u)− 1

2
log2(2n).

4 Probabilistic bounds of the error for stochastic rounding

Based on the independence assumption, Higham and Mary [18] have shown that for the inner product, a prob-
abilistic bound of the error proportional to

√
n ln (n)u can be achieved rather than the deterministic bound in

O(nu). With Connelly, they show in [8] that this bound always holds for SR-nearness due to mean independence
of errors.

We start with the approach based on the Azuma-Hoeffding inequality and the martingale property (AH1 and
AH2 methods in the following). In this context, firstly, we give a rigorous review of the previous results of the
inner product forward error by Higham and Mary [8] and Ilse, Ipsen and Zhou [20]. Secondly, we extend these
techniques to the Horner algorithm which also give a probabilistic bound proportional to

√
nu.

Then, we present a new approach based on Bienaymé–Chebyshev inequality and the previous variance estima-
tions (BC method in the following), our bound is also in O(

√
nu) and it is lower than the AH1 and AH2 bounds

in several situations for both inner product and Horner algorithms.

4.1 Azuma-Hoeffding method

Let us recall the concept of a martingale and the Azuma-Hoeffding inequality for a martingale [24].

Definition 4.1. A sequence of random variables M1, ...,Mn is a martingale with respect to the sequence X1, ..., Xn
if, for all k,

• Mk is a function of X1, ..., Xk,

• E(|Mk|) <∞, and

• E[Mk/X1, ..., Xk−1] = Mk−1.

Lemma 4.1. (Azuma-Hoeffding inequality). Let M0, ...,Mn be a martingale with respect to a sequence X1, ..., Xn.
We assume that there exist ak < bk such that ak ≤Mk −Mk−1 ≤ bk for k = 1 : n. Then, for any A > 0

P(|Mn −M0| ≥ A) ≤ 2 exp

(
− 2A2∑n

k=1(bk − ak)2

)
.

In the particular case ak = −bk and λ = 2 exp
(
− A2

2
∑n

k=1
b2
k

)
we have

P

|Mn −M0| ≤

√√√√ n∑
k=1

b2k
√

2 ln(2/λ)

 ≥ 1− λ,

where 0 < λ < 1.



4.1.1 Inner product

Under SR-nearness, the inner product y = a>b, where a, b ∈ Rn is defined as ŷ = ŝn =
∑n
i=1 aibi(1 +

δ2(i−1))
∏n
k=i(1 + δ2k−1). The worst case of the forward error of the computed ŷ is in O(nu). Wilkinson [28, sec

1.33] had the intuition that the roundoff error accumulated in n operations is proportional to
√
nu rather than nu.

Based on the mean independence of errors established in Lemma 2.1, Higham and Mary [8] and Ilse, Ipsen and
Zhou [20] have investigated this problem for SR-nearness. Both works build on the mean independence property
of SR-nearness. This allows them to form a martingale, and then to apply the Azuma-Hoeffding concentration
inequality. The difference between these two works is in the way they form the martingale. In [8, sec 3], the
martingale is built using the errors accumulated in the whole process ψKi = (1 + δ2(i−1))

∏n
k=i(1 + δ2k−1) for all

1 ≤ i ≤ n. Azuma-Hoeffding inequality implies that |ψKi | ≤ γ̃n(λ) with probability at least 1− 2 exp −λ
2

2
, where

γ̃n(λ) = exp λ
√
nu+nu2

1−u − 1. This approach uses the inclusion-exclusion principle to generalize the bound to the
summation which results in a pessimistic n in the probability. They prove

|ŷ − y|
|y| ≤ K1γ̃n(λ),

with probability at least 1−2n exp −λ
2

2
. The factor n in the probability disrupts the

√
nu property. δ = 2n exp −λ

2

2

implies that λ =
√

2 ln (2n/δ) and

|ŷ − y|
|y| ≤ K1γ̃n

(√
2 ln (2n/δ)

)
, (AH1-IP)

with probability at least 1− δ. When nu� 1, we have

γ̃n(
√

2 ln (2n/δ)) = exp

√
2n ln (2n/δ)u+ nu2

1− u − 1

= u
√

2n ln (2n/δ) +O(u2)

= u
√

2n ln 2n− 2n ln δ +O(u2) = O(u
√
n lnn).

On the other hand [20, sec 4] forms it by following step-by-step how the error accumulates in the recur-
sive summation of the inner product. In particular, they distinguish between the multiplications and additions
computed at each step and carefully monitor their mean independences. This approach leads to the following
probabilistic bound

|ŷ − y|
|y| ≤ K1

√
uγ2n(u)

√
ln(2/δ), (AH2-IP)

with probability at least 1− δ. This technique avoids the inclusion-exclusion principle and, when nu� 1, it leads
to √

uγ2n(u)
√

ln(2/δ) = u
√

2n ln 2− 2n ln δ +O(u2).

Note that when nu � 1, (AH1-IP) and (AH2-IP) differ only in the factor
√

lnn that appears in (AH1-IP)
due to the use of the martingale property on each partial sum. All in all, (AH2-IP) is proportional to u

√
n,

while (AH1-IP) is proportional to u
√
n lnn. An analysis of the case nu� 1 will be presented in Section 5.

4.1.2 Horner algorithm

In the following, we derive a probabilistic bound for the computed P̂ (x) based on the previous method applied
for the inner product in [20, sec 4].

With the notations defined in Model 3.1, let us denote Zi := r̂i − ri for all 1 ≤ i ≤ 2n. The total forward
error is |Z2n| = |r̂2n − r2n| = |P̂ (x)− P (x)| and

|P̂ (x)− P (x)| =

∣∣∣∣∣∣
n∑
i=0

aix
i

 2n∏
k=2(n−i)

(1 + δk)− 1

∣∣∣∣∣∣ ≤
n∑
i=0

|aixi|γ2n(u).

Finally

|P̂ (x)− P (x)|
|P (x)| ≤ K1γ2n(u). (4.1)

The deterministic bound is proportional to nu. In the following, we prove a probabilistic bound in O(
√
nu).

The partial sum forward errors satisfy

Z2k−1 = r̂2k−1 − r2k−1 = r̂2k−2x(1 + δ2k−1)− r2k−2x

= xZ2k−2 + r̂2k−2xδ2k−1,

Z2k = r̂2k − r2k = (r̂2k−1 + an−k)(1 + δ2k)− r2k−1 − an−k
= Z2k−1 + (r̂2k−1 + an−k)δ2k,



for all 1 ≤ k ≤ n. The sequence Z1, ..., Z2n does not form a martingale with respect to δ1, ..., δ2n due to the
multiplication in odd steps,

E[Z2k−1/δ1, ..., δ2k−2] = xZ2k−2.

In order to form a martingale and use the Azuma-Hoeffding inequality, we define the following variable change

Yi =
Zi

xT(i+1)/2U ,

where T(i+ 1)/2U is the integer part of (i+ 1)/2, we thus have{
Y2k−1 = Y2k−2 + 1

xk−1 r̂2k−2δ2k−1,
Y2k = Y2k−1 + 1

xk
(r̂2k−1 + an−k)δ2k,

(4.2)

for all 1 ≤ k ≤ n.

Theorem 4.1. The sequence of random variables Y1, ..., Y2n is a martingale with respect to δ1, ..., δ2n.

Proof. We check that the three conditions of Definition 4.1 are satisfied. Throughout the proof, we note the
set Fk = {δ1, ..., δk}.

• The recursion in Model 3.1 shows that Yi is a function of δ1, ..., δi for all 1 ≤ i ≤ 2n.

• E(|Yi|) is finite because x and ak are finite for all n− i ≤ k ≤ n and |δj | ≤ u for all 1 ≤ j ≤ i.
• We prove that E[Yi/Fi−1] = Yi−1 by distinguishing the even and odd cases. Firstly, using the mean

independence of δ1, ...δ2k−1 and Equation (4.2) we obtain

E[Y2k−1/F2k−2] = E[Y2k−2/F2k−2] + E[
1

xk−1
r̂2k−2δ2k−1/F2k−2]

= Y2k−2 +
1

xk−1
r̂2k−2E[δ2k−1/F2k−2] = Y2k−2.

Secondly, using the mean independence of δ1, ...δ2k and Equation (4.2) we obtain

E[Y2k/F2k−1] = E[Y2k−1/F2k−1] + E[
1

xk
(r̂2k−1 + an−k)δ2k/F2k−1]

= Y2k−1 +
1

xk
(r̂2k−1 + an−k)E[δ2k/F2k−1] = Y2k−1.

Lemma 4.2. The above martingale Y1, ..., Y2n satisfies |Yi − Yi−1| ≤ Ciu, for all 1 ≤ i ≤ 2n, where{
C2k−1 = |an|(1 + u)2k−2 +

∑k−1
j=1 |an−j ||x|

−j(1 + u)2(k−j)−1,

C2k = |an|(1 + u)2k−1 +
∑k
j=1|an−j ||x|

−j(1 + u)2(k−j),

for all 1 ≤ k ≤ n.

Proof. Note that Y0 = 0, then |Y1 − Y0| = |Y1| = |an| and the equality holds for C1. Using Equation (4.2)

|Y2k−1 − Y2k−2| ≤
1

|x|k−1
|r̂2k−2|u.

Moreover

|r̂2k−2| ≤ |r̂2k−3|(1 + u) + |an−k+1|(1 + u) ≤ |r̂2k−4||x|(1 + u)2 + |an−k+1|(1 + u),

by induction we obtain

|r̂2k−2| ≤ |an||x|k(1 + u)2k−2 +

k−1∑
j=1

|an−j ||x|k−j(1 + u)2(k−j)−1.

This completes the proof for C2k−1 for all 1 ≤ k ≤ n. A similar approach can be applied to prove the same result
for C2k for all 1 ≤ k ≤ n.

We now have all the tools to state and demonstrate the main result of this section:

Theorem 4.2. Under SR-nearness, for all 0 < λ < 1 and with probability at least 1− λ

|P̂ (x)− P (x)|
|P (x)| ≤ K1

√
uγ4n(u)

√
ln(2/λ), (4.3)

where K1 =
∑n

i=0|aix
i|

|P (x)| is the condition number of the polynomial evaluation and γ4n(u) = (1 + u)4n − 1.



Proof. Recall that |r̂2n − r2n| = |Z2n| = |xn||Y2n|. Therefore, Y1, ..., Y2n is a martingale with respect to δ1, ..., δ2n
and Lemma 4.2 implies |Yi − Yi−1| ≤ Ciu for all 1 ≤ i ≤ 2n. Using the Azuma-Hoeffding inequality yields

P

|Y2n| ≤ u

√√√√ 2n∑
i=1

C2
i

√
2 ln(2/λ)

 ≥ 1− λ,

it follows that

|Z2n| ≤ u

√√√√ 2n∑
i=1

(|x|nCi)2
√

2 ln(2/λ),

with probability at least 1− λ, where

|x|nC2k = |an||x|n(1 + u)2k−1 +

k∑
j=1

|an−jxn−j |(1 + u)2(k−j)

≤ (1 + u)2k−1
k∑
j=0

|an−jxn−j | ≤ (1 + u)2k−1
n∑
j=0

|ajxj |,

for all 1 ≤ k ≤ n. Hence,

(|x|nC2k)2 ≤ (1 + u)2(2k−1)( n∑
j=0

|ajxj |
)2
.

In a similar way

(|x|nC2k−1)2 ≤ (1 + u)2(2k−2)( n∑
j=0

|ajxj |
)2
.

Thus

2n∑
i=1

(|x|nCi)2 ≤
( n∑
j=0

|ajxj |
)2 2n−1∑

i=0

((1 + u)2)i

=
( n∑
j=0

|ajxj |
)2 ((1 + u)2)2n − 1

(1 + u)2 − 1
=
( n∑
j=0

|ajxj |
)2 γ4n(u)

u2 + 2u
.

As a result

|P̂ (x)− P (x)| = |Z2n| ≤
n∑
j=0

|ajxj |
√
uγ4n(u)

2 + u

√
2 ln(2/λ),

with probability at least 1− λ. Finally

|P̂ (x)− P (x)|
|P (x)| ≤ K1

√
uγ4n(u)

√
ln(2/λ),

with probability at least 1− λ.

4.2 Bienaymé–Chebyshev method

Another way to obtain a probabilistic O(
√
nu) bound is to use Bienaymé–Chebyshev inequality. This method

requires only information on the variance. Moreover, we will see in Section 5 that for any probability λ there
exist n such that this method introduces a tighter probabilistic bound than the Azuma-Hoeffding method.

Lemma 4.3. (Bienaymé–Chebyshev inequality) Let X be a random variable with finite expected value and finite
non-zero variance. For any real number α > 0,

P
(
|X − E(X)| ≤ α

√
V (X)

)
≥ 1− 1

α2
.

Regarding the two algorithms above, the computed ŷ satisfies E(ŷ) = y, then

P
(
|ŷ − y| ≤ α

√
V (ŷ)

)
≥ 1− 1

α2
,

taking λ = 1
α2 yields |ŷ − y| ≤

√
V (ŷ)/λ with probability at least 1− λ.



4.2.1 Inner product

From Theorem 3.1 we have √
V
(
ŷ)/λ

|y| ≤ K1

√
γn(u2)/λ.

Thus,

|ŷ − y|
|y| ≤

√
V
(
ŷ)/λ

|y| ≤ K1

√
γn(u2)/λ,

and

P
(
|ŷ − y|
|y| ≤ K1

√
γn(u2)/λ

)
≥ P

 |ŷ − y|
|y| ≤

√
V
(
ŷ)/λ

|y|

 ≥ 1− λ. (4.4)

4.2.2 Horner algorithm

From Theorem 3.2 we have
V
(
P̂ (x)

)
|P (x)| ≤ K1

√
γ2n(u2).

The previous reasoning from Sub-section 4.2.1 leads to

P

(
|P̂ (x)− P (x)|
|P (x)| ≤ K1

√
γ2n(u2)/λ

)
≥ 1− λ. (4.5)

5 Bounds analysis

In the following, we compare the various bounds of the two previous algorithms and analyze which bound is the
tightest depending on the precision in use, the target probability and the number of operations.

5.1 Inner product

In the beginning, let us recall all bounds obtained for the inner product y = a>b, where a, b ∈ Rn

|ŷ − y|
|y| ≤ K1γn(u), (Det-IP)

|ŷ − y|
|y| ≤ K1γ̃n(

√
2 ln (2n/λ)) with probability at least 1− λ, (AH1-IP)

|ŷ − y|
|y| ≤ K1

√
uγ2n(u)

√
ln(2/λ) with probability at least 1− λ, (AH2-IP)

|ŷ − y|
|y| ≤ K1

√
γn(u2)

√
1/λ with probability at least 1− λ, (BC-IP)

where γ̃n(
√

2 ln (2n/λ)) = exp

(√
2n ln (2n/λ)u+nu2

1−u

)
− 1.

All bounds have the same condition numberK1, but differ in the others factor: γn(u) for (Det-IP), γ̃n(
√

2 ln (2n/λ))

for (AH1-IP),
√
uγ2n(u)

√
ln(2/λ) for (AH2-IP), and

√
γn(u2)

√
1/λ for (BC-IP). For a constant λ, we investigate

two cases: nu� 1 and nu� 1.
For n and u such that nu� 1 we have

exp

√
2n ln (2n/λ)u+ nu2

1− u − 1 = u
√

2n ln (2n/λ) +O(u2).

Moreover, [17, Lemma 3.1] implies

γn(u) ≤ nu

1− nu,

it follows that for 2nu < 1,

√
uγ2n(u) ≤

√
2nu2

1− 2nu
= u
√
n

√
2

1− 2nu
,

and for nu2 < 1 √
γn(u2) ≤

√
nu2

1− nu2
= u
√
n

1√
1− nu2

.



Interestingly, for the inner product, at any fixed probability, when nu� 1, (AH2-IP) and (BC-IP) bounds are
proportional to

√
nu unlike

√
n lnnu for the (AH1-IP) bound. Note that, the deterministic bound is in O(nu).

For n and u such that nu� 1 and nu2 � 1, we have

exp

√
2n ln (2n/λ)u+ nu2

1− u − 1 ≈ exp

√
2n ln (2n/λ)u+ nu2

1− u
≈ exp (

√
n ln (n)u),

then
γ̃n(
√

2 ln (2n/λ)) ≈ exp (
√
n ln (n)u). (5.1)

Furthermore √
uγ2n(u) ≈

√
u exp (2nu)− 1 ≈

√
u exp (nu) ≈ exp (nu), (5.2)

and √
γn(u2) ≈

√
exp (nu2)− 1 ≈

√
nu+O(u2). (5.3)

Therefore, (5.1), (5.2) and (5.3) show that (BC-IP) ≤ (AH1-IP) ≤ (AH2-IP) when nu� 1 and nu2 � 1.

5.2 Horner algorithm

Let us recall all bounds obtained for the Horner algorithm

|P̂ (x)− P (x)|
|P (x)| ≤ K1γ2n(u), (Det-H)

|P̂ (x)− P (x)|
|P (x)| ≤ K1

√
uγ4n(u)

√
ln

2

λ
with probability ≥ 1− λ, (AH-H)

|P̂ (x)− P (x)|
|P (x)| ≤ K1

√
γ2n(u2)

√
1

λ
with probability ≥ 1− λ. (BC-H)

A similar reasoning to Section 5.1 shows that the probabilistic bounds for the Horner algorithm forward error are
in O(

√
nu) versus O(nu) for the deterministic bound. With Horner method the degree of the polynomial, n, is

seldom very large in practice.
In conclusion, these probabilistic approaches show that the roundoff error accumulated in n operations is

proportional to
√
nu rather than nu. In the next section, we analyze these two probabilistic methods.

5.3 Bienaymé–Chebyshev vs Azuma-Hoeffding

In the following, we compare the three probabilistic bounds (AH1-IP), (AH2-IP) and (BC-IP) on the inner product
forward error (similar reasoning can be applied to the Horner algorithm with the same result). When nu � 1,
at any fixed probability, (AH2-IP) and (BC-IP) are proportional O(

√
nu). First, we focus on this case. The two

probabilistic bounds have the same condition number K1. Thus, it is enough to compare
√

u
2
γ2n(u)

√
2 ln(2/λ)

and
√
γn(u2)

√
1/λ. These two bounds depend on n and λ. Firstly, using the binomial theorem we have

u

2
γ2n(u)− γn(u2) =

u

2

n∑
k=1

(
n

k

)
(u2 + 2u)k −

n∑
k=1

(
n

k

)
(u2)k

≥
2∑
k=1

(
n

k

)[u
2

(u2 + 2u)k − (u2)k
]
≥ n(n− 1

2
)u3.

We can conclude that √
γn(u2) ≤

√
u

2
γ2n(u) for all n ≥ 1. (5.4)

Now, let us compare
√

1/λ and
√

2 ln(2/λ) for λ ∈]0; 1[,



Probability u Precision format n &
1− λ = 0.95 2−7 bfloat16 110

2−10 binary16 890

2−23 binary32 7.3 e06

2−52 binary64 3.9 e15

1− λ = 0.99 2−7 bfloat16 220

2−10 binary16 1810

2−23 binary32 1.48 e07

2−52 binary64 7.9 e15

Table 1: The smallest n such that BC method gives a tighter probabilistic bound than AH2 method for
the inner product.

0.0 0.2 0.4 0.6 0.8 1.0
1

100

2 × 100

3 × 100

4 × 100

f(
)

2ln(2/(1 ))
1/(1 )

Figure 3: Illustration of
√

1/λ and
√

2 ln(2/λ) be-
haviour for all λ ∈]0; 1[.
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Figure 4: AH1, AH2 and BC bounds
with probability 0.9 and u = 2−23 for the inner

product.

Figure 3 and the inequality (5.4) show that whatever the problem size n and for a probability at most ≈ 0.758,
the BC method gives a tighter probabilistic bound than the AH2 method.

Figure 4 confirms the discussion of Section 5.1 and it shows that with a probability 0.9, when nu � 1, AH2
bound grows rapidly compared to AH1 and BC bounds. Regarding BC bound, the variance calculation and the
mean independence allow to bound the error terms (1+δ)2 by (1+u2) and avoid all δ terms of degree one because
E(δ) = 0. In contrast, the AH1 and AH2 methods requires bounded increments leading to terms (1 + u)2. As n
increases, the advantage of Azuma-Hoeffding inequality for a probability near 1 becomes negligible.

For all asymptotic comparisons between the bounds in this paper, we have chosen to work with u→ 0, n→∞
and fixed probability λ, which we think adapted to many if not most current practical use cases. A situation with
λ→ 0 and fixed n gives the advantage to the Azuma-Hoeffding bounds over the Bienaymé-Chebyshev one.

The Table 1 illustrates how BC is tighter than AH2 when n grows. The n threshold above which BC is
preferable to AH2 bound depends on the format precision. The lower the precision, the lower the threshold
becomes. Using SR in low precision is of high interest in the areas of machine learning [15], PDEs [10] and
ODEs [19], motivating the use of our improved BC method.

6 Numerical experiments

This section presents numerical experiments that support and complete the theory presented previously. The var-
ious bounds are compared on two numerical applications: the inner product and the evaluation of the Chebyshev
polynomial.

We show that the probabilistic bounds are tighter than the deterministic bound and faithfully capture the
behavior of SR-nearness forward error. For inner product of large vectors, we show that BC bound is smaller
than AH1 and AH2 bounds. All SR computations are repeated 30 times with verificarlo [13]; we plot all samples
and the forward error of the average of the 30 SR instances.



6.1 Horner algorithm

We use Horner’s method to evaluate the polynomial P (x) = TN (x) =
∑T N

2
U

i=0 ai(x
2)i where TN is the Chebyshev

polynomial of even degree N = 2n. The previous error bounds, (Det-H), (AH-H), and (BC-H) apply to this
computation.
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Figure 5: Probabilistic error bounds with probability 1 − λ = 0.5 (left) and 1 − λ = 0.9 (right) vs
deterministic bound for the Horner’s evaluation of T20(x) and u = 2−23. Triangles mark 30 instances of
the SR-nearness relative errors

evaluation in binary32 precision, a circle marks the relative errors of the 30 instances average, and a
star represents the IEEE RN-binary32 value.

Chebyshev polynomial is ill-conditioned near 1 as shown in Figure 5, which evaluates T20(x) for x ∈ [ 8
64

; 1].
Due to catastrophic cancellations among the polynomial terms, the condition number increases from 100 to
107 in the chosen x interval, resulting in an increasing numerical error for both RN-binary32 and SR-nearness
computations.

The left plot confirms that the Bienaymé–Chebyshev bound (BC-H) is more accurate than the Azuma-
Hoeffding bound (AH-H) for probability 1 − λ = 0.5. With a higher probability 1 − λ = 0.9 (right plot), since
N = 20 and u = 2−23 Azuma-Hoeffding bound (AH-H) is tighter, as predicted in Figure 4. Both probabilistic
bounds are tighter than the deterministic bound. For N = 20, there is no significant difference between SR-
nearness and RN-binary32. However, as expected, the average of the SR-nearness computations is more precise
than the nearest round evaluation for almost all values of x.
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Figure 6: Normalized forward error (error/cond(P, x)) with probability 1−λ = 0.5 (left) and 1−λ = 0.9
(right) for Horner’s evaluation of TN (24/26).

In Figure 6, the three previous bounds and the forward error are normalized by the condition number
cond(P, x). The evaluation in x = 24/26 ≈ 0.923 is plotted for various polynomial degrees N. As expected,
when N increases, the deterministic bound grows faster than the probabilistic bounds. The right plot shows that
Azuma-Hoeffding bound is tighter for a high probability and a small n. Overall, Chebyshev polynomial numer-
ical experiment illustrates the advantage of the probabilistic error bounds over the deterministic error bound.
However, for most of the evaluations in this experiment, RN-binary32 is more accurate than one instance of



SR-nearness. This result is unsurprising because the degree n is small. To illustrate the behavior of these errors
with a large n, we now turn to the inner product.

6.2 Inner product

To showcase the advantage of using BC method for large n, we present a numerical application of the inner
product for vectors with positive floating-points chosen uniformly at random between 0 and 1.
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Figure 7: Probabilistic bounds with probability 1 − λ = 0.9 vs deterministic bound of the computed
forward errors of the inner product of with u = 2−23.

For small n, AH1, AH2, and BC bounds are comparable with a slight advantage for (AH2-IP). However,
as shown in Section 5.1, when nu � 1, the AH2 bound grows exponentially faster than AH1 and BC bounds.
Asymptotically, the AH1 and BC bounds are therefore much tighter.

Interestingly, when n increases, a single instance of SR-nearness in binary32 precision is more accurate than
RN-binary32. This is because the summation terms are chosen uniformly between 0 and 1. The terms closest
to zero are absorbed. With RN-binary32 the absorption errors are biased and will add up, while SR avoids
stagnation and mitigates absorption errors. If we choose the terms in [−1; 1], SR and RN-binary32 have the same
behavior. In this case, the absorption errors for RN-binary32 compensate because positive and negative errors are
uniformly distributed. If we choose the terms in [1/2; 1], no absorption occurs for n < 223, and on this domain,
SR and RN-binary32 behave similarly.
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Figure 8: AH1 bound vs BC bound with probability 1 − λ = 0.9 and u = 2−23 for the inner product of
with.

Figure 8 illustrates the advantage of using (BC-IP) and shows that for a large n ≥ 1013 and u = 2−23, the
AH1 bound increases faster than the BC bound.

For large vectors, using stochastic rounding instead of the default round to nearest improves the computation
accuracy of the inner product. However, this experiment raises concerns regarding the use of SR as a model to
estimate RN rounding errors [13,26], in particular for a large number of operations. Further studies are required
to assess precisely the limits of this model and possibly give criteria to detect them.



7 Conclusion

For a wide field of applications, SR results in a smaller accumulated error, for example by avoiding stagnation
effects. Moreover, SR errors satisfy the mean independence property allowing to derive tight probabilistic error
bounds from either our variance bound or the martingale property.

For an inner product y = a>b, Sub-section 4.1 compares the benefits of constructing the martingale from the
recursive summation of the inner product [20] versus the construction from the errors accumulated in the whole
process at each product aibi [8]. In particular, with a fixed probability, the construction in [20] gives a O(

√
nu)

probabilistic bound, tighter than the O
(
u
√
n ln (n)

)
bound in [8] when nu � 1. Nevertheless, when nu � 1,

Figure 7 shows that the (AH2-IP) bound increases faster than (AH1-IP) bound.
An extension of the method in [20] to the Horner algorithm is presented. Unlike the inner product, Horner

algorithm does not explicitly satisfy the martingale property on the partial sums requiring a change of variable
before once can use the Azuma-Hoeffding inequality.

Lemma 3.1 is a variance bound for the family of algorithms whose error can be written as a product of error
terms of the form 1 + δ. Based on the Bienaymé–Chebyshev inequality, a new method is proposed to obtain
probabilistic error bounds. This method allows to get tighter probabilistic error bound in various situations,
such as computations with a large n. We demonstrate the strength of this new approach on two algorithms: the
inner product which has been previously studied, and Horner polynomial evaluation, for which no SR results were
known beforehand.

The scripts for reproducing the numerical experiments in this paper are published in the repository https:

//github.com/verificarlo/sr-variance-bounds/.
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