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Abstract

This paper deals with continuous-time system identification of multiple-input single-output (MISO) fractional differentiation
models. When differentiation orders are assumed to be known, coefficients are estimated using the simplified refined instrumental
variable method for continuous-time fractional models extended to the MISO case. For unknown differentiation orders, a two-
stage optimization algorithm is proposed with the developed instrumental variable for coefficient estimation and a gradient-
based algorithm for differentiation order estimation. A new definition of structured-commensurability (or S-commensurability)
is introduced to better cope with differentiation order estimation. Three variants of the algorithm are then proposed: (i) first,
all differentiation orders are set as integer multiples of a global S-commensurate order, (ii) then, the differentiation orders
are set as integer multiples of a local S-commensurate orders (one S-commensurate order for each subsystem), (iii) finally, all
differentiation orders are estimated by releasing the S-commensurability constraint. The first variant has the smallest number
of parameters and is used as a good initial hit for the second variant which in turn is used as a good initial hit for the third
variant. Such a progressive increase of the number of parameters allows better performance of the optimization algorithm
evaluated by Monte Carlo simulation analysis.

Key words: system identification, continuous-time, instrumental variable, multiple-input single-output (MISO) system, order
optimization, fractional model

1 Introduction

Applications of fractional order systems (FOS) are nu-
merous and closely linked to recursive and fractal geo-
metry, for modeling: a porous dyke [30,31], thermal dif-
fusive phenomena [7,22], charge diffusion in lithium-ion
batteries [29,47], modeling Foucault currents inside ro-
tor bars in induction machines [2], or even in biological
systems [14,23,44].

System identification aims at providing a mathematical
model for dynamical systems using a set of input and
output data. Even though most system identification al-
gorithms are developed in discrete time (DT), dynami-
cal systems are generally expressed in continuous time
(CT) to better describe physical systems governed by
differential equations. New challenges appear on system
identification as technology and society evolve: [46] pro-
vides new paradigms and challenges in system identifi-
cation such as broader types of uncertainties, networked
systems or even data explosion; [34] proposes kernel me-

thods; [20] gives new kernel-based regularization me-
thods; [3] proposes to estimate time-delay with sampled
limit cycle in frequency domain; etc.

Instrumental Variable (IV) has been explored for several
decades [48,37] in the discrete-time (DT) and was ex-
tended to the continuous-time in [52,50], as the refined
instrumental variable (rivc) in presence of colored noise
or as the Simplified rivc in presence of white noise [49].
When the model lies in the same class as the true system,
the rivc method can be interpreted in optimal statisti-
cal terms as yielding consistent estimates with minimum
variance. Both rivc and srivc methods use an iterative
adaptive prefiltering based on a quasi-optimal statisti-
cal solution. Some developments aimed at extending the
rivc method to handle multi-input models [10], hybrid
Box–Jenkins models [11], irregularly sampled data [45],
linear parameter varying models [17], CT output-error
models with time-delay from relay feedback tests [3] and
benchmark problems for continuous-time model identi-
fication [33]. A consistency analysis of the srivc method

Preprint submitted to Automatica 31 January 2022



for CT systems has been discussed recently in [32].

System identification with fractional order models
(FOM) has become more and more important in dif-
ferent fields. First works started in the late nineties as
pointed out in the state of the art in [24]. Since then,
many other developments have been carried out, such
as low order model identification of fractional systems
[6], subspace method for state-space identification [41],
multivariable non commensurate fractional systems
[25], FOM with time delays [28], CT FOM in errors-
in-variables context [4], parameter identification in
fractional differential equations [15], inversion mecha-
nism of functional extrema model via the differential
evolution algorithms [8], identification of FOM using
block pulse functions [40], system identification with
measurement noise compensation based on polynomial
modulating function [9], recursive identification method
for fractional time-delay systems using a DT model [13],
FOM identification using enhanced response sensitivity
approach [18].

Initialization of fractional-order systems have been
widely studied in the literature. Lorenzo and Hartley
[21] have proposed to derive the Laplace transform for
the initialized fractional integral and derivative of the
Riemann-Liouville fractional calculus. Trigeassou and
Maamri [42] have proposed an equivalence principle
between the fractional system and an exactly equivalent
infinite dimensional differential equation by using the
fractional integration operator and the frequency dis-
tributed state space model. In fact, both methods are
proven to be equivalent in a couple of examples in [12].
When system identification with non zero initial con-
ditions is addressed, then the fractional system should
be simulated by considering the initial conditions, with
either of the two previous approaches, so that the time-
response takes properly into account the initialization
effect.

For coefficient estimation, the authors in [5] use state
variable filters to cut noise in high frequencies so that
the estimation variance can be reduced. Moreover, they
also use instrumental variable technique (ivsvf) to ob-
tain unbiased estimation. The Simplified Refined Instru-
mental Variable (sriv) approach was extended to frac-
tional models in [43] where estimates are consistent with
minimum variance.

In system identification with rational models, where only
coefficients are estimated, the model order remains un-
changed. When dealing with differentiation order es-
timation for fractional models, estimating both coeffi-
cients and differentiation orders is not a trivial task: in-
deed, the model order constantly varies at each iteration.
As a consequence, a new definition of commensurability
is introduced in this paper to avoid the explosion of
parameter number. This Structured-commensurability
definition is linked with the model structure and fixes

the number of parameters. Then, the srivc algorithm
is extended to multiple-input single-output fractional
models (as the MISO-srivcf) for linear coefficient esti-
mation, by assuming that all differentiation orders are
known. Then, the paper proposes a gradient-based ap-
proach for differentiation order estimation which com-
bines simultaneously the estimation of the coefficients
and the differentiation orders. Three variants are pro-
posed: first, all differentiation orders are set as integer
multiples of a global S-commensurate order which is es-
timated; then, different local S-commensurate orders are
estimated, one for each input-output model; and finally,
the commensurability constraint is released and all dif-
ferentiation orders are further independently optimized.

The paper is organized as follows. After recalling the
fractional calculus and formulating the system identifi-
cation problem in section 2, section 3 presents the srivcf
algorithm extended to MISO systems for the coefficient
estimation. Then, section 4 develops the differentiation
order estimation with the proposed three variants. Fi-
nally, a conclusion is drawn in section 5.

2 MISO system context

2.1 Description of MISO fractional order systems

Consider a MISO fractional order system as illustrated
in Fig.1 and described by the following relations:

S :


yk(t) = Gk(p)uk(t)

y(t) =
K∑
k=1

yk(t)

y∗(th) = y(th) + e(th)

(1)

where K ∈ N is the number of inputs, and consequently
the number of subsystems. Let u(t) = [u1(t), . . . , uK(t)]
be the vector of uncorrelated input signals and p the
differential operator (p = d

dt ). The input-output data
(u(t), y(t)) are collected at regular samples and assumed
large enough to guarantee convergence of the estimated
parameters to the true ones. The quasi-stationary input
signals {uk(t), 0 ≤ t ≤ tfinal, k = 1, . . . , K} applied to
the MISO system are persistently exciting and give rise
to the output signal {y(t), 0 ≤ t ≤ tfinal}. The output
measurement y(t) is corrupted by a discrete-time white
noise e(th) and Gk is the fractional operator that relates
the input signal uk(t) to its noise-free output yk(t):

Gk(p, θ) =
Bk(p, θ)

Ak(p, θ)
=

Mk∑
j=0

bj,kp
βj,k

1 +
Nk∑
i=1

ai,kpαi,k
(2)

where θ is the parameter vector defined in (13) and the
differentiation orders are ordered positive real numbers
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Fig. 1. MISO model structure

for identifiability purpose:{
0 < α1,k < α2,k < ... < αNk,k

0 < β0,k < β1,k < ... < βMk,k

∀k = 1, . . . , K.

It is assumed that Gk(p) operators are strictly proper
with αNk,k > βMk,k, ∀k, that Bk and Ak are coprime
polynomials, and that all the transfer functions Gk(p)
are asymptotically stable [26] .

Definition 2.1 (S-commensurability) A SISO sys-
tem G1, for a given model structure 1 (2), characterized
by the number of terms M1 and N1, has a structured-
commensurate (or S-commensurate) order

ν = α1,1, (3)

if all its differentiation orders are successive integer mul-
tiples of ν, namely:

G1(p) =

M1∑
j=0

bj,1p
jν

1 +
N1∑
i=1

ai,1piν
. (4)

For example, consider the following transfer function:

G1(s) =
1

1 + 1.5s1.2 + 0.5s2.8
.

According to the classic definition of commensurability
(see [26]), G1 is commensurate of order 0.4, namely:

G1(s) =
1

1 + 1.5s3×0.4 + 0.5s7×0.4

1 In the classic case [26], the definition of a commensurate
system of order ν is independent of the model structure and
may generate high order transfer function in sν . The pro-
posed S-commensurability definition is linked to the model
structure and therefore fixes the number of parameters to a
prescribed value.

and generates a model order equal to 7 in s0.4.

According to the new definition 2.1, G1 is not S-
commensurate, because the differentiation orders are
not successive integer multiples of α1,1 = 1.2.

2.2 Fractional calculus

The differentiation to an arbitrary order ν ∈ R+ of a
function f(t), in the sense of Grünwald-Letnikov, is de-
fined by:

pνf(t) = lim
`→0

1

`ν

b t`c∑
h=0

(−1)
h

(
ν

h

)
f(t− h`) (5)

where b.c is the floor operator and

(
ν

h

)
is the Newton’s

binomial generalized to fractional orders as follows:(
ν

h

)
=

Γ(ν + 1)

Γ(h+ 1)Γ(ν − h+ 1)
=
ν(ν − 1)...(ν − h+ 1)

h!
.

Consequently, the fractional derivative of a function has
a global characterization as the whole past of the func-
tion is required.

For ν = 1, all binomials

(
ν

h

)
= 0 when h−ν ∈ N, thus

leading equation (5) to the classic definition of integer
order derivative:

pf(t) = lim
`→0

f(t)− f(t− `)
`

. (6)

For numerical evaluation of the ν-th fractional deriva-
tive, parameter ` in (5) is replaced by a sampling period
T and the limit is dropped:

pνf(t) =
1

T ν

b tT c∑
h=0

(−1)
h

(
ν

h

)
f(t− Th) +O(T ). (7)

So defined, as stated in [35, section 7.4], the error terms
are proportional to the sampling period. Therefore, to
make the approximation error negligible, the sampling
time must be sufficiently small 2 .

2 Note that a too small sampling period may also provide
numerical issues such as stability in digital implementation.
In this case, suitable discrete rational approximations might
be preferred.
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Time-domain simulation of fractional systems being a
thoroughly studied topic in the literature, system iden-
tification algorithms proposed in this paper are meant
to be independent from time-domain simulation algo-
rithms. Nevertheless, FOMs should be correctly simu-
lated with negligible simulation errors for the parameter
estimation to be consistent.

The Laplace transform of the ν-th derivative of a causal
function f (f(t) = 0 ∀t ≤ 0), is given by [35, section
2.8.4]:

L {pνx(t)} = sνX(s), (8)

s denoting the Laplace variable. This result proves to be
also in accordance with the classic rational case when ν
is an integer.

Definition 2.2 (Local S-commensurability) A
MISO system, for a given model structure (2), has local
S-commensurate orders νk if each subsystem Gk has its
own S-commensurate order (see Definition 2.1)

νk = α1,k for k = 1, . . . , K.

Therefore, each transfer function can be rewritten as:

Gk(p) =

Mk∑
j=0

bj,kp
jνk

1 +
Nk∑
i=1

ai,kpiνk

. (9)

Definition 2.3 (Global S-commensurability) A
MISO system, for a given model structure (2), has a
global S-commensurate order ν if all its subsystems have
the same S-commensurate order according to Definition
2.2 :

ν = α1,1 = α1,2 = · · · = α1,K ,

Therefore, each transfer function can be rewritten as:

Gk(p) =

Mk∑
j=0

bj,kp
jν

1 +
Nk∑
i=1

ai,kpiν
. (10)

For an S-commensurate FOS, the most used stability
theorem is the one proposed by Matignon [26] extended
to commensurate orders between 1 and 2.

Theorem 2.1 (Stability theorem, SISO case) Let
G1 be a SISO S-commensurate transfer function and ν

its S-commensurate order. G1(s) = Qν(s)
Pν(s)

is stable, in

the bounded input bounded output sense, if and only if:

0 < ν < 2 (11)

and

∀sk ∈ C, Pν(sk) = 0 such as | arg(sk)| > ν
π

2
. (12)

2

As in the rational case, if all subsystems are stable then
the MISO fractional system is stable too.

2.3 Problem formulation

The objective is to estimate the parameters of the MISO
model S described by equation (1) by using H samples
of input/output data {u1(th), ..., uK(th), y∗(th)}Hh=1, be-
tween t1 = 0 and tH = tfinal.

The parameter vector, θ, is defined as

θ =

[
ρ

µ

]
(13)

• where ρ gathers all the MISO transfer function co-
efficients

ρ =
[
ρT1 , . . . , ρ

T
K

]T
(14)

with

ρTk = [b0,k, b1,k, . . . , bMk,k, a1,k, . . . , aNk,k]

for k = 1, . . . ,K; hence, ρ has a total number of

coefficients of
∑K
k=1(Nk +Mk + 1)

• and where µ gathers all the MISO transfer function
differentiation orders, that can be defined according
to the following cases,

Case 1: if a global S-commensurate order is sought,
then the differentiation order vector is reduced
to a single parameter

µ = ν; (15)

Case 2: if local S-commensurate orders are sought, then
the differentiation order vector is extended to
K parameters

µ =
[
ν1, . . . , νK

]T
; (16)

Case 3: if the MISO model is non commensurate, then
µ gathers all the differentiation orders

µ =
[
µT1 , . . . , µ

T
K

]T
(17)

with

µTk =
[
β0,k, β1,k, . . . , βMk,k, α1,k, . . . , αNk,k

]
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for k = 1, ...,K; hence, µ has a total number of

differentiation orders of
∑K
k=1(Nk +Mk + 1).

It is well known that the methods based on least squares
give biased parameters in presence of noise affecting the
output measurements. To solve this problem, methods
based on instrumental variables are used.

3 Refined Instrumental Variable for Continuous-
time fractional models

In this section, the true model structure is assumed
known as well as all the fractional differentiation orders.
Thus, only the linear coefficients of the MISO models
are estimated. Hence, the unknown parameter vector θ
is reduced to ρ.

3.1 Recall of the srivcf algorithm for SISO models [43]

The srivcf approach was developed in [43] for SISO sys-
tem identification by fractional models and is based on
turning maximum likelihood estimation on a pseudo-
linear form that involves optimal prefilters.

Consider a SISO fractional system, as defined in (1)
(with K = 1), corrupted by a white additive measure-
ment noise. The unknown parameter vector θ is reduced
to θ1 = ρ1, and consequently, only dependencies on ρ1
are highlighted in the following equations.

According to the prediction error method, a suitable er-
ror function ε1 can be defined as an output error:

ε1(t, θ) = y∗(t)− B1(p, θ)

A1(p, θ)
u(t), (18)

or even,

ε1(t, θ) =A1(p, θ)

(
1

A1(p, θ)
y∗(t)

)
−B1(p, θ)

(
1

A1(p, θ)
u(t)

)
. (19)

This expression well shows that the optimal prefilter, to
be applied on both input and output signals, is

F opt1 (p) =
1

A1(p, θ)
, (20)

a transfer function which cannot be obtained in prac-
tice, as θ and consequently A1(p, θ) are unknown. To
solve this problem, an iterative procedure is usually im-
plemented, to iteratively adjust the estimates until con-
vergence. Hence, the following filter is initialized and

computed iteratively:

F iter(p) =
1

Â1(p, θ̂iter)
=

1

1 +
N∑
i=1

âi,1pαi,1
, (21)

where iter = 1, 2, . . . denotes the iteration number, and
âi,1 is the coefficient estimated at iter. The detailed al-
gorithm can be found in [43].

Moreover, it is shown in [43], when the quasi-stationary
input signal is persistently exciting and the noise signal
is white with zero mean, that the srivcf algorithm is
asymptotically unbiased thanks to the IV mechanism.

3.2 srivcf algorithm for MISO models

One of the contributions of this paper is to propose an
extension of the SISO srivc method to fractional MISO
models described by (1). It can also be considered as a
generalized extension of rational MISO system case, as
developed in [10], to fractional MISO models.

The basic idea is to estimate the coefficients vector ρk,
for each subsystem Gk, k = 1, . . . ,K, while assuming
that all the other coefficients ρn (with n 6= k) are known,
by applying the SISO version of the srivcf algorithm, as
proposed in section 3.1.

As a consequence, a suitable error function εk, associated
with the submodel Gk, is defined as follows:

εk(t, θ) = xk(t, θ)− yk(t, θ), k = 1, ...,K (22)

where yk is the noise-free part of xk:

xk(t, θ) = y∗(t)−
K∑
n=1
n 6=k

yn(t, θ). (23)

Relation (22) can be rewritten as:

εk(t, θ) =Ak(p, θ)

(
1

Ak(p, θ)
xk(t, θ)

)
−Bk(p, θ)

(
1

Ak(p, θ)
uk(t)

)
, (24)

which well shows that the optimal prefilter, to be applied
on both input and output signals, is

Fopt,k(p) =
1

Ak(p, θ)
, (25)

a transfer function which cannot be obtained in practice,
as θ and consequently Ak(p, θ) are unknown.
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To solve this problem, again, an iterative procedure is
applied, which is intended to iteratively adjust the es-
timates until convergence. Hence, the following filter is
initialized and computed iteratively:

F iter
k (p) =

1

Âk(p, θ̂iter)
=

1

1 +
Nk∑
i=1

âi,kpαi,k
, (26)

where iter = 1, 2, . . . denotes the iteration number, and
âi,k is the coefficient estimated at iter.

The MISO version of srivcf is described in algorithm 1.

Algorithm 1 Summary of the MISO-srivcf algorithm
for coefficient estimation

Step 1: Initialization
iter = 0
Initialize the parameter vector θ0 = ρ0

Step 2: Iterative IV estimation

for each subsystem k = 1, . . . ,K
do
i. iter = iter + 1

Update the auxiliary model with parameter

vector θ̂iter−1:

Ĝiter
k (p, θ̂iter−1) =

B̂iter
k (p, θ̂iter−1)

Âiter
k (p, θ̂iter−1)

and generate the instruments:

yk(t, θ̂iter−1) = Ĝiter
k (p, θ̂iter−1)uk(t).

ii. Compute the response xk(t, θ̂iter−1k ) to uk(t):

xk(t, θ̂iter−1) = y∗(t)−
K∑
n=1
n 6=k

yn(t, θ̂iter).

iii. Update the prefilter:

F iter
k (p) =

1

Âk(p, θ̂iter−1)
.

iv. Evaluate the prefiltered derivatives:
pβj,kuk,f (t) = pβj,kF iter

k (p)uk(t)

pαi,kyk,f (t) = pαi,kF iter
k (p)yk(t)

pαi,kxk,f (t) = pαi,kF iter
k (p)xk(t).

v. Compute the new estimates

ρ̂iterk =
(

Φivk,f
T

Φ∗k,f

)−1
Φivk,f

T
Xk,f

where the instrumental matrix is

Φivk,f =
[
ϕivk,f (t1), ..., ϕivk,f (tH)

]T
ϕivk,f (t) =

[
pβ0,kuk,f (t)... pβMk,kuk,f (t)

−pα1,kyiterk,f (t)...− pαNk,kyiterk,f (t)

]
,

the regression matrix is

Φ∗k,f =
[
ϕ∗k,f (t1), ..., ϕ∗k,f (tH)

]T
,

ϕk,
∗
f (t) =

[
pβ0,kuk,f (t)... pβMk,kuk,f (t)

−pα1,kxiterk,f (t)...− pαNk,kxiterk,f (t)

]
and the filtered output vector is

Xk,f = [xk,f (t1), ..., xk,f (tH)]
T
.

vi. Update the parameter vector

θ̂iter =
[
ρ̂iter1 , . . . , ρ̂iterk , . . . , ρ̂iterK

]T
.

while

dim ρ̂k∑
j=1

∣∣∣∣∣ ρ̂iterk,j − ρ̂
iter−1
k,j

ρ̂iterk,j

∣∣∣∣∣ > ε1

where ρ̂iterk,j corresponds to the j-th element of

the parameter vector ρ̂iterk at iteration iter and
ε1 is a scalar that is set for a given precision of
the estimates.

Step 3: Compute the parametric covariance matrix Pρ

Pρ = σ̂2diag (Pρ1 , . . . , PρK ) (27)

where, for k = 1, ...,K

Pρk =
(

Φivk,f
T

Φivk,f

)−1
(28)

and σ̂2 being the variance of the empirical esti-
mation of the noise given by:

y∗(t)−
K∑
k=1

yk(t)

where yk(t) is calculated at the last iteration.

When the noise signal is normally distributed, the srivcf
estimates can be interpreted in optimal statistical terms
yielding consistent estimates with minimum variance,
assessed by comparing the covariance matrix to the best
possible accuracy given by the Cramér -Rao lower bound
(CRB) [16,39,51]. Thus, the CRB can be computed as:

PCRBρ =
σ2

H
diag

(
PCRBρ1 , . . . , PCRBρK

)
(29)
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where σ2 is the true noise variance and

PCRBρk
=
(
E
[
ϕiv,optk,f (th)

T
ϕiv,optk,f (th)

])−1
(30)

are obtained with the optimally noise-free pre-filtered
IV vector:

ϕiv,optk,f (th) = F optk (p)

[
pβ0,kuk(th)... pβMk,kuk(th)

−pα1,kyk(th)...− pαNk,kyk(th)

]T
,

(31)
filtered with the optimal filter:

F optk (p) =
1

Ak(p, θ)
. (32)

3.3 Simulation example 1 — identification of a global
S-commensurate system

Consider a simulation example where the data are gene-
rated from the MISO system:

S1 :



y1(t) = 1
3p0.25+1u1(t),

y2(t) = 2
2p0.5+1u2(t),

y3(t) = 5
p0.75+1u3(t),

y(t) =

3∑
k=1

yk(t)

y∗(th) = y(th) + e(th).

(33)

Three uncorrelated pseudo random binary sequences
(prbs), ui for i = 1, 2, 3, are applied to (33). The inputs
are persistent and excite the subsystems in an appro-
priate frequency band. The length of each prbs is set
to 3 × τmax, where τmax = max(31/0.25, 21/0.5, 11/0.75).
The sum of the three output responses provides the
noise-free output y(t), which is corrupted by a zero
mean Gaussian white noise, with a noise to signal ratio
(NSR) set to −20dB, to produce the output measure-
ment y∗(t) (see Fig. 2). In this simulation, the sampling
period is set to T = 0.05s.

All simulations have been carried out with the CRONE
toolbox developed in Matlab® , which is dedicated to
fractional calculus, fractional system simulation and sys-
tem identification with fractional models 3 .

3 The new version of the CRONE toolbox is an object-
oriented version with several classes defined for fractional
models (LTI, explicit form, implicit form, ZPK, state-space
representation, etc.). This CRONE toolbox is freely available
at http://archive.ims-bordeaux.fr/CRONE/toolbox/
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Fig. 2. Input/output data used for the identification of sys-
tem (33)

3.3.1 Coefficient estimation with known differentiation
orders

Assume that the true model structure is described for
each subsystem k = 1, . . . , 3 by:

Gk(t) =
b0,k

1 + a1,kpα1,k
, (34)

and that the differentiation orders are known as in (33).
The objective is to estimate the coefficients of all the
subsystems and to check the efficacy of the algorithm
through a Monte Carlo analysis, with 75 runs.

Table 1 illustrates the synthesis of the Monte Carlo simu-
lation and the performances of the MISO srivcf method.
Thanks to the IV mechanism, the MISO srivcf algorithm
provides consistent unbiased estimates and low variance,
this latter being confirmed by comparing the Euclidean
norms of the covariance matrix and the CRB:

‖Pρ‖2 = 2.107 10−3 ≥
∥∥PCRBρ

∥∥
2

= 1.619 10−3.

3.3.2 Coefficient estimation with unknown differentia-
tion orders

In practice, the differentiation orders are not always
known a priori. Let us now evaluate the influence of a
global S-commensurate order estimation by computing
the cost function, defined as the `2-norm of the norma-
lized output error:

JdB(θ̂) = 10 log
||ε(t, θ̂)||22
||ŷ(t)||22

(35)
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Table 1
Monte Carlo simulation of 75 runs for coefficient estimation
with the MISO srivcf (ρ̄ is the mean and σ̂ρ the standard
deviation)

True srivcf

ρ ρ̄ σ̂ρ

b0,1 1 1.0096 0.0919

a1,1 3 3.0161 0.3623

b0,2 2 1.9996 0.0349

a1,2 2 1.9983 0.0481

b0,3 5 5.0017 0.0122

a1,3 1 1.0009 0.0046

where the output error ε(t, θ̂) is defined as:

ε(t, θ̂) = y∗(t)− ŷ(t, θ̂) (36)

and the estimated output ŷ(t, θ̂) is defined as:

ŷ(t) =
K∑
k=1

yk(t). (37)

Varying the global S-commensurate order, between ν =
0.35 and ν = 1.35, and applying the srivcf method on
the MISO system (33), the cost function J , defined in
(35), is computed for different global S-commensurate
orders and plotted in Fig. 3.

If all submodels were in the same model class as the true
subsystems, the minimum of the cost function would
have equalled the NSR = −20dB. Here, the minimum of
the cost function is found at ν = 0.75 and equals−19dB.
Consequently, the modeling error is approximately equal
to 1dB. For ν = 0.6 the cost function is around −16dB,
with a modeling error around 4dB.

This simulation result motivates estimating the frac-
tional differentiation orders, as they may considerably
influence the results.

4 Differentiation order estimation

4.1 Two-stage algorithm for coefficient and differenti-
ation order estimations

In the case when the differentiation orders are unknown,
it is helpful to consider order estimation along with the
transfer function coefficients. A two stage algorithm is
proposed to identify all the parameters (coefficients and
differentiation orders): the srivcf MISO algorithm is used
for coefficient estimation and a gradient-based algorithm
is used for differentiation order optimization.
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Fig. 3. Cost function versus the global S-commensurate order
in example 1

Two-stage algorithms have been used in the literature
in different contexts (see. e.g. [1,27,36,38,43]). Although
they do not have a proof of convergence, it has been
noted in these references that they do often converge to a
minimum. Moreover, the latter reference has successfully
estimated the parameters with the same strategy applied
to SISO systems. Three variants of order optimization
algorithm are proposed: the first variant has the smallest
number of parameters and is used as a good initial hit for
the second variant which in turn is used as a good initial
hit for the third variant which is the most general case.

4.2 Differentiation order estimation

The estimation problem is formulated as a minimization
problem of the `2-norm:

J(θ̂) =
1

2

∥∥∥ε(t, θ̂)∥∥∥2
2

=
1

2
ETE, (38)

where

E =
[
ε(t1, θ̂), . . . , ε(tH , θ̂)

]T
,

contains the output error ε(t, θ̂) defined in (36) for all
the instants.

A Gauss–Newton algorithm (see [19, chap. 10]) is used
for the estimation of the differentiation orders. This al-
gorithm allows to iteratively compute the differentiation
order vector µiter:

µiter = µiter−1 − λ
[
H −1 ∂J

∂µ

]
(39)

where λ is a weighting factor, ∂J∂µ is the gradient defined
as

∂J

∂µ
= ΥTE, (40)
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where

ΥT =
[
∂ε
∂µ (t1, θ̂), . . . ,

∂ε
∂µ (tH , θ̂)

]
(41)

and H is the approximated Hessian given by

H = ΥTΥ. (42)

The differentiation order µ is set to any vector: (15), (16)
or (17), according to whether the global S-commensurate
order is estimated, the local ones, or all the orders. The

error sensitivity function ∂ε(t,θ̂)
∂µ is computed accordingly.

Case 1: If µ is defined as a global S-commensurate order
ν for all subsystems such as in (15), then

∂ε

∂µ
=
∂ε

∂ν
= −

K∑
k=1

∂ŷk
∂ν

. (43)

where the output sensitivity functions are given,
for k = 1, . . . , K:

∂ŷk
∂ν

=

Mk∑
j=0

jb̂j,kp
jν +

Mk∑
j=0

Nk∑
i=1

(j − i)b̂j,kâi,kp(i+j)ν


× ln(p)(
1 +

Nk∑
i=1

âi,kpiν
)2uk(t). (44)

Case 2: If µ is defined as the vector of local S-
commensurate orders νk, as in (16), then

∂ε

∂µ
=

[
∂ε

∂ν1
, . . . ,

∂ε

∂νK

]
=

[
−∂ŷ1
∂ν1

, . . . ,−∂ŷK
∂νK

]
. (45)

where the output sensitivity functions are given
for k = 1, . . . ,K:

∂ŷk
∂νk

=

Mk∑
j=0

jb̂j,kp
jνk +

Mk∑
j=0

Nk∑
i=1

(j − i)b̂j,kâi,kp(i+j)νk


× ln(p)(
1 +

Nk∑
i=1

âi,kpiνk
)2uk(t). (46)

Case 3: If µ is the vector of all the differentiation orders,
as in (17), then

∂ε

∂µ
=

[
∂ε

∂µT1
, . . . ,

∂ε

∂µTK

]T
, (47)

∂ε

∂µTk
=

[
− ∂ŷk
β0,k

, ...,− ∂ŷk
∂βMk,k

,− ∂ŷk
∂α1,k

, ...,− ∂ŷk
∂αNk,k

]
(48)

with k = 1, ...,K and the output sensitivity
functions are given by:

∂ŷk
∂βj,k

=
ln(p)b̂j,kp

β̂j,k

1 +
Nk∑
i=1

âi,kpα̂i,k
uk(t)

∂ŷk
∂α`,k

=

ln(p)â`,kp
α̂`,k

Mk∑
j=0

b̂j,kp
β̂j,k

(
1 +

Nk∑
i=1

âi,kpα̂i,k
)2 uk(t),

(49)

for j = 0, ...,Mk, ` = 1, ..., Nk.

4.3 Summary of the MISO-oosrivcf algorithm

The MISO-oosrivcf main steps are summarized in algo-
rithm 2 where the differentiation order vector µ is esti-
mated along with the coefficients.

Algorithm 2 Summary of MISO-oosrivcf algorithm for
all parameter estimation

Step 1: Initialization
iter = 0
Initialize µ̂0 and compute ρ̂0 with the srivcf
method.

With θ̂0 =

[
ρ̂0

µ̂0

]
, compute the cost function

J(θ̂0) from (38).
Step 2: Iterative all parameter estimation
do

i. iter = iter + 1
ii. Coefficient estimation

Compute the coefficient vector ρ̂iter with
MISO-srivcf (see algorithm 1)

iii. Differentiation order estimation
Initialize λ = Λ (usually to 1)

do

a. Evaluate the cost function J

([
ρ̂iter

µ̂iter−1

])
from (38)

b. Refine the order estimate µ̂iter:

µ̂iter = µ̂iter−1 − λ
[
H −1 ∂J

∂µ

]
µ=µ̂iter−1

(50)

c. Evaluate J

([
ρ̂iter

µ̂iter

])
from (38)

9



d. Set λ = λ
2

while J

([
ρ̂iter

µ̂iter

])
> J

([
ρ̂iter

µ̂iter−1

])
iv. Form the parameter vector θ̂iter:

θ̂iter =

[
ρ̂iter

µ̂iter

]

while

dim ρ̂k∑
`=1

∣∣∣∣∣ θ̂iter` − θ̂iter−1`

θ̂iter−1`

∣∣∣∣∣ > ε2

where θ̂iter` corresponds to the `-th element of the

order vector θ̂iter at iteration iter

Step 3: Compute the parametric covariance matrix Pθ:

Pθ = σ̂2H −1

with σ̂2 being the variance of the empirical estimation of
the noise given by:

y∗(t)−
K∑
k=1

yk(t)

where yk(t) is calculated at the last iteration and the ap-
proximated Hessian H is given in (42).

Note that ε1 in algorithm 1 and ε2 in algorithm 2 are
scalars that are set for a given precision of the estimates.

After convergence of θ̂, the parametric covariance ma-
trix can be computed by using the approximated Hes-
sian, defined as in (42), where the appropriate Υ is now
defined by

ΥT =
[
∂ε
∂θ (t1, θ̂), . . . ,

∂ε
∂θ (tH , θ̂)

]
. (51)

The discretized sensitivity functions, ∂ε(t,θ̂)
∂θ , with re-

spect to all parameters in θ, are defined as

∂ε(t, θ̂)

∂θ
=

[
∂ε(t,θ̂)
∂ρ

∂ε(t,θ̂)
∂µ

]
(52)

where ∂ε
∂µ is given according to whether the global S-

commensurate order (43), the local S-commensurate or-
ders (45) or all differentiation orders (47) are estimated
and

∂ε

∂ρ
=

[
∂ε

∂ρT1
, ...,

∂ε

∂ρTK

]T
(53)

where

∂ε

∂ρTk
= −

[
∂ŷk
∂b0,k

, ...,
∂ŷk

∂bMk,k
,
∂ŷk
∂a1,k

, ...,
∂ŷk

∂aNk,k

]
. (54)

Here ∂ŷk
∂bj,k

and ∂ŷk
∂ai,k

are the output sensitivity functions,

given by:

∂ŷk
∂bj,k

=
pβ̂j,k

1 +
Nk∑
i=1

âi,kpα̂i,k
uk(t), ∀j = 0, ...,Mk, (55)

∂ŷk
∂ai,k

=

−
Mk∑
j=0

b̂j,kp
β̂j,k+α̂i,k

(
1 +

Nk∑
i=1

âi,kpα̂i,k
)2uk(t), ∀i = 1, ..., Nk (56)

with k = 1, ...,K.

4.4 Simulation examples

In this section, two examples are treated to illustrate
the convergence and the efficacy of the proposed MISO-
oosrivcf algorithm. In the first example, the system is
described with local S-commensurate order subsystems.
First, a global S-commensurate order is estimated which
is then used for initializing the following stage: local S-
commensurate order estimation. In the second example,
the commensurability constraint is released so that all
differentiation orders of each subsystem are estimated:
first, a global S-commensurate order is estimated for all
subsystems which is used for initializing the following
stage with local S-commensurate orders which in turn
initializes the final stage for the estimation of all differen-
tiation orders.

4.4.1 Example 2 — S-commensurate order estimation
combined with the srivcf algorithm

The data generating system (33) is used as described in
section 3.3. The model structure is set as the true one
(34):

ν = α1,1 = α1,2 = α1,3. (57)

When estimating a global S-commensurate order and
after initializing it to ν = 1.1, the MISO-oosrivcf algo-
rithm converges to:

Ŝ :


Ĝ1(s) =

0.273

0.2118s0.751 + 1

Ĝ2(s) =
1.121

0.760s0.751 + 1

Ĝ3(s) =
4.878

0.9676s0.751 + 1
,

(58)

which is coherent with Fig. 3.

In this case, the cost function (35) is equal to −19.1dB.
Recalling that the NSR equals −20dB, the `2-norm of
the modeling error is evaluated to 0.9dB at the estimated
global S-commensurate order model (58).
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Table 2
Monte Carlo simulation with 75 runs for the estimation of
local S-commensurate orders and coefficients (θ̄ is the mean
and σ̂θ the standard deviation of the estimates)

True oosrivcf-MISO

θ ¯̄θ σ̂θ

b0,1 1 1.0053 0.0843

a1,1 3 3.0138 0.2998

α1,1 0.25 0.2495 0.0122

b0,2 2 2.0019 0.0459

a1,2 2 2.0056 0.0655

α1,2 0.5 0.5006 0.0053

b0,3 5 5.0180 0.0103

a1,3 1 1.0062 0.0034

α1,3 0.75 0.7497 0.0012

Recall that the true system (33) is a local S-commensu-
rate system according to definition 2.2. In this first vari-
ant, a global S-commensurate model is sought and the
estimated model has converged to model (58). The sub-

models Ĝ1 and Ĝ2 have not converged to the true lo-
cal S-commensurate models. Therefore they are not in
the same class of the true submodels. Consequently,
their corresponding estimated coefficients compensate
the modeling errors linked to the differentiation orders.
On the contrary, submodel Ĝ3 has converged to its true
local S-commensurate order, probably due to its high
gain, as compared to the static gains of G1 and G2. Con-
sequently, its corresponding estimated coefficients have
converged to the true ones (up to the noise effect).

For the second variant, the parameters of system (58) are
used as initialization to evaluate local S-commensurate
orders. A Monte Carlo simulation with 75 runs has
been carried out with difrerent noise realizations and a
NSR = −20dB. The results are provided in table 2, with
a mean value close to the true local S-commensurate
orders. The proposed MISO-oosrivcf algorithm for lo-
cal S-commensurate orders and coefficient estimation is
therefore validated as the estimated parameters have
converged to the true ones with a very low variance.

Fig.4 well shows that, by using the system Ŝ defined
in (58) as an initial hit, the MISO-oosrivcf algorithm
converges to the true local S-commensurate orders.
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Fig. 4. S-commensurate order estimation versus number of
iterations in example 2

4.4.2 Example 3 — All differentiation order estimation
combined with the srivcf algorithm

Consider now the following MISO system where the com-
mensurability constraint is released for all subsystems:

S3 :


G1(s) =

1

1 + 1.5s1.2 + 0.5s2.8

G2(s) =
0.5

1 + 1.5s1.1 + 0.4s2.5

G3(s) =
1.5

1 + 1.5s0.7 + 0.6s1.6
.

(59)

The input signals plotted in Fig.2, are again used for
system identification. The noise-free output y(t), is cor-
rupted by a zero mean Gaussian white noise, with a
greater noise level NSR = −10dB, and the sampling pe-
riod is set to T = 0.2s.

The model structure is set, as the true one, to:

Gk =
b0,k

1 + a1,ksα1,k + a2,ksα2,k
, for k = 1, 2, 3. (60)

The goal is to estimate all the differentiation orders along
with all the coefficients of the three subsystems.

Fig. 5 illustrates the evolution of all differentiation order
estimation. In the first stage, a global S-commensurate
order ν (—) is estimated; then local S-commensurate
orders are estimated in the second stage (ν1 = α1,1 for
G1 (– –), ν2 = α1,2 for G2(– - ) and ν3 = α1,3 for G3(–
*–)). Finally, at the last stage, the S-commensurability
constraint is released and all differentiation orders are
well estimated.

At this third stage, after the local S-commensurate order
estimation (at iteration 41 in Fig. 5), when releasing the
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S-commensurability constraint, the immediate following
differentiation orders are fixed to the double of the local
S-commensurate order: α2,1 = 2× ν1, α2,2 = 2× ν2 and
α2,3 = 2× ν3.

Fig. 6 illustrates the criterion evolutions with respect to
the three stages, and confirms that all parameters, as
well the differentiation orders as the coefficients, have
been correctly estimated with the full MISO-oosrivcf al-
gorithm. Note that:

• for the first stage, when a global S-commensurate
order is estimated for all subsystems, the cost func-
tion J = −8.24dB, so the `2-norm of the modeling
error is around 1.76dB (see J1 in Fig. 6);

• for the second stage when local S-commensurate
orders are estimated, the cost function JdB =
−8.96dB, so the `2-norm of the modeling error has

Table 3
Monte Carlo simulation with 50 runs for the estimation of
differentiation orders and coefficients (θ̄ is the mean and σ̂(θ)
the standard deviation of the estimates) with NSR = −10dB

True MISO oosrivcf

θ θ̄ σ̂θ

b0,1 1 1.0022 0.0194

a1,1 1.5 1.4989 0.0351

a2,1 0.5 0.5035 0.0286

α1,1 1.2 1.1952 0.0191

α2,1 2.8 2.7930 0.0277

b0,2 0.5 0.5069 0.0332

a1,2 1.5 1.4981 0.0927

a2,2 0.4 0.4332 0.1022

α1,2 1.1 1.0797 0.0774

α2,2 2.5 2.4832 0.1743

b0,3 1.5 1.4930 0.0567

a1,3 1.5 1.5306 0.1367

a2,3 0.6 0.5823 0.1315

α1,3 0.7 0.7242 0.0558

α2,3 1.6 1.6282 0.1209

decreased to 1.04dB (see J2 in Fig. 6);
• for the last stage, when all differentiation orders are

estimated without any constraint, the cost function
JdB = −10.08dB, so the `2-norm of the modeling
error is around zero dB (see J3 in Fig. 6).

A Monte Carlo simulation with different noise realiza-
tions with 50 runs has been carried out and the results
are provided in table 3, with a mean value close to the
true parameters and with a low estimation variance.
The proposed MISO-oosrivcf algorithm for differentia-
tion order and coefficient estimation is therefore vali-
dated in this example as the estimated parameters have
converged to the true ones.

5 Conclusion

This paper has presented an optimal instrumental vari-
able method for estimating transfer function coefficients
of fractional MISO differential systems when the out-
put is corrupted by an additive white noise. The well-
known srivc (srivcf for fractional systems) algorithm has
been extended for estimating transfer function coeffi-
cients of fractional MISO models when all differentia-
tion orders are set according to prior knowledge. When
the prior knowledge is not available, a two stage al-
gorithm has been developed, which combines simulta-
neously the coefficient estimation through the MISO-
srivcf algorithm and the differentiation order estimation
through a gradient-based algorithm. Three variants have
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been proposed: a global S-commensurate order is esti-
mated for the whole fractional MISO system, or local S-
commensurate orders are estimated for each subsystem,
or even all differentiation orders are estimated without
the commensurability constraint. An initialization pro-
cedure is proposed, consisting of estimating a global S-
commensurate model first, then local S-commensurate
orders, and finally all differentiation orders. The perfor-
mances of the proposed algorithms have been evaluated
by Monte Carlo simulation analysis. In a future work, it
would be interesting to develop techniques to help fixing
the number of parameters when the MISO model struc-
ture is not known. It will also be interesting to extend
this study to deal with colored output noise by using
hybrid Box–Jenkins MISO models with continuous-time
fractional input–output models and discrete-time noise
models. A further extension of the MISO-oosrivcf algo-
rithm could tackle parametric identification with time-
delays.
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