
HAL Id: hal-03722553
https://hal.science/hal-03722553

Submitted on 13 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Incremental Capacity Parametric Model Based on
Logistic Equations for Battery State Estimation and

Monitoring
Matthieu Maures, Romain Mathieu, Armande Capitaine, Jean-Yves Delétage,

Jean-Michel Vinassa, Olivier Briat

To cite this version:
Matthieu Maures, Romain Mathieu, Armande Capitaine, Jean-Yves Delétage, Jean-Michel Vinassa,
et al.. An Incremental Capacity Parametric Model Based on Logistic Equations for Battery State
Estimation and Monitoring. Batteries, 2022, 8 (5), pp.39. �10.3390/batteries8050039�. �hal-03722553�

https://hal.science/hal-03722553
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Maures, M.; Mathieu, R.;

Capitaine, A.; Delétage, J.-Y.; Vinassa,

J.-M.; Briat, O. An Incremental

Capacity Parametric Model Based on

Logistic Equations for Battery State

Estimation and Monitoring. Batteries

2022, 8, 39. https://doi.org/10.3390/

batteries8050039

Received: 14 March 2022

Accepted: 20 April 2022

Published: 22 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

An Incremental Capacity Parametric Model Based on Logistic
Equations for Battery State Estimation and Monitoring
Matthieu Maures, Romain Mathieu * , Armande Capitaine, Jean-Yves Delétage, Jean-Michel Vinassa
and Olivier Briat

Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France;
matthieu.maures@optikan.com (M.M.); armande.capitaine@u-bordeaux.fr (A.C.);
jean-yves.deletage@u-bordeaux.fr (J.-Y.D.); jean-michel.vinassa@u-bordeaux.fr (J.-M.V.);
olivier.briat@u-bordeaux.fr (O.B.)
* Correspondence: romain.mathieu@u-bordeaux.fr; Tel.: +33-540008345

Abstract: An incremental capacity parametric model for batteries is proposed. The model is based
on Verhulst’s logistic equations and distributions in order to describe incremental capacity peaks.
The model performance is compared with polynomial models and is demonstrated on a commercial
lithium-ion cell. Experimental data features low-current discharges performed at temperatures
ranging from −20 ◦C to 55 ◦C. The results demonstrate several advantages of the model compared
to empirical models. The proposed model enables a clear description of the geometric features of
incremental capacity peaks. It also doubles as an open circuit voltage model as the voltage curve can
be fully recovered from parameterization on incremental capacity curves. The study of temperature
sensitivity show that peak geometric parameters can be modelled as a function of temperature. An
example of practical application is then displayed by using the model to estimate battery state-of-
charge from voltage and temperature measurements. This example can expand to other practical
applications for battery management systems such as state-of-health monitoring.

Keywords: lithium-ion batteries; battery management system; incremental capacity; parametric
model; temperature sensitivity; OCV model; SoC estimation; SoH monitoring

1. Introduction

Lithium-ion batteries are widely used in a variety of applications ranging from small
portable electronics to multi-kWh systems such as electric vehicles (EVs) or grid energy
storage. To ensure safety, operability, and long lifetime of the batteries, a battery manage-
ment system (BMS) is integrated with the battery pack. A BMS can be made of a single
system connected to each cell in the pack or it can be split into a master controller and
multiple slave modules [1]. It generally fulfills three tasks: acquisition, estimation, and
control [2]. Acquisition consists of measuring voltage, current and temperature of either
the pack or subparts of the pack, down to the cell. The purpose of estimation is to evaluate
both the state-of-charge (SoC) and the state-of-health (SoH) of each individual cell, based
on cell models and/or algorithms. Control revolves around balancing the cells to avoid
SoC disparities which could lead to safety issues or important gaps between batteries
SoHs. This control is generally optimized to meet specific requirements for the application,
meaning the estimation method will be responsible for how well the battery pack performs
and lasts.

SoC estimation in BMS directly relies on cell voltage measurements jointly with
algorithms based on a model of the cell electrical behavior [3,4]. The voltage of a lithium-
ion cell is comprised of two parts. The first part has a thermodynamic origin and is called
the open-circuit voltage (OCV), which is the voltage in steady-state. The second part has a
kinetic part, which consists of overvoltage caused by internal phenomena in the cell [5]. The
models used for SoC estimation thus contain these two parts, whether they can be classified
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as electrochemical models (physical, close to first principles) [6], equivalent circuit model
(electrical, empirical) [7], or data-driven (statistical, black-box) [8]. Moreover, it has been a
recent trend to couple these different methods for improved results such as physics-based
equivalent circuit models [9] and physics-informed data-driven methods [10]. The rest of
this article focuses on the OCV part of the cell voltage.

The OCV can be obtained through cell voltage measurements by either waiting for
the steady-state, mathematically subtracting the influence of the voltage relaxation [11],
or approximating it by performing low-current current charge or discharge to approach
the steady-state [12]. The OCV primarily depends on the cell electrode materials [13].
In addition, the OCV also depends on cell temperature and varies with cell degradation
throughout its service life [14]. To summarize, the accuracy of the SoC estimation strongly
depends on the accuracy of the OCV model and there have been intense research efforts to
improve it. Ideally, the OCV model must be robust and easily adaptable to different cell
materials, temperatures, and ageing states.

Several approaches to OCV modelling can be distinguished in the existing literature.
Some studies do not aim to mathematically model the OCV. Instead, the experimentally
measured OCV is implemented as a lookup table for the cell electrical model [15,16]. The
advantages include its simplicity of use and its accuracy, if the lookup table is recorded
at a sufficient SoC resolution. However, the OCV also change with temperature and
ageing. Especially, taking ageing into account in the lookup table is complex as it cannot
be recorded at the beginning of life and several ageing trajectories are possible. Thus,
modeling effort can open new opportunities for considering the modification of OCV by
temperature and ageing, as it is, in theory, possible to describe the OCV curve with less
parameters to be stored, and then to adapt some of these parameters. Other studies propose
empirical OCV models, such as those based on polynomials or other usual mathematical
functions. Zhang et al. investigated the accuracy of OCV models based on polynomials [17].
Polynomial expressions provide good accuracy and are very adaptable to different electrode
chemistries. The main drawback is that these are so distant from OCV physical origin
that their parameters lack physical significance when building a multidimensional model,
such as demonstrated with sensitivity to temperature in the study of Zhang et al. Apart
from polynomials, many examples of empirical models based on different combinations
of usual functions have been proposed and can accurately model the OCV curve [4,18,19].
The main obstacle is that such empirical expressions lack adaptability to different electrode
chemistries, while also suffering from a lack of physical significance such as for polynomial
models. Other studies proposed models closer to the physical origin of OCV by applying
thermodynamic principles. Ohzuku and Ueda, as well as Ali, proposed models based on
modified Nernst equations [20,21]. However, the models lack accuracy because the OCV
does not follow strict Nernstian behavior. To account for this, Karthikeyan et al. developed
a model based on the Redlich-Kister equation [22]. The model shows good accuracy for
different electrode chemistry. However, the evolution of the numerous parameters with
temperature or SoH is not studied. Lavigne et al. proposed a polynomial simplification
of the model from Karthikeyan et al. and studied the evolution of model parameters with
SoH [23]. Birkl et al. proposed an OCV model based on additive terms of the Fermi–Dirac
distribution function [24]. The model shows good accuracy and is adaptable to any Li-
ion cell chemistry. However, it features a high number of parameters (24) to adapt to
varying temperature or SoH. The main drawback of thermodynamic models is that they
often require prior physical knowledge about electrode materials, which makes the model
identification more complex.

Interestingly, other studies have proposed modeling the incremental capacity (IC)
curve instead of the OCV curve [25–28]. The IC is the derivative of the capacity with
respect to voltage and is thus directly linked to the OCV–SoC relationship. The derivation
enables to highlight the phase transitions of electrodes materials, which are plateaus in
the OCV curve, as distinguishable peaks in the IC curve. Incremental capacity analysis
(ICA) has been widely used in the literature as a way to gain insights into electrode
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degradation mechanisms and, more generally, as a way to monitor SoH [29–34]. In our
opinion, modeling the IC curve instead of the OCV curve allows for a direct link between
the need for SoC estimation based on OCV and for SoH monitoring based on ICA. The OCV
can then be easily recovered by derivation without further need for modeling. An IC model
should be both adaptable to different chemistries and robust to different battery states.

In this paper, we thus introduce an IC model for lithium-ion batteries which doubles
as an OCV model. The model is based on additive terms of the so-called logistic functions
derived from Verhulst’s work [35]. The logistic model provides a good compromise between
accuracy and physical meaning. It enables a clear description of the geometric features of
IC peaks, and each parameter can be attributed to physical quantities.

This article follows the subsequent structure. Section 2 gives the theoretical back-
ground of the proposed incremental capacity model. Section 3 details the experimental
methods that were followed to obtain the data. Section 4 analyzes and discusses the results
and includes a comparison of the proposed model accuracy with polynomial empirical
models, an extension to a multidimensional model by accounting for the effect of tempera-
ture, and an example of application of the model for SoC estimation, paving the way for
other usages of the model.

2. Incremental Capacity Parametric Model Based on Logistic Equations

This section gathers the theoretical background of the proposed IC model based on
Verhulst’s logistic equations.

2.1. Open Circuit Voltage and Incremental Capacity

The OCV is the voltage of the cell at a steady state. The cell OCV is the subtraction of
the positive electrode open circuit potential (OCP) by that of the negative electrode. Each
OCP depends on the concentration of lithium ions in the electrode. On the cell level, the
OCV depends on the SoC (the ratio of the amount of capacity left to be discharged on the
maximum discharged capacity).

The electrodes OCP display voltage features that are characteristic of the electrode
materials and of the chemical phase transitions they undergo in the SoC operating window
of the cell [36]. During a bi-phasic transition, the potential of an electrode is independent of
the concentration in lithium ions. Hence, the electrode OCP can exhibit potential plateaus.
At the cell level, the potential plateaus of each electrode can happen jointly or separately
depending on the cell balancing. Thus, the cell OCV displays certain features that depend
on the electrode materials and on electrode balancing. Figure 1a provides an example with
a low-current discharge to approach the steady-state voltage, represented as a function of
the discharged capacity. The voltage curve exhibits features which are characteristic of the
cell studied in this paper, comprising a graphite negative electrode and a lithium-nickel-
cobalt-aluminum oxide positive electrode (see Section 3 for further details).
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As these features are subtle in the voltage curve, it is useful to use derivation to
highlight them. For the so-called incremental capacity IC = f (V), the following derivative
is used

IC(V) =
dQ
dV

(V), (1)

where Q is the capacity (in A.h), which can either be charged Qc or discharged Qd, and
V is the voltage (in volts). Hence, a plateau in the voltage curve, indicating a transition
between two chemical phases, becomes a peak in the IC curve. Figure 1b shows the IC curve
corresponding to the previous voltage curve. The peaks at the cell level are convolutions of
IC peaks of each electrode [30]. The goal of this article is to develop a general modeling
framework of such IC curves, for all battery chemistries and all states.

2.2. Verhulst’s Logistic Equations

Historically, P.-F. Verhulst was looking for a human population model accounting for
limited resources [35]. In his 1845 publication, he proposed a model based on a differential
equation that modifies the Malthusian exponential growth model. The proposed differential
equation and all mathematical details are given in Appendix A, while the main equations
are kept in the main text. The solution of the proposed differential equation is what P.-F.
Verhulst called the logistic equation:

y(t) =
K

1 +
(

K
y0
− 1
)

e−rt
, (2)

where y(t) is the population at a given time t and with initial condition y(t = 0) = y0, r
is the growth rate, and K the carrying capacity (the maximum population a species can
carry given a finite amount of resources). Its derivative is what Verhulst called the logistic
distribution and is written as follow

dy
dt

(t) =
K
(

K
y0
− 1
)

re−rt[
1 +

(
K
y0
− 1
)

e−rt
]2 (3)

The logistic Equation (2) and the logistic distribution (3) are represented for a given set
of parameters in Figure 2 for illustration purposes. The logistic equation is a case of sigmoid
function. It connects asymptotically two parallel segments, defined by the initial population
y0 and the maximum population K. It has an inflection point which corresponds to a peak
for its derivative with symmetry of its left and right side. These geometric properties are
used to model IC peaks in the following.
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w from Equation (5) are illustrated.
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2.3. Incremental Capacity Parametric Model

Each phase transition, corresponding to an IC peak, can be seen as a quantity of the
lithium ions exchanged between electrodes as the charge or discharge process occurs. This
makes Verhulst’s logistic equation and its derivative particularly fitting, because an analogy
between human populations and ions populations can be made. Using this analogy to
model the IC curve, population y becomes the capacity Q and time t becomes the voltage V.

To model one IC peak, it is more convenient to describe the logistic distribution with its
geometric parameters as illustrated on Figure 2. The geometric parameters are its position
p, its height h, and its width w (measured at 94% of the peak’s height, see Appendix A).
They can be expressed from y0, r, and K (see Appendix A) as follows

w = 1
r

h = Kr
4

p = 1
r ln
(

K
y0
− 1
) . (4)

The logistic Equation (2) and the logistic distribution (3) can then be expressed as func-
tions of p, h, and w, and be simplified by using trigonometric functions (see Appendix A).
This process gives the equations that will be used: y(t) = 2hw

[
1 + tanh

(
t−p
2w

)]
dy
dt (t) = h sec h2

(
t−p
2w

) (5)

In order to accurately model an IC = f (V) curve such as that shown in Figure 1b,
additive terms of the derivative of Equation (5) are used to consider the multiple peaks as
expressed in

IC(V) =
N

∑
n=1

hn sec h2
(

V − pn

2wn

)
(6)

where IC is the derivative of Qd over V (in A.h/V), N is the number of peaks considered, n
is the index of each peak, hn is the height (in A.h/V) of the peak n, pn is the position (in V)
of the peak n, and wn is the width (in V) of the peak n.

By precisely fitting each peak, it is possible to obtain a matrix of 3 × N parameters,
and compute the charged or discharged capacity models Q = f (V) using additive terms of
logistic equations based on Equation (5). As the hyperbolic tangent is a strictly increasing
function, the capacity must increase when the voltage increases. Hence, it is the charged
capacity Qc that is expressed as a function of voltage by Equation (7). The discharged
capacity Qd is then easily obtained with Equation (8), where Qd,max is the maximal capacity
measured in discharge. The state-of-charge SoC is finally defined by Equation (9).

Qc(V) =
N

∑
n=1

2hnwn

[
1 + tanh

(
V − pn

2wn

)]
(7)

Qd(V) = Qd,max −Qc(V). (8)

SoC(V) =
Qdmax −Qd(V)

Qdmax

. (9)

The obtained model Q = f (V) is equivalent to the model V = f (Q) or V = f (SoC).
Hence, a model of the OCV curve is obtained in the same process.

2.4. Comparison with Polynomial Models

In order to demonstrate the performance of the proposed logistic model, it is useful to
compare it to a polynomial model.

Generally, polynomial models are defined as a voltage function of SoC, which is
particularly useful for equivalent circuit models [17]. However, for SoC estimations, a
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dedicated SoC (equivalently capacity) function of voltage is required. No general formula
exists for finding the roots of polynomials of 5th or more order. As finding the roots is
necessary to inverse the polynomial, here, two distinct polynomial models must be defined,
one for the SoC (or equivalently capacity), and one for the voltage. The two following
models are defined:

Qd(V) =
N

∑
n=0

anVn (10)

V(Qd) =
N

∑
n=0

bnQd
n, (11)

where an (in A.h/V) and bn (in V/(A.h)) are the polynomials coefficients, N is the order of
the polynomial (which thus have N + 1 parameters), and n is the index for each parameters.

3. Experimental Methods

This section gives the experimental details; namely, the characteristics of the lithium-
ion cell used and the experimental protocol to gather data to fit the model on.

3.1. Cell Characteristics and Test Equipment

One commercial lithium-ion cell was chosen to perform the experiments. The cell is
the Samsung INR18650-25R5 cylindrical 18650. This cell is made of a graphite negative
electrode and a LiNi0.8Al0.15Co0.05O2 (nickel-cobalt-aluminum, NCA) positive electrode. It
has a rated nominal capacity of 2.5 A.h, and an operating voltage window between 2.5 V
and 4.2 V.

The tests were performed on the Cacyssée platform of the IMS laboratory. All the
tests were performed inside a controlled thermal environment with a CLIMATS climatic
chamber. Measurements were performed using the 4-wire method and recorded by a
BioLogic BCS-815 potentiostat connected to a computer and controlled through the BT-Lab
software. Data points were recorded every second.

3.2. Protocol of Experiments

The main goal of the experiments was to obtain low-current discharge data of the
graphite/NCA cell in order to numerically derive the incremental capacity curve and
parameterize the proposed model. Low-current discharges were preferred to other OCV
acquisition methods because it allows us to readily approach the OCV while obtaining
many data points, thus enabling numerical derivation [30]. Measurement starts by a 3 h rest
for thermal and electrical relaxation. Then, a constant-current–constant-voltage (CC-CV)
discharge is performed with a CC current of C/2 (1.25 A) until a cutoff voltage of 2.5 V is
reached and maintained in CV stage until the absolute current drops below C/20 (125 mA).
Immediately after, a CC charge at C/20 (125 mA) is carried out until a cutoff voltage of
4.2 V. Finally, the low-current discharge is recorded in CC mode at C/20 (125 mA) until a
cutoff voltage of 2.5 V. The results constitute the data used in this article. As a side note,
the experimental data were obtained by completely charging and discharging the cell at a
low current rate to demonstrate a proof-of-concept of the method. In real applications such
as electric vehicles, such ideal conditions often cannot be met. However, several methods
to accommodate real conditions and recover the IC curves can be employed such as for
using partial charging data [37] and using higher current rate [38,39]. Additionally, the
OCV hysteresis between charge and discharge that can be observed for certain electrode
chemistries [40] was not taken into account in this work for the sake of succinctness. To
consider the hysteresis, the low rate discharges could be doubled by low rate charges. Then,
the rest of the method should be applied in the same manner, but on charge data.

The other goal of the experiments was to obtain data at different temperatures in
order to demonstrate the suitability of the model when a physical dimension is added
and its application in accurate SoC estimation at varying temperatures. For this, the
previously described low-current discharge test was repeated at different temperature.
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The tested temperatures were, in order: 55 ◦C, 40 ◦C, 25 ◦C, 10 ◦C, 0 ◦C, −10 ◦C, and
−20 ◦C. The experimental protocol is the same as described in the preceding paragraph,
with the temperature change in the thermal chamber being carried out before the 3 h rest
starts. It can be remarked that the discharge rate of C/20 gradually becomes a less good
approximation of the OCV when the temperature decreases due to kinetic limitations [38].
To improve the OCV approximation, the discharge rate can be reduced, although it was
kept constant here for all temperatures to keep the experimental protocol identical.

Incremental capacity data presented in the rest of this article are obtained in the
following way. First, high frequency noise on the measured voltage of low-current discharge
data is filtered. Then, both the voltage and the capacity derivatives are computed using the
gradient function in MATLAB®. Finally, Equation (1) is used to obtain the IC.

Concerning the procedure used to parameterize the compared models, two different
MATLAB® functions were used. For the proposed logistic model, the function lsqcurvefit is
used to solve this nonlinear curve-fitting problem in the least-squares sense. For the two
polynomial models, the function polyfit is used to find the best polynomial coefficients, also
in the least squares sense.

4. Results and Discussions

The obtained experimental data are used to parameterize the proposed IC model.
Before extending the model to a varying temperature, the particular case of 25 ◦C is studied
with a comparison of the proposed model to polynomial models.

4.1. Study of the 25 ◦C Case
4.1.1. Comparison with Polynomial Models

The models described in Section 2 were fitted to the experimental data. This was
carried out for both voltage vs. capacity data and IC vs. voltage data in order to compare
the two approaches to modelling the relationship between voltage and capacity (or SoC).
In this subsection, “Model n◦1” refers to the polynomial Q = f (V) model of Equation (10),
“Model n◦2” refers to the polynomial V = f (Q) model of Equation (11), and “Model n◦3”
refers to the proposed logistic model either in the form IC = f (V) of Equation (6) or
Q = f (V) of Equation (7) depending on the current working data.

As the three compared models are adaptative, they do not contain a fixed number of
parameters. Hence, a comparison of their accuracy against experimental data as a function
of the number of model parameters was first completed. Figure 3 shows the evolution
of the coefficient of determination R2 and the root-mean-square error (RMSE) ε with the
number of parameters for the three compared models and for both voltage vs. capacity
data and IC vs. voltage data.

Based on the R2 criterion, the three compared model show a similar good fit to voltage
vs. capacity data for N = 6 or more parameters (Figure 3a). However, the proposed
model shows clear superiority when looking at IC vs. voltage data (Figure 3b), with
the logistic model being a good fit after only N = 12 or more parameters, whereas the
polynomial models struggle to match these experimental data. Based on the RMSE ε,
the proposed logistic model also shows an advantage. On voltage vs. capacity data, the
logistic model performs equivalently to the polynomial model n◦2 for N = 12 or more
parameters, while polynomial model n◦1 stays a little behind (Figure 3c). On IC vs. voltage
data, the logistic model presents a significantly reduced error compared to the polynomial
models (Figure 3d), showing clear superiority similar to that observed with R2. It can
be noted that the RMSE ε and R2 do not show a monotonic evolution with the order of
polynomials, contrarily to the logistic model with increasing number of parameters. This
behavior is inherent to the nature of polynomial curve-fitting problem, because higher-
order polynomials can be oscillatory and lead to a poorer fit to the experimental data points
(Mathworks.com, “polyfit, Polynomial curve fitting”. URL = “https://fr.mathworks.com/
help/matlab/ref/polyfit.html”, accessed on 7 April 2022).

https://fr.mathworks.com/help/matlab/ref/polyfit.html
https://fr.mathworks.com/help/matlab/ref/polyfit.html
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Based on the results presented in Figure 3, the proposed model shows significative
improvements to fit both the capacity and its derivative. This also allows us to determine
how many peaks can be kept without significantly reducing the accuracy of the model. For
both sets of experimental data and for both fit criteria (R2 and ε), the logistic model shows
already a very good fit to experimental data for N = 15 parameters, while adding more
parameters do not significantly improve the fit. Thus, a number of 15 parameters is selected
for the rest of the study. For the proposed model, this means 5 IC peaks are considered for
this specific cell. For the polynomial models, this corresponds to a 14th order polynomial.

4.1.2. Final Reconstruction

Figure 4 shows the final reconstruction of the proposed logistic model on voltage and
incremental capacity curves with N = 15. It can be seen that the incremental capacity peaks
(Figure 4b) are well described by additive terms of the logistic distribution expressed by
Equation (6). The incremental capacity curve is thus rebuilt. Each IC peak corresponds to a
signature in voltage (Figure 4a), with the multiple contributions adding up to the voltage
curve as expressed in Equation (7).

The end of charge and end of discharge points of the OCV are important for calculating
the capacity. Here, we can observe that both the whole curve in general, and the endpoints
in particular are accurately represented. This is an advantage of fitting the IC curve to
recover the OCV: because peaks are geometrically modeled, the accuracy is intrinsically
dependent on choosing the right number of peaks for the model. Thus, the method is
flexible and would result in a good accuracy for other cell chemistries. Moreover, the
method would work similarly on charge data to consider the voltage hysteresis, with the
IC peaks in the hysteresis voltage window and corresponding logistic model parameters
slightly modified.
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With the number of parameters fixed at N = 15, the fit to experimental data is shown
and compared between the three models in Figure 5.
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When looking at the whole voltage vs. discharge capacity curve (Figure 5a), the three
models show a similar fit to experimental data. However, when looking at the IC curve
(Figure 5b), the proposed model demonstrates its advantage compared to the polynomial
models. It shows a clear geometric description of IC peaks, which is not the case for
polynomials, even at a 14th order.

If the models presented until now fit data in specific conditions (a C/20 discharge
at 25 ◦C on a fresh batterie), the possibility to extend the model to more conditions must
be studied. This is carried out in the following way with different temperatures for the
logistic model. Because the proposed logistic model has already shown its edge at 25 ◦C
and because polynomials are non-physical, meaning that their parameters do not follow a
clear trend with varying temperatures as observed by Zhang et al. [17], polynomial models
are not studied further.

4.2. Study of the Sensitivity to Temperature

Low-current discharges at seven different temperatures were recorded over a wide
range, between −20 ◦C and 55 ◦C. The C/20 discharge experimental data for each tempera-
ture are plotted in Figure 6.
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4.2.1. Maximum Capacity vs. Temperature

Two phenomena caused by temperature can be observed on those curves. Firstly, the
maximum capacity Qd,max that can be discharged from the cell increases with temperature
(Figure 6). This measured maximum capacity has been extracted and reported in Figure 7 as
a function of temperature. It can be modeled empirically by using an exponential law of the
Arrhenius type expressed by Equation (12). The obtained parameters are given by Table 1.

Qdmax (T) = Q0 + Q1

(
1− e−

T−T0
T1

)
(12)
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Table 1. Parameters of Equation (12) model. It has a correlation coefficient R2 of 0.9984 and a
maximum relative error of 0.76%.

Q0 [A.h] Q1 [A.h] T0 [K] T1 [K]

1.82 0.76 253.99 20.09

This maximum capacity quantification is necessary to extend SoC definition of Equa-
tion (9) to varying temperatures with Equation (13), where Qd(V, T) is the discharged
capacity of the cell at any given voltage V and temperature T.

SoC(V, T) =
Qdmax (T)−Qd(V, T)

Qdmax (T)
. (13)

Secondly, temperature also affects the smoothness of the discharge curve, with flat
voltage intervals being more distinguishable at a higher temperature. This is highlighted in
the IC curves in the following.

4.2.2. Incremental Capacity vs. Temperature

From the discharge curves presented in Figure 6, the IC curves have been derived and
are presented in Figure 8 for all temperatures. As stated previously, the temperature affects
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both the maximum capacity, which is evidenced by a decreasing area under IC curves when
the temperature decreases, and the smoothness of the discharge curve, which is evidenced
by the number of peaks that can be distinguished. This second effect is particularly well seen
in IC curves: as temperature goes down, the number of distinguishable peaks decreases.
This comes from the voltage plateaus, which are less noticeable at lower temperatures, as
observed previously in Figure 6.
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4.2.3. Peak Geometric Properties vs. Temperature and Model

The logistic model geometric parameters hn, pn, and wn of the five IC peaks were
identified based on fitting Equation (6) to the IC curves of Figure 8 at different temperatures.
The evolutions of each parameter with temperature are reported in Figure 9. As it can be
seen, temperature affects each parameter of each peak in a particular way. Positions and
widths have relatively monotonous evolutions with temperature: peaks tend to displace
towards higher voltages while becoming thinner, except for the first peak which grows
larger. This is not the case for their heights; however, where the first two peaks increase
with temperature in a monotonous way, the amplitude of the three others increase from
low to mid temperatures and decrease for higher temperatures.
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Figure 9. Geometric parameters of incremental capacity peaks against temperature: (a) heights hn,
(b) positions pn, and (c) widths wn. Each cross corresponds to the value found for each temper-
ature using Equation (6) model, while each line is a temperature model of each parameter using
Equation (14).
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Each peak parameter variation with temperature can be modelized using the same em-
pirical equation, which is a modified Arrhenius law with a temperature offset expressed by

xn = x0(T − T0)
αe

Ea
kB(T−T0) , (14)

where xn is the considered parameter (either hn, pn, or wn), x0 is a constant parameter
independent of temperature, T0 is the temperature offset (in K), α is a real power modulating
the effect of the temperature pre-factor, Ea is the activation energy (in J), kB is the Boltzmann
constant (in J/K). Equation (14) model lines are plotted on top of identified parameters
in Figure 9. It can be seen that this simple model accurately accounts for temperature
variations in the geometric parameters hn, pn, and wn.

4.2.4. Application to SoC Estimation from OCV Measurements at Different Temperatures

One goal of developing such a model is to have an accurate OCV model to improve
SoC estimation in BMS. For example, as the OCV depends on the temperature, having
only a lookup table of the OCV measured, for example, at 25 ◦C, would lead to SoC
estimation error if an OCV measured at a vastly different temperature is fed to the algo-
rithm. Here, we use the bi-dimensional model of Q = f (V, T) that we parameterized
previously to demonstrate the usefulness of the model to take into account a wide range of
thermal conditions.

Using Equations (6)–(8) and (12)–(14), a combined model of SoC as a function of voltage
and temperature can be built. Figure 10 shows the comparison between the proposed model
and SoC-V experimental data at three distinct temperatures. For all curves, the squared
correlation coefficient R2 is over 0.9997, and the maximum absolute error on the SoC is
2.22%. Hence, the complete model shows good agreement with experimental data. As can
be seen in the figure, for a given measurement of voltage, absolute error for SoC estimation
of up to 20% can be made over a wide temperature range if temperature is not considered
in the OCV-SOC model.

Batteries 2022, 8, x FOR PEER REVIEW 13 of 18 
 

𝑥 = 𝑥 (𝑇 − 𝑇 ) 𝑒 ( ) , (14)

where 𝑥  is the considered parameter (either ℎ , 𝑝 , or 𝑤 ), 𝑥  is a constant parameter 
independent of temperature, 𝑇  is the temperature offset (in K), 𝛼 is a real power mod-
ulating the effect of the temperature pre-factor, 𝐸  is the activation energy (in J), kB is the 
Boltzmann constant (in J/K). Equation (14) model lines are plotted on top of identified 
parameters in Figure 9. It can be seen that this simple model accurately accounts for tem-
perature variations in the geometric parameters ℎ , 𝑝 , and 𝑤 . 

4.2.4. Application to SoC Estimation from OCV Measurements at Different Tempera-
tures 

One goal of developing such a model is to have an accurate OCV model to improve 
SoC estimation in BMS. For example, as the OCV depends on the temperature, having 
only a lookup table of the OCV measured, for example, at 25 °C, would lead to SoC esti-
mation error if an OCV measured at a vastly different temperature is fed to the algorithm. 
Here, we use the bi-dimensional model of 𝑄 = 𝑓(𝑉, 𝑇) that we parameterized previously 
to demonstrate the usefulness of the model to take into account a wide range of thermal 
conditions. 

Using Equations (6)–(8) and (12)–(14), a combined model of SoC as a function of volt-
age and temperature can be built. Figure 10 shows the comparison between the proposed 
model and SoC-V experimental data at three distinct temperatures. For all curves, the 
squared correlation coefficient R² is over 0.9997, and the maximum absolute error on the 
SoC is 2.22%. Hence, the complete model shows good agreement with experimental data. 
As can be seen in the figure, for a given measurement of voltage, absolute error for SoC 
estimation of up to 20% can be made over a wide temperature range if temperature is not 
considered in the OCV-SOC model. 

 
Figure 10. Estimation of the SoC at different voltages and temperatures using the proposed 𝑆𝑜𝐶 =𝑓(𝑉, 𝑇) model. Crosses represent experimental data while lines are the combined models. 

This example of application demonstrates the usefulness of the model for SoC esti-
mation considering temperature effect on the OCV. In the next paragraph, other potential 
interests of the model are discussed. 

4.3. Other Usages of the Proposed Model 
This article developed an IC model and showed a full parameterization for a lithium-

ion cell. This parameterization was carried out directly with experimental data collected 
on a full cell and showed the performance of the model in accounting for IC peaks, OCV 
jumps and plateaus, as well as sensitivity of OCV to temperature. However, working with 
full cell data means that the contributions of the positive and negative electrode are mixed: 
additive for the OCV, convolutive for the IC. 
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This example of application demonstrates the usefulness of the model for SoC esti-
mation considering temperature effect on the OCV. In the next paragraph, other potential
interests of the model are discussed.

4.3. Other Usages of the Proposed Model

This article developed an IC model and showed a full parameterization for a lithium-
ion cell. This parameterization was carried out directly with experimental data collected
on a full cell and showed the performance of the model in accounting for IC peaks, OCV
jumps and plateaus, as well as sensitivity of OCV to temperature. However, working with
full cell data means that the contributions of the positive and negative electrode are mixed:
additive for the OCV, convolutive for the IC.
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Applying the same model and parameterization process to half-cell [41] data would
provide additional interests for this model. Indeed, applying the model to half-cell data
would yield quantitative and physical information about the chemical process happening
in one electrode. Similar to the full cell, the model can describe the electrode IC curve with
multiple peaks. The obtained geometric parameters pn, hn, and wn would then be closer
to physical meaning. The position pn would directly give the potential at which a phase
transition reaction happens in the electrode (in V). Moreover, the area below the IC peak can
be computed from the height hn and width wn. This area would give access to the amount
of capacity (in Ah) exchanged in this reaction, and ultimately in the number of lithium ions.
Applying the model to the positive and negative electrode half-cells would then allow us to
reconstruct the full cell model as described in [30]. This would also simplify the modeling
of the evolution of model parameters with temperature or SoH.

This quantitative information would also be useful for SoH monitoring. As mentioned
in the introduction, ICA is an established technique in the literature and used to retrieve
information about the degradation of battery electrodes. ICA can be used for a qualitative
assessment of ageing and electrode degradation mechanisms [33]. When used quantitively,
ICA also provides more insights into degradation [39]. Hence, the proposed logistic model
would naturally couple with quantitative ICA analysis for SoH monitoring and ageing
comprehension. During the ageing process, the impact of the degradation mechanisms can
be synthetized in the following degradation modes: loss of lithium inventory, loss of posi-
tive and negative active matter, and ohmic resistance increase. These degradation modes
impact the IC curve by shifting peaks’ positions, as well as modifying peaks’ amplitudes
and widths [30]. Hence, the modification of the IC curve during the ageing process can
be considered by adapting the model geometric parameters position pn, height hn, and
width wn, similar to the method carried out with the impact of temperature. We have
already previously undertaken preliminary works in ICA peak tracking with ageing [29,42]
and this research interest will be explored further. Additionally, the applicability of the
model for incremental capacity-based SoH estimation could be investigated and compared
to other proposed methods [43]. Moreover, the proposed model and its coupling with
quantitative ICA analysis would naturally give tools to model the evolution of the OCV
curve with ageing.

5. Conclusions

This paper developed an incremental capacity parametric model for lithium-ion
batteries. It is also equivalent to a model of the OCV characteristic. The model is based on
additive terms of Verhulst’s logistic equations in order to describe incremental capacity
peaks geometrically. This semi-physical approach is proposed as an alternative to empirical
or thermodynamic OCV models in BMS for battery state estimation and monitoring.

The model performance was compared with empirical polynomial models and was
demonstrated on a commercial graphite/NCA cell. Low-current discharges performed at
temperatures ranging from −20 ◦C to 55 ◦C were used to parameterize the model. The
results demonstrated that the proposed model gives the advantage of:

• Offering a reversible OCV and incremental capacity model, with parameterization
possible on both curves.

• Using a flexible mathematical structure, adaptable to any Li-ion electrode materials.
• Clearly describing incremental capacity peaks with model parameters giving quantita-

tive information about each electrode chemical reactions in different battery states.
• Using a semi-physical approach requiring no prior-knowledge about electrode materials,

while enabling to model the evolution of model parameters in varying battery conditions.
• Including the sensitivity of the OCV to temperature in the OCV model.

An example of practical application was proposed by using the model to estimate
battery SoC from voltage and temperature measurements, improving the robustness of SoC
estimation at varying temperatures in BMS. Future work includes the parameterization of
the model on electrode half-cell data and the use of the model for state-of-health monitoring
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with incremental capacity analysis. Ultimately, the model could be used to improve the
modelling of the OCV curve modifications with battery ageing.
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Appendix A Logistic Equations

This appendix gives more mathematical details about the logistic model and the
relation between Verhulst’s model parameters and the peaks’ geometric properties.

In his work on the growth of a nation’s population [35], P.-F. Verhulst looked for the
function solution of the following differential equation

dy
dt

= ry
(

1− y
K

)
, (A1)

where y(t) is the population at a given time t and with initial condition y(t = 0) = y0, r is
the growth rate, and K the carrying capacity (the maximum population a species can carry
given a finite amount of resources).

This differential equation can be resolved by using the variable change z = 1/y. The
solution to (A1) is what Verhulst called the logistic equation:

y(t) =
K

1 +
(

K
y0
− 1
)

e−rt
(A2)

The derivative of the logistic equation y(t) is what he called the logistic distribution:

dy
dt

(t) =
K
(

K
y0
− 1
)

re−rt[
1 +

(
K
y0
− 1
)

e−rt
]2 (A3)

As illustrated by Figure 2, the logistic distribution can be described by the peak
geometric properties position p, height h, and weight w. By knowing these geometric
properties, it is possible to calculate the model parameters y0, K, and r, and conversely. The
relationships are derived in the following.

The peak position p is the value for which the derivative of the logistic distribution (A3)
is null:

d2y
dt2 (t) =

K
(

K
y0
− 1
)

r2e−rt
[(

K
y0
− 1
)

e−rt − 1
]

[
1 +

(
K
y0
− 1
)

e−rt
]3 (A4)

d2y
dt2 (p) = 0 ⇐⇒

(
K
y0
− 1
)

e−rp − 1 = 0, (A5)

p =
1
r

ln
(

K
y0
− 1
)

. (A6)
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The peak height h is the value of the distribution in t = p:

h =
dy
dt

(p) =
K
(

K
y0
− 1
)

re−r 1
r ln ( K

y0
−1)[

1 +
(

K
y0
− 1
)

e−r 1
r ln ( K

y0
−1)
]2 , (A7)

h =
Kr
4

(A8)

Finally, the peak width w is defined as a function of the height at which it is measured.
For a proportion α (between 0 and 1) of h, the width w verifies the following system{

dy
dt
(

p− w
2
)
= αh

dy
dt
(

p + w
2
)
= αh

(A9)

Summing these two equations and then replacing p and h with (A6) and (A8) gives
the relationship (A12):

K
(

K
y0
− 1
)

re−r(p− w
2 )[

1 +
(

K
y0
− 1
)

e−r(p− w
2 )
]2 +

K
(

K
y0
− 1
)

re−r(p+ w
2 )[

1 +
(

K
y0
− 1
)

e−r(p+ w
2 )
]2 = 2αh (A10)

er w
2 + e−r w

2

2
=

2
α
− 1 (A11)

w =
2 cosh−1( 2

α − 1
)

r
. (A12)

For example, for a width w measured at half the height h (α = 0.5), we have:

w =
2 cosh−1(3)

r
(A13)

However, this relationship can be greatly simplified by measuring w at the height
defined by

α =
4
√

e(
1 +
√

e
)2 ≈ 0.9400, (A14)

where e is the Euler number. For this value of α, the width is directly inversely proportional
to r:

w =
1
r

(A15)

Finally, we can sum up the relationships between Verhulst’s model parameters P0, K,
and r, and the peak geometric parameters p, h, and w:

r = 1
w

K = 4hw
y0 = 4hw

1+e
p
w

⇔


w = 1

r
h = Kr

4

p = 1
r ln
(

K
y0
− 1
) . (A16)

Now, both the logistic equation and its derivative can be rewritten as functions of h, w
and p: 

P(t) = 4hw

1+e
p−t
w

dP
dt (t) =

4he
p−t
w(

1+e
p−t
w

)2
(A17)
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Simplifying with hyperbolic functions yields: P(t) = 2hw
[
1 + tanh

(
t−p
2w

)]
dP
dt (t) = h sec h2

(
t−p
2w

) (A18)
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