
HAL Id: hal-03722417
https://hal.science/hal-03722417v1

Submitted on 13 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tomosipo: fast, flexible, and convenient 3D tomography
for complex scanning geometries in Python

Allard A. Hendriksen, Dirk Schut, Willem Jan Palenstijn, Nicola Vigano,
Jisoo Kim, Daniel M. Pelt, Tristan van Leeuwen, K. Joost Batenburg

To cite this version:
Allard A. Hendriksen, Dirk Schut, Willem Jan Palenstijn, Nicola Vigano, Jisoo Kim, et al.. Tomosipo:
fast, flexible, and convenient 3D tomography for complex scanning geometries in Python. Optics
Express, 2021, 29 (24), pp.40494-40513. �10.1364/OE.439909�. �hal-03722417�

https://hal.science/hal-03722417v1
https://hal.archives-ouvertes.fr

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40494

Tomosipo: fast, flexible, and convenient 3D
tomography for complex scanning geometries
in Python

ALLARD A. HENDRIKSEN,1,* DIRK SCHUT,1 WILLEM JAN
PALENSTIJN,1 NICOLA VIGANÓ,2 JISOO KIM,3,4 DANIËL M.
PELT,5 TRISTAN VAN LEEUWEN,1,6 AND K. JOOST BATENBURG1,5

1Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands
2ESRF — The European Synchrotron, 71 av. des Martyrs, 38000 Grenoble, France
3Institute for Biomedical Engineering, University and ETH Zürich, 8092 Zürich, Switzerland
4Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
5Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
6Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
*allard.hendriksen@cwi.nl

Abstract: Tomography is a powerful tool for reconstructing the interior of an object from a
series of projection images. Typically, the source and detector traverse a standard path (e.g.,
circular, helical). Recently, various techniques have emerged that use more complex acquisition
geometries. Current software packages require significant handwork, or lack the flexibility to
handle such geometries. Therefore, software is needed that can concisely represent, visualize,
and compute reconstructions of complex acquisition geometries. We present tomosipo, a Python
package that provides these capabilities in a concise and intuitive way. Case studies demonstrate
the power and flexibility of tomosipo.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Tomographic imaging enables the examination of the internal structure of an object. The object is
typically placed between a source and detector, and its structure is reconstructed using projection
images from a range of different positions. Collectively, the position information of the source,
object, and detector determine the acquisition geometry.

Most common tomographic techniques rely on a selection of standard acquisition geometries,
such as circular cone beam or single-axis parallel beam [1]. In recent years, several scientific
and industrial applications have emerged whose needs are not met by the standard selection
of paths. Such scientific applications include diffraction contrast tomography (DCT) [2] and
X-ray scattering tensor tomography (XSTT) [3]. These techniques measure X-ray effects other
than absorption, which necessarily give rise to more complex acquisition geometries. Complex
geometries also arise in industrial applications like automotive and aerospace testing [4,5], as
objects may be too large to fit in conventional scanners. Instead, a robot arm moves the source
and detector along an irregular path around the object.

Efficient reconstruction algorithms exist for many common acquisition geometries [1,6]. Such
filtered backprojection (FBP)-type algorithms are typically fast to compute [7], but require
the source and detector to follow a regular path. Algorithms that permit flexible acquisition
geometries, such as SIRT [8] and total variation minimization (TV-MIN) [9], typically follow
an iterative reconstruction scheme. As iterative algorithms tend to be more computationally
demanding than FBP-type algorithms, they benefit more from an efficient implementation.

Software packages for computing reconstructions can be roughly subdivided by their target
audience. For application scientists in synchrotron tomography [10–14] and electron tomography

#439909 https://doi.org/10.1364/OE.439909
Journal © 2021 Received 24 Aug 2021; revised 12 Oct 2021; accepted 17 Oct 2021; published 19 Nov 2021

https://orcid.org/0000-0002-3355-9551
https://orcid.org/0000-0003-1704-5574
https://orcid.org/0000-0002-2313-6037
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.439909&domain=pdf&date_stamp=2021-11-19

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40495

[15], software exists that provides pre-processing and reconstruction capabilities. For scientists
developing new reconstruction algorithms, packages exist that integrate tomography in optimiza-
tion methods [16,17] and neural networks [18], or implement tomographic primitives on the
graphics processing unit (GPU), such as the TIGRE and ASTRA Toolbox [19–21].

Existing tomography software is typically limited in its ability to represent, create, visualize,
and reconstruct using complex acquisition geometries. Software for application scientists usually
includes optimized reconstruction routines for a selection of acquisition geometries, but generally
does not provide the flexibility to represent arbitrary acquisition geometries. Some software
packages providing tomographic primitives, like the ASTRA Toolbox, can represent arbitrarily
complex acquisition geometries, but do not provide effective tools to create them. In fact, the
positions and orientations of the object and detector are usually computed using trigonometric
formulas, requiring tedious and error-prone handwork [20]. In addition, limited facilities are
included to visualize geometries, making it difficult to validate the computed geometry. Therefore,
defining unconventional acquisition geometries requires extraordinary attentiveness. The lack of
validation capabilities can also be problematic when processing data from advanced experiments,
as it can be difficult or impossible to determine whether certain reconstruction artifacts are caused
by an incorrect modeling of the acquisition geometry, or are due to other common sources of
artifacts (e.g., sample motion, beam stability, etc). This may lead to sub-optimal reconstruction
results and could prohibit further analysis of the data.

In this paper, we introduce the tomosipo Python package (tomósipo is pronounced with
the stress on the second syllable), which is designed to alleviate the problems in defining
complex acquisition geometries for tomography. Specifically, the package provides convenient
primitives for the representation, creation, visualization, and reconstruction of complex acquisition
geometries, as described below.

Representation and creation. Tomosipo allows the user to assemble increasingly complex
acquisition geometries by composing geometric transforms and applying them to primitive
acquisition geometries. Several standard geometric transformations can be defined, such as
rotation, translation, scaling, and reflection. Tomosipo’s representation of the acquisition
geometries is flexible. Therefore, the result of applying a geometric transform, e.g., rotation, to an
acquisition geometry can be represented in tomosipo. In addition to flexible geometries, tomosipo
provides convenience methods to create standard acquisition geometries, such as circular cone
beam and single-axis parallel beam geometries.

Visualization. To aid in validation and communication, visualization of the resulting geometry
is crucial. With tomosipo, the defined geometry can be viewed in a 3D environment or a Jupyter
notebook [22], and saved to disk as a video or scalable vector graphic (SVG).

Reconstruction. Tomosipo provides a concise and efficient application programming interface
(API) for computing reconstructions. Its design is similar to MATLAB’s Spot operators [23]
and the computations are powered by the ASTRA Toolbox. In addition, tomosipo integrates
with several packages for GPU computing, such as PyTorch [24] and CuPy, enabling the user
to implement reconstruction algorithms without moving intermediate results to and from the
GPU, yielding immediate speed benefits. These speed benefits are observed both in iterative and
FBP-type reconstruction methods, as implemented in the separate ts_algorithms package
[25].

This paper provides an overview of the design of tomosipo and case studies of possible
applications. First, the tomography problem is introduced in Section 2. In Section 3, key concepts
of the package are described. In Section 4, these concepts are demonstrated on two simple
examples and two complex acquisition schemes exploiting X-ray diffraction and scattering. In
Section 5, reconstructions are shown of experimental data using several algorithms. In Section
6, the use of tomosipo on the GPU is demonstrated and its speed is compared to existing
reconstruction algorithms in the ASTRA Toolbox. We conclude with a discussion in Section 7.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40496

2. Standard tomography problem

Common tomography setups expose a sample to a beam of high energy particles, e.g., photons,
electrons, or neutrons, which are collected on a detector. Contrast in the measured projection
images is generated by differences in attenuation, refraction index or scattering of the object (e.g.
phase and diffraction, respectively), or the emission of secondary signals (e.g. X-ray fluorescence,
Compton, Auger). Many of these problems can be modeled as a collection of line integrals
through space where the ith measurement yi ∈ R is obtained as a line integral

yi =

∫
R

x(si + tηi) dt (1)

through a point si ∈ R3 with direction ηi ∈ R3. The canonical case is absorption contrast
tomography, which we describe here.

In absorption contrast tomography, the reconstruction problem can be posed as a linear discrete
inverse problem. Suppose measurements y ∈ RNθ×N2

p are acquired from Nθ positions using a
square detector that is divided into N2

p pixels. Define the cubic reconstruction volume x ∈ RN3
v

on a voxel grid and let A denote the projection matrix such that Aij describes the absorption by
object voxel j of the ray to measurement i. The goal is to determine the value of x that gave rise
to the measurement

Ax = y. (2)
The computation of the linear operator A depends strongly on the geometry of the acquisition.
This includes the direction of the rays, the position and orientation of the reconstruction volume,
and the position and orientation of the detector. In tomosipo, the operator A is not stored as a
matrix. Instead, the GPU implementation provided by the ASTRA Toolbox uses ray-tracing
based techniques.

3. Framework concepts

Three concepts are essential to the tomosipo package. These are geometries, geometric
transformations, and the projection operator A. Geometries represent the position of the source,
sample, and detector at each time step. The sample’s position and orientation is represented by a
volume geometry, and the X-ray source and flat panel detector are represented by a projection
geometry, which can model both point sources (cone beam geometry) and parallel box beams
(parallel beam geometry). All geometries have two representations: a simple representation that
defines a standard trajectory, and a flexible representation that permits arbitrary movement and
orientation. Volume and projection geometries are discussed in Section 3.2.

Geometries can be manipulated using geometric transforms, as well as split and joined
using subsampling and concatenation. In this way, complicated acquisition geometries can be
assembled from simple geometries. This is described in Sections 3.3 and 3.5.

Together, a volume and projection geometry define the projection operator A. In tomosipo, the
computation using A is GPU-accelerated using the ASTRA Toolbox. Most tomosipo geometries
have an ASTRA counterpart, except for the flexible volume geometry whose movement and
orientation is compensated for by exploiting the flexibility of ASTRA’s projection geometries.
The creation of projection operators is discussed in the next section, and the integration with the
ASTRA Toolbox and Python array libraries in Section 3.4. Finally, visualization of geometries
is discussed in Section 3.6. The main concepts of tomosipo and their relation to the ASTRA
Toolbox and the physical geometry are summarized in Fig. 1.

3.1. Tomographic projection

In this section, we describe the creation and use of the projection operator A. Tomosipo provides
a convenient representation of the projection operator A, offering an API that is similar to the

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40497

Recombine

Subsampling
Concatenation

Transform

Translation Rotation Scaling
Reflection Perspective

Acquisition geometry

Fixed volume

Flat panel detector
Point source + Box-beam +

X-ray projection

Fixed volume Flexible volume Operator

Visualize

SVG
Video

3D

Tomosipo

ASTRA
Toolbox

Physical
world

Cone beam Parallel beam
Simple + flexible Simple + flexible

Cone beam Parallel beam
Simple + flexible Simple + flexible

Projector

Flat panel detector
Fixed object Moving object

Concepts

Actions

X-ray absorption

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe
the acquisition geometry and the X-ray projection and can be directly mapped onto
ASTRA primitives, except for the flexible (moving) volume, which has no ASTRA
counterpart. The actions provide the means to transform, recombine, and visualize
tomosipo’s geometry primitives.

3.1. Tomographic projection

In this section, we describe the creation and use of the projection operator A. Tomosipo provides
a convenient representation of the projection operator A, offering an API that is similar to
the OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and
projection geometry pg, the linear operator A from Equation (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operator A is a stand-alone object. It has domain_shape and range_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The operator
A can be used to solve the inverse problem posed in Equation (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps.

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1
10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe the
acquisition geometry and the X-ray projection and can be directly mapped onto ASTRA
primitives, except for the flexible (moving) volume, which has no ASTRA counterpart. The
actions provide the means to transform, recombine, and visualize tomosipo’s geometry
primitives.

OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and projection
geometry pg, the linear operator A from Eq. (2) can be obtained as follows:

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 4

Recombine

Subsampling
Concatenation

Transform

Translation Rotation Scaling
Reflection Perspective

Acquisition geometry

Fixed volume

Flat panel detector
Point source + Box-beam +

X-ray projection

Fixed volume Flexible volume Operator

Visualize

SVG
Video

3D

Tomosipo

ASTRA
Toolbox

Physical
world

Cone beam Parallel beam
Simple + flexible Simple + flexible

Cone beam Parallel beam
Simple + flexible Simple + flexible

Projector

Flat panel detector
Fixed object Moving object

Concepts

Actions

X-ray absorption

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe
the acquisition geometry and the X-ray projection and can be directly mapped onto
ASTRA primitives, except for the flexible (moving) volume, which has no ASTRA
counterpart. The actions provide the means to transform, recombine, and visualize
tomosipo’s geometry primitives.

3.1. Tomographic projection

In this section, we describe the creation and use of the projection operator A. Tomosipo provides
a convenient representation of the projection operator A, offering an API that is similar to
the OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and
projection geometry pg, the linear operator A from Equation (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operator A is a stand-alone object. It has domain_shape and range_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The operator
A can be used to solve the inverse problem posed in Equation (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps.

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1
10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe the
acquisition geometry and the X-ray projection and can be directly mapped onto ASTRA
primitives, except for the flexible (moving) volume, which has no ASTRA counterpart. The
actions provide the means to transform, recombine, and visualize tomosipo’s geometry
primitives.

OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and projection
geometry pg, the linear operator A from Eq. (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operatorA is a stand-alone object. It hasdomain_shape andrange_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The
operator A can be used to solve the inverse problem posed in Eq. (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1

10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

3.2. Acquisition geometry primitives

Tomosipo provides three standard geometries: the fixed volume geometry, the single-axis parallel
beam geometry, and the circular cone beam geometry. In addition, these geometries have a
flexible counterpart that permits arbitrary orientation and movement. The flexible geometries
are known as vector geometries, following the terminology of [20]. All geometry primitives are

The operatorA is a stand-alone object. It hasdomain_shape andrange_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 4

Recombine

Subsampling
Concatenation

Transform

Translation Rotation Scaling
Reflection Perspective

Acquisition geometry

Fixed volume

Flat panel detector
Point source + Box-beam +

X-ray projection

Fixed volume Flexible volume Operator

Visualize

SVG
Video

3D

Tomosipo

ASTRA
Toolbox

Physical
world

Cone beam Parallel beam
Simple + flexible Simple + flexible

Cone beam Parallel beam
Simple + flexible Simple + flexible

Projector

Flat panel detector
Fixed object Moving object

Concepts

Actions

X-ray absorption

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe
the acquisition geometry and the X-ray projection and can be directly mapped onto
ASTRA primitives, except for the flexible (moving) volume, which has no ASTRA
counterpart. The actions provide the means to transform, recombine, and visualize
tomosipo’s geometry primitives.

3.1. Tomographic projection

In this section, we describe the creation and use of the projection operator A. Tomosipo provides
a convenient representation of the projection operator A, offering an API that is similar to
the OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and
projection geometry pg, the linear operator A from Equation (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operator A is a stand-alone object. It has domain_shape and range_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The operator
A can be used to solve the inverse problem posed in Equation (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps.

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1
10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe the
acquisition geometry and the X-ray projection and can be directly mapped onto ASTRA
primitives, except for the flexible (moving) volume, which has no ASTRA counterpart. The
actions provide the means to transform, recombine, and visualize tomosipo’s geometry
primitives.

OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and projection
geometry pg, the linear operator A from Eq. (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operatorA is a stand-alone object. It hasdomain_shape andrange_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The
operator A can be used to solve the inverse problem posed in Eq. (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1

10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

3.2. Acquisition geometry primitives

Tomosipo provides three standard geometries: the fixed volume geometry, the single-axis parallel
beam geometry, and the circular cone beam geometry. In addition, these geometries have a
flexible counterpart that permits arbitrary orientation and movement. The flexible geometries
are known as vector geometries, following the terminology of [20]. All geometry primitives are

The volume, containing all ones, can be forward projected and the result backprojected with:

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 4

Recombine

Subsampling
Concatenation

Transform

Translation Rotation Scaling
Reflection Perspective

Acquisition geometry

Fixed volume

Flat panel detector
Point source + Box-beam +

X-ray projection

Fixed volume Flexible volume Operator

Visualize

SVG
Video

3D

Tomosipo

ASTRA
Toolbox

Physical
world

Cone beam Parallel beam
Simple + flexible Simple + flexible

Cone beam Parallel beam
Simple + flexible Simple + flexible

Projector

Flat panel detector
Fixed object Moving object

Concepts

Actions

X-ray absorption

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe
the acquisition geometry and the X-ray projection and can be directly mapped onto
ASTRA primitives, except for the flexible (moving) volume, which has no ASTRA
counterpart. The actions provide the means to transform, recombine, and visualize
tomosipo’s geometry primitives.

3.1. Tomographic projection

In this section, we describe the creation and use of the projection operator A. Tomosipo provides
a convenient representation of the projection operator A, offering an API that is similar to
the OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and
projection geometry pg, the linear operator A from Equation (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operator A is a stand-alone object. It has domain_shape and range_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The operator
A can be used to solve the inverse problem posed in Equation (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps.

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1
10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe the
acquisition geometry and the X-ray projection and can be directly mapped onto ASTRA
primitives, except for the flexible (moving) volume, which has no ASTRA counterpart. The
actions provide the means to transform, recombine, and visualize tomosipo’s geometry
primitives.

OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and projection
geometry pg, the linear operator A from Eq. (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operatorA is a stand-alone object. It hasdomain_shape andrange_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The
operator A can be used to solve the inverse problem posed in Eq. (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1

10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

3.2. Acquisition geometry primitives

Tomosipo provides three standard geometries: the fixed volume geometry, the single-axis parallel
beam geometry, and the circular cone beam geometry. In addition, these geometries have a
flexible counterpart that permits arbitrary orientation and movement. The flexible geometries
are known as vector geometries, following the terminology of [20]. All geometry primitives are

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The
operator A can be used to solve the inverse problem posed in Eq. (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 4

Recombine

Subsampling
Concatenation

Transform

Translation Rotation Scaling
Reflection Perspective

Acquisition geometry

Fixed volume

Flat panel detector
Point source + Box-beam +

X-ray projection

Fixed volume Flexible volume Operator

Visualize

SVG
Video

3D

Tomosipo

ASTRA
Toolbox

Physical
world

Cone beam Parallel beam
Simple + flexible Simple + flexible

Cone beam Parallel beam
Simple + flexible Simple + flexible

Projector

Flat panel detector
Fixed object Moving object

Concepts

Actions

X-ray absorption

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe
the acquisition geometry and the X-ray projection and can be directly mapped onto
ASTRA primitives, except for the flexible (moving) volume, which has no ASTRA
counterpart. The actions provide the means to transform, recombine, and visualize
tomosipo’s geometry primitives.

3.1. Tomographic projection

In this section, we describe the creation and use of the projection operator A. Tomosipo provides
a convenient representation of the projection operator A, offering an API that is similar to
the OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and
projection geometry pg, the linear operator A from Equation (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operator A is a stand-alone object. It has domain_shape and range_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The operator
A can be used to solve the inverse problem posed in Equation (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps.

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1
10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

Fig. 1. The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe the
acquisition geometry and the X-ray projection and can be directly mapped onto ASTRA
primitives, except for the flexible (moving) volume, which has no ASTRA counterpart. The
actions provide the means to transform, recombine, and visualize tomosipo’s geometry
primitives.

OpTomo Spot operator in the ASTRA Toolbox [23]. Given a volume geometry vg and projection
geometry pg, the linear operator A from Eq. (2) can be obtained as follows:

1 import tomosipo as ts
2 vg = ts.volume([...]) # Arguments are omitted; they are described
3 pg = ts.parallel([...]) # in next section
4 A = ts.operator(vg, pg)

The operatorA is a stand-alone object. It hasdomain_shape andrange_shape properties
that facilitate the creation of data of the correct number of voxels and pixels in each dimension in
its mathematical domain and range, i.e., image space and sinogram space. An array representing
the volume is created as follows:

5 x = np.ones(A.domain_shape, dtype=np.float32) # 32-bit floating point array

The volume, containing all ones, can be forward projected and the result backprojected with:

6 y = A(x)
7 backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox. The
operator A can be used to solve the inverse problem posed in Eq. (2). In the code below, this is
demonstrated by computing a simple Landweber iteration [26] with step size eta in n steps

8 x_rec = np.zeros(A.domain_shape, np.float32) # Zero-initialize the volume
9 for i in range(n): # i = 0, 1, ..., n - 1

10 x_rec = x_rec + eta * A.T(y - A(x_rec))

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

3.2. Acquisition geometry primitives

Tomosipo provides three standard geometries: the fixed volume geometry, the single-axis parallel
beam geometry, and the circular cone beam geometry. In addition, these geometries have a
flexible counterpart that permits arbitrary orientation and movement. The flexible geometries
are known as vector geometries, following the terminology of [20]. All geometry primitives are

In the next section, we describe how to define the volume and projection geometries that are
required to create a projection operator.

3.2. Acquisition geometry primitives

Tomosipo provides three standard geometries: the fixed volume geometry, the single-axis parallel
beam geometry, and the circular cone beam geometry. In addition, these geometries have a
flexible counterpart that permits arbitrary orientation and movement. The flexible geometries
are known as vector geometries, following the terminology of [20]. All geometry primitives are
defined in the ASTRA Toolbox as well, except for the volume vector geometry that can represent
an arbitrarily oriented moving reconstruction grid. The geometries are illustrated in Fig. 2 with
accompanying code.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40498

Parallel vector geometry

Single-axis parallel beam # Circular cone beam

Vector (arbitrarily oriented) geometries

Cone vector geometry# Volume vector geometry

Standard geometries

Volume geometry
ts.volume(
 shape=(2, 2, 2),
 size=(2, 2, 2),
 pos=(0, 0, 0),
)

ts.parallel(
 angles=[0, .., 0.8 * np.pi],
 shape=(2, 2),
 size=(2, 2),
)

cone_pg = ts.cone(
 angles=100,
 shape=2,
 src_orig_dist=1,
 src_det_dist=4,
)

ts.volume_vec(
 shape=(2, 2, 2),
 pos=[(0, 0, 0)],
 w=[(1, 0, 0)],
 v=[(0, 1, 0)],
 u=[(0, 0, 1)],
)

w

v

u

ts.parallel_vec(
 shape=(2, 2),
 ray_dir=[(0, 1, 0)],
 det_pos=[(0, 2, 0)],
 det_v=[(1, 0, 0)],
 det_u=[(0, 0, 1)],
)

ts.cone_vec(
 shape=(2, 2),
 src_pos=[(0, -2, 0)],
 det_pos=[(0, 2, 0)],
 det_v=[(1, 0, 0)],
 det_u=[(0, 0, 1)],
)

u

v

src_pos
ray_dir

det_pos
u

v

 angles

 size size

shape

src_det_dist

src_orig_dist

shape

Fig. 2. Creation of typical tomographic geometries. From left to right: a volume
geometry, single-axis parallel beam geometry, and a circular cone beam geometry.
Below, arbitrarily oriented vector geometries are shown. The parameters are specified
using keyword-only arguments [27]. The pos parameter, for instance, determines the
position of a volume, other parameters have accompanying labels in the diagrams. The
diagrams are created using tomosipo.

3.2. Acquisition geometry primitives

Tomosipo provides three standard geometries: the fixed volume geometry, the single-axis parallel
beam geometry, and the circular cone beam geometry. In addition, these geometries have a
flexible counterpart that permits arbitrary orientation and movement. The flexible geometries are
known as vector geometries, following the terminology of [20]. All geometry primitives are
defined in the ASTRA Toolbox as well, except for the volume vector geometry that can represent
an arbitrarily oriented moving reconstruction grid. The geometries are illustrated in Figure 2
with accompanying code.

In contrast to the standard projection geometries, whose movement is parameterized by the
rotation angle, vector geometries move arbitrarily in time. We therefore refer to the state of
the acquisition geometry at a specific time as a time step. Furthermore, geometries have a
num_steps property that describes in how many time steps their movement is discretized.

3.2.1. Standard geometries

Volume geometry. A volume geometry is created with the ts.volume function and describes
the position and size of an axis-aligned voxel grid on which the object is reconstructed. A volume

Fig. 2. Creation of typical tomographic geometries. From left to right: a volume geometry,
single-axis parallel beam geometry, and a circular cone beam geometry. Below, arbitrarily
oriented vector geometries are shown. The parameters are specified using keyword-only
arguments [27]. The pos parameter, for instance, determines the position of a volume, other
parameters have accompanying labels in the diagrams. The diagrams are created using
tomosipo.

In contrast to the standard projection geometries, whose movement is parameterized by the
rotation angle, vector geometries move arbitrarily in time. We therefore refer to the state of
the acquisition geometry at a specific time as a time step. Furthermore, geometries have a
num_steps property that describes in how many time steps their movement is discretized.

3.2.1. Standard geometries

Volume geometry. A volume geometry is created with the ts.volume function and describes
the position and size of an axis-aligned voxel grid on which the object is reconstructed. A volume
geometry can be created with size, pos, and shape parameters, which define its physical
size, center position, and the number of voxels in each direction. By default, the volume is
centered on the origin, and if the size is not specified, it is set to equal the shape, causing the voxel
size to equal 1. Other parametrizations, such as in terms of the volume’s extents, are described in
the documentation.

Single-axis parallel beam. In the parallel beam geometry, X-rays run along parallel lines and
are collected on a flat panel detector that rotates around a single axis on the origin. It can be

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40499

created with the ts.parallel function which has parameters size, shape, and angles,
which define the detector’s physical size, the number of pixels in each dimension, and the rotation
angles. If an integer argument is provided for angles, equispaced rotation angles in the interval
[0, π) are used. Otherwise, a provided array is interpreted as containing the rotation angles in
radians.

Circular cone beam. Like the parallel beam geometry, the flat panel detector of a cone beam
geometry rotates around an axis located on the origin. A cone beam geometry is created with the
ts.cone function that also takes the angles, shape, and size parameters. In contrast to
the parallel beam geometry, the rays in a cone beam geometry are emitted from a point source,
and the source-to-origin distance and source-to-detector distances can be specified using the
src_orig_dist and src_det_dist parameters. Also, when angles is provided as an
integer, a rotation is performed along a full arc [0, 2π) as opposed to [0, π).

3.2.2. Flexible vector geometries

Any geometry g can be converted to a vector geometry by calling g.to_vec(). Vector
geometries can also be created directly as described below.

Volume vector geometry. In contrast to a volume geometry, which is static, a volume vector
geometry may move over time and the reconstruction grid may be arbitrarily oriented. It can be
created with the ts.volume_vec function which takes as parameter the shape of the voxel
grid and 3 vectors describing the local frame of reference of the grid at each point in time. In
practice, a vector volume geometry is easier to obtain by applying a geometric transformation to
a standard volume geometry.

The ASTRA Toolbox, tomosipo’s computational back end, does not support non-axis-aligned
volume geometries. Internally, tomosipo aligns the volume to the origin and moves the projection
geometry with it. The transformed geometries are handed to ASTRA, causing the projection
operation to be performed in the frame of reference of the object.

Arbitrarily oriented parallel beam. In a parallel vector geometry, the detector can be
arbitrarily oriented and positioned. In addition, the direction of the incoming rays can be adjusted
to a direction that is not necessarily orthogonal to the detector plane. It can be created with the
ts.parallel_vec function by specifying a fixed detector shape and varying ray directions,
detector positions, and detector orientations at each time step. The orientation is determined
by parameters det_u and det_v that specify the vector from detector pixel (0, 0) to (0, 1)
and (0, 0) to (1, 0), respectively. An example is the dual-axis parallel beam geometry, which is
common in electron tomography [28].

Arbitrarily oriented cone beam. In a cone vector geometry, the detector can be arbitrarily
oriented and the source can be placed in an arbitrary location. For instance, this geometry can
represent a helical cone beam acquisition, as we show in Section 4.1. It can be created with the
ts.cone_vec function that has almost the same parameters as ts.parallel_vec: instead
of a ray direction, however, a source position must be provided for each time step. In the next
section, we describe in more detail how vector geometries can be obtained as transformations of
simple geometries.

3.3. Geometric transforms

Tomosipo defines geometric transforms that can rotate, translate, scale, and reflect the previously
introduced geometries. In addition, the package provides a perspective transform to switch
between different frames of reference. The transforms are stand-alone objects instead of functions
that act on geometries directly. We first discuss the internal representation of the transforms and
then we introduce the built-in functions to create transforms.

Representation. Internally, the transform at each time step is represented by a 4×4 matrix
M describing the transformation in homogeneous coordinates [29]. An orientation vector

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40500

v = (v1, v2, v3) is represented in homogeneous coordinates by −→v = (v1, v2, v3, 0), whereas
a position p = (p1, p2, p3) is represented by −→p = (p1, p2, p3, 1). This way, application of a
geometric transform — notably translation — to points and vectors can be performed by matrix
multiplication. That is, in homogeneous coordinates, the transformed vector equals M−→v and
the transformed point equals M−→p . In code, a vector v and point p in Euclidean coordinates are
transformed using a transform T as follows:

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 7

that act on geometries directly. We first discuss the internal representation of the transforms and
then we introduce the built-in functions to create transforms.

Representation. Internally, the transform at each time step is represented by a 4×4 matrix
M describing the transformation in homogeneous coordinates [29]. An orientation vector
v = (v1, v2, v3) is represented in homogeneous coordinates by −→v = (v1, v2, v3, 0), whereas
a position p = (p1, p2, p3) is represented by −→p = (p1, p2, p3, 1). This way, application of a
geometric transform — notably translation — to points and vectors can be performed by matrix
multiplication. That is, in homogeneous coordinates, the transformed vector equals M−→v and
the transformed point equals M−→p . In code, a vector v and point p in Euclidean coordinates are
transformed using a transform T as follows

1 transformed_v = T.transform_vec(v)
2 transformed_p = T.transform_point(p)

Application of a transform T to a geometry vg is expressed in code as

1 transformed_vg = T * vg

In the internal representation, the composition of two transforms is also computed by matrix
multiplication. The matrix representation of the composition T = T1 ◦T2 of two transforms T1, T2
represented by matrices M1, M2 is equal to the matrix product of the matrices, i.e., M =M1M2.
In code, this is expressed as

1 T = T1 * T2

Composition of transforms is demonstrated in Section 4.1, where a helical cone beam geometry
is created.

Rigid and scaling transforms. Tomosipo provides the ts.translate, ts.rotate,
ts.scale, and ts.reflect functions to create a translation, rotation, scaling, or reflection
transform, respectively. These are illustrated in Fig. 3. A transform may change over time, i.e., at
each time step it can define a different geometric transformation. The functions that create the
transforms are designed to facilitate defining transforms that vary over time.

A translation transform is parameterized by an axis and an array alpha. The displacement
vector at time step i is defined by alpha[i] * axis.

A rotation transform is created using the axis angle representation. The axis, pos, and
angles parameters describe the orientation and location of the rotation axis, as well as the
angle of rotation. Each of these parameters may be provided as an array to define the rotation
at multiple time steps. The angles are expressed in radians and the direction of rotation is
right-handed by default.

A scaling transform describes a scaling operation centered on a position. The scaling is not
necessarily isotropic: some directions can be scaled more than others. An alpha parameter can
be used to modulate the scaling at each time step.

A reflection transform describes a reflection in a plane that is parameterized by a position pos
and a normal vector axis. Both can be specified as an array, defining a reflection in a moving
plane at several time steps.

Perspective. The ts.from_perspective function creates a perspective transform. This
function takes a volume and returns the transform that moves the volume back to the origin and
rotates it back into a single axis-aligned orientation. All projection geometries have a to_vol()
method that describes the frame of reference of the detector at each time step. This makes it easy
to create a transform that converts to the detector’s frame of reference. In the case of a circular
cone beam trajectory, for example, the source and detector rotate around the volume, from the
volume’s perspective. From the perspective of the detector, on the other hand, the volume rotates.

Application of a transform T to a geometry vg is expressed in code as

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 7

that act on geometries directly. We first discuss the internal representation of the transforms and
then we introduce the built-in functions to create transforms.

Representation. Internally, the transform at each time step is represented by a 4×4 matrix
M describing the transformation in homogeneous coordinates [29]. An orientation vector
v = (v1, v2, v3) is represented in homogeneous coordinates by −→v = (v1, v2, v3, 0), whereas
a position p = (p1, p2, p3) is represented by −→p = (p1, p2, p3, 1). This way, application of a
geometric transform — notably translation — to points and vectors can be performed by matrix
multiplication. That is, in homogeneous coordinates, the transformed vector equals M−→v and
the transformed point equals M−→p . In code, a vector v and point p in Euclidean coordinates are
transformed using a transform T as follows

1 transformed_v = T.transform_vec(v)
2 transformed_p = T.transform_point(p)

Application of a transform T to a geometry vg is expressed in code as

1 transformed_vg = T * vg

In the internal representation, the composition of two transforms is also computed by matrix
multiplication. The matrix representation of the composition T = T1 ◦T2 of two transforms T1, T2
represented by matrices M1, M2 is equal to the matrix product of the matrices, i.e., M =M1M2.
In code, this is expressed as

1 T = T1 * T2

Composition of transforms is demonstrated in Section 4.1, where a helical cone beam geometry
is created.

Rigid and scaling transforms. Tomosipo provides the ts.translate, ts.rotate,
ts.scale, and ts.reflect functions to create a translation, rotation, scaling, or reflection
transform, respectively. These are illustrated in Fig. 3. A transform may change over time, i.e., at
each time step it can define a different geometric transformation. The functions that create the
transforms are designed to facilitate defining transforms that vary over time.

A translation transform is parameterized by an axis and an array alpha. The displacement
vector at time step i is defined by alpha[i] * axis.

A rotation transform is created using the axis angle representation. The axis, pos, and
angles parameters describe the orientation and location of the rotation axis, as well as the
angle of rotation. Each of these parameters may be provided as an array to define the rotation
at multiple time steps. The angles are expressed in radians and the direction of rotation is
right-handed by default.

A scaling transform describes a scaling operation centered on a position. The scaling is not
necessarily isotropic: some directions can be scaled more than others. An alpha parameter can
be used to modulate the scaling at each time step.

A reflection transform describes a reflection in a plane that is parameterized by a position pos
and a normal vector axis. Both can be specified as an array, defining a reflection in a moving
plane at several time steps.

Perspective. The ts.from_perspective function creates a perspective transform. This
function takes a volume and returns the transform that moves the volume back to the origin and
rotates it back into a single axis-aligned orientation. All projection geometries have a to_vol()
method that describes the frame of reference of the detector at each time step. This makes it easy
to create a transform that converts to the detector’s frame of reference. In the case of a circular
cone beam trajectory, for example, the source and detector rotate around the volume, from the
volume’s perspective. From the perspective of the detector, on the other hand, the volume rotates.

In the internal representation, the composition of two transforms is also computed by matrix
multiplication. The matrix representation of the composition T = T1 ◦T2 of two transforms T1, T2
represented by matrices M1, M2 is equal to the matrix product of the matrices, i.e., M =M1M2.
In code, this is expressed as

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 7

that act on geometries directly. We first discuss the internal representation of the transforms and
then we introduce the built-in functions to create transforms.

Representation. Internally, the transform at each time step is represented by a 4×4 matrix
M describing the transformation in homogeneous coordinates [29]. An orientation vector
v = (v1, v2, v3) is represented in homogeneous coordinates by −→v = (v1, v2, v3, 0), whereas
a position p = (p1, p2, p3) is represented by −→p = (p1, p2, p3, 1). This way, application of a
geometric transform — notably translation — to points and vectors can be performed by matrix
multiplication. That is, in homogeneous coordinates, the transformed vector equals M−→v and
the transformed point equals M−→p . In code, a vector v and point p in Euclidean coordinates are
transformed using a transform T as follows

1 transformed_v = T.transform_vec(v)
2 transformed_p = T.transform_point(p)

Application of a transform T to a geometry vg is expressed in code as

1 transformed_vg = T * vg

In the internal representation, the composition of two transforms is also computed by matrix
multiplication. The matrix representation of the composition T = T1 ◦T2 of two transforms T1, T2
represented by matrices M1, M2 is equal to the matrix product of the matrices, i.e., M =M1M2.
In code, this is expressed as

1 T = T1 * T2

Composition of transforms is demonstrated in Section 4.1, where a helical cone beam geometry
is created.

Rigid and scaling transforms. Tomosipo provides the ts.translate, ts.rotate,
ts.scale, and ts.reflect functions to create a translation, rotation, scaling, or reflection
transform, respectively. These are illustrated in Fig. 3. A transform may change over time, i.e., at
each time step it can define a different geometric transformation. The functions that create the
transforms are designed to facilitate defining transforms that vary over time.

A translation transform is parameterized by an axis and an array alpha. The displacement
vector at time step i is defined by alpha[i] * axis.

A rotation transform is created using the axis angle representation. The axis, pos, and
angles parameters describe the orientation and location of the rotation axis, as well as the
angle of rotation. Each of these parameters may be provided as an array to define the rotation
at multiple time steps. The angles are expressed in radians and the direction of rotation is
right-handed by default.

A scaling transform describes a scaling operation centered on a position. The scaling is not
necessarily isotropic: some directions can be scaled more than others. An alpha parameter can
be used to modulate the scaling at each time step.

A reflection transform describes a reflection in a plane that is parameterized by a position pos
and a normal vector axis. Both can be specified as an array, defining a reflection in a moving
plane at several time steps.

Perspective. The ts.from_perspective function creates a perspective transform. This
function takes a volume and returns the transform that moves the volume back to the origin and
rotates it back into a single axis-aligned orientation. All projection geometries have a to_vol()
method that describes the frame of reference of the detector at each time step. This makes it easy
to create a transform that converts to the detector’s frame of reference. In the case of a circular
cone beam trajectory, for example, the source and detector rotate around the volume, from the
volume’s perspective. From the perspective of the detector, on the other hand, the volume rotates.

Composition of transforms is demonstrated in Section 4.1, where a helical cone beam geometry
is created.

Rigid and scaling transforms. Tomosipo provides the ts.translate, ts.rotate,
ts.scale, and ts.reflect functions to create a translation, rotation, scaling, or reflection
transform, respectively. These are illustrated in Fig. 3. A transform may change over time, i.e., at
each time step it can define a different geometric transformation. The functions that create the
transforms are designed to facilitate defining transforms that vary over time.

A translation transform is parameterized by an axis and an array alpha. The displacement
vector at time step i is defined by alpha[i] * axis.

A rotation transform is created using the axis angle representation. The axis, pos, and
angles parameters describe the orientation and location of the rotation axis, as well as the
angle of rotation. Each of these parameters may be provided as an array to define the rotation
at multiple time steps. The angles are expressed in radians and the direction of rotation is
right-handed by default.

A scaling transform describes a scaling operation centered on a position. The scaling is not
necessarily isotropic: some directions can be scaled more than others. An alpha parameter can
be used to modulate the scaling at each time step.

A reflection transform describes a reflection in a plane that is parameterized by a position pos
and a normal vector axis. Both can be specified as an array, defining a reflection in a moving
plane at several time steps.

Perspective. The ts.from_perspective function creates a perspective transform. This
function takes a volume and returns the transform that moves the volume back to the origin and
rotates it back into a single axis-aligned orientation. All projection geometries have a to_vol()
method that describes the frame of reference of the detector at each time step. This makes it easy
to create a transform that converts to the detector’s frame of reference. In the case of a circular
cone beam trajectory, for example, the source and detector rotate around the volume, from the
volume’s perspective. From the perspective of the detector, on the other hand, the volume rotates.
This change in perspective is illustrated in the last two panes of Fig. 3. Both perspectives yield
the same projection operator A.

3.4. Interoperability and GPU-acceleration

In this section, we discuss tomosipo’s interoperability with NumPy arrays [30] and GPU-
accelerated Python packages. In addition, we discuss the performance benefits of using
GPU-accelerated arrays and also some trade-offs in favor of CPU arrays.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40501

P

P-1

Translate
T = ts.translate(
 axis=(0, 1, 0),
 alpha=[-1, 0.5, 2.0])

Rotate
R = ts.rotate(
 pos=0,
 axis=(1, 0, 0),
 angles=[0, np.pi / 3]
)

Scale
S = ts.scale(
 (1, 1, 1),
 alpha=[1, 1.5]
)

Perspective of volume
vg = ts.volume(size=0.5)
pg = ts.cone([...])

P = ts.from_perspective(
Perspective of detector# Reflect

mirror = ts.volume([...])
M = ts.reflect(
 pos=mirror.pos,
 axis=(0, 1, 0),
)

)

 vol=pg.to_vol(),
)

ts.svg(T * vg)
ts.svg(R * vg)

ts.svg(S * vg)

M * vgvg

Mirror

ts.svg(P * vg, P * pg)ts.svg(vg, pg)

Fig. 3. Overview of geometric transforms in tomosipo. From left to right, translation,
rotation, scaling, and reflection. In the two panes in the bottom right, a typical cone
beam acquisition is shown from two perspectives: a static volume with the source
and detector rotating around it and a static source and detector with a volume rotating
in between. A perspective transform V allows switching between the two frames of
reference. The vector illustrations are created using the ts.svg() function.

3.3. Geometric transforms

Tomosipo defines geometric transforms that can rotate, translate, scale, and reflect the previously
introduced geometries. In addition, the package provides a perspective transform to switch
between different frames of reference. The transforms are stand-alone objects instead of functions
that act on geometries directly. We first discuss the internal representation of the transforms and
then we introduce the built-in functions to create transforms.

Representation. Internally, the transform at each time step is represented by a 4 × 4 matrix
M describing the transformation in homogeneous coordinates [29]. An orientation vector
v = (E1, E2, E3) is represented in homogeneous coordinates by ®v = (E1, E2, E3, 0), whereas a
position p = (?1, ?2, ?3) is represented by ®p = (?1, ?2, ?3, 1). This way, application of a
geometric transform — notably translation — to points and vectors can be performed by matrix
multiplication. That is, in homogeneous coordinates, the transformed vector equals M®v and the
transformed point equals M®p. In code, a vector v and point p in Euclidean coordinates are
transformed using a transform T as follows

1 transformed_v = T.transform_vec(v)
2 transformed_p = T.transform_point(p)

Application of a transform T to a geometry vg is expressed in code as

1 transformed_vg = T * vg

In the internal representation, the composition of two transforms is also computed by matrix
multiplication. The matrix representation of the composition) =)1 ◦)2 of two transforms)1,)2

Fig. 3. Overview of geometric transforms in tomosipo. From left to right, translation,
rotation, scaling, and reflection. In the two panes in the bottom right, a typical cone beam
acquisition is shown from two perspectives: a static volume with the source and detector
rotating around it and a static source and detector with a volume rotating in between. A
perspective transform P allows switching between the two frames of reference. The vector
illustrations are created using the ts.svg() function.

Projection operations are calculated using the ASTRA Toolbox. We have extended the ASTRA
Toolbox API to enable direct operation on NumPy arrays. Before any ASTRA operation, the
input arrays are automatically linked to the ASTRA runtime, and unlinked afterwards. This
represents a substantial ergonomic improvement over the existing API.

Apart from NumPy arrays, array types from other Python packages can also be linked. Out of
the box, tomosipo interoperates with PyTorch and CuPy [24,31]. More integrations can be added
though an API, which can be used in the future to add interoperability with a variety of array
libraries through the currently developing Python array API standard [32].

Integration with GPU array libraries can enable substantial performance improvements. In
the snippet below, a NumPy array and a PyTorch array are forward projected using a projection
operator A. The NumPy array is located in RAM attached to the CPU, and the PyTorch array is
located on the GPU.

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 8

P

P-1

Translate
T = ts.translate(
 axis=(0, 1, 0),
 alpha=[-1, 0.5, 2.0])

Rotate
R = ts.rotate(
 pos=0,
 axis=(1, 0, 0),
 angles=[0, np.pi / 3]
)

Scale
S = ts.scale(
 (1, 1, 1),
 alpha=[1, 1.5]
)

Perspective of volume
vg = ts.volume(size=0.5)
pg = ts.cone([...])

P = ts.from_perspective(
Perspective of detector# Reflect

mirror = ts.volume([...])
M = ts.reflect(
 pos=mirror.pos,
 axis=(0, 1, 0),
)

)

 vol=pg.to_vol(),
)

ts.svg(T * vg)
ts.svg(R * vg)

ts.svg(S * vg)

M * vgvg

Mirror

ts.svg(P * vg, P * pg)ts.svg(vg, pg)

Fig. 3. Overview of geometric transforms in tomosipo. From left to right, translation,
rotation, scaling, and reflection. In the two panes in the bottom right, a typical cone
beam acquisition is shown from two perspectives: a static volume with the source
and detector rotating around it and a static source and detector with a volume rotating
in between. A perspective transform V allows switching between the two frames of
reference. The vector illustrations are created using the ts.svg() function.

3.3. Geometric transforms

Tomosipo defines geometric transforms that can rotate, translate, scale, and reflect the previously
introduced geometries. In addition, the package provides a perspective transform to switch
between different frames of reference. The transforms are stand-alone objects instead of functions
that act on geometries directly. We first discuss the internal representation of the transforms and
then we introduce the built-in functions to create transforms.

Representation. Internally, the transform at each time step is represented by a 4 × 4 matrix
M describing the transformation in homogeneous coordinates [29]. An orientation vector
v = (E1, E2, E3) is represented in homogeneous coordinates by ®v = (E1, E2, E3, 0), whereas a
position p = (?1, ?2, ?3) is represented by ®p = (?1, ?2, ?3, 1). This way, application of a
geometric transform — notably translation — to points and vectors can be performed by matrix
multiplication. That is, in homogeneous coordinates, the transformed vector equals M®v and the
transformed point equals M®p. In code, a vector v and point p in Euclidean coordinates are
transformed using a transform T as follows

1 transformed_v = T.transform_vec(v)
2 transformed_p = T.transform_point(p)

Application of a transform T to a geometry vg is expressed in code as

1 transformed_vg = T * vg

In the internal representation, the composition of two transforms is also computed by matrix
multiplication. The matrix representation of the composition) =)1 ◦)2 of two transforms)1,)2

Fig. 3. Overview of geometric transforms in tomosipo. From left to right, translation,
rotation, scaling, and reflection. In the two panes in the bottom right, a typical cone beam
acquisition is shown from two perspectives: a static volume with the source and detector
rotating around it and a static source and detector with a volume rotating in between. A
perspective transform P allows switching between the two frames of reference. The vector
illustrations are created using the ts.svg() function.

This change in perspective is illustrated in the last two panes of Fig. 3. Both perspectives yield
the same projection operator A.

3.4. Interoperability and GPU-acceleration

In this section, we discuss tomosipo’s interoperability with NumPy arrays [30] and GPU-
accelerated Python packages. In addition, we discuss the performance benefits of using
GPU-accelerated arrays and also some trade-offs in favor of CPU arrays.

Projection operations are calculated using the ASTRA Toolbox. We have extended the ASTRA
Toolbox API to enable direct operation on NumPy arrays. Before any ASTRA operation, the
input arrays are automatically linked to the ASTRA runtime, and unlinked afterwards. This
represents a substantial ergonomic improvement over the existing API.

Apart from NumPy arrays, array types from other Python packages can also be linked. Out of
the box, tomosipo interoperates with PyTorch and CuPy [24,31]. More integrations can be added
though an API, which can be used in the future to add interoperability with a variety of array
libraries through the currently developing Python array API standard [32].

Integration with GPU array libraries can enable substantial performance improvements. In
the snippet below, a NumPy array and a PyTorch array are forward projected using a projection
operator A. The NumPy array is located in RAM attached to the CPU, and the PyTorch array is
located on the GPU.

1 y_numpy = A(np.ones(A.domain_shape, dtype=[...]))
2 y_torch = A(torch.ones(A.domain_shape, device="cuda"))

On line 1, the data is first moved to the GPU, the forward projection is calculated, and the
data is moved back to the CPU. On line 2, no data movement takes place: the forward projection
is calculated on the GPU. In iterative algorithms, where the forward and backprojection are
repeatedly executed substeps of the algorithm, the latency imposed by CPU-GPU communication
can dominate the computation time, as we demonstrate in Section 6. Note that PyTorch arrays
can also be created on the CPU. In that case, the computation of the forward projection goes
through exactly the same steps as a NumPy array would.

There are cases where it is beneficial to keep data on CPU. When data is too big to fit in
GPU memory, the ASTRA Toolbox automatically splits data residing on CPU and performs

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40502

the computation on the GPU in a streaming fashion. In this case, the user does not have to
split up the data manually. When multiple GPUs are present on the system, they can be used
automatically. In the code below, the ASTRA Toolbox is instructed to use four GPUs on line 1.
The computation of the forward projection on line 2 is distributed over the four GPUs.

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 9

On line 1, the data is first moved to the GPU, the forward projection is calculated, and the
data is moved back to the CPU. On line 2, no data movement takes place: the forward projection
is calculated on the GPU. In iterative algorithms, where the forward and backprojection are
repeatedly executed substeps of the algorithm, the latency imposed by CPU-GPU communication
can dominate the computation time, as we demonstrate in Section 6. Note that PyTorch arrays
can also be created on the CPU. In that case, the computation of the forward projection goes
through exactly the same steps as a NumPy array would.

There are cases where it is beneficial to keep data on CPU. When data is too big to fit in
GPU memory, the ASTRA Toolbox automatically splits data residing on CPU and performs
the computation on the GPU in a streaming fashion. In this case, the user does not have to
split up the data manually. When multiple GPUs are present on the system, they can be used
automatically. In the code below, the ASTRA Toolbox is instructed to use four GPUs on line 1.
The computation of the forward projection on line 2 is distributed over the four GPUs.

1 astra.set_gpu_index([0, 1, 2, 3])
2 y_numpy = A(np.ones(A.domain_shape, dtype=[...]))

3.5. Splitting and joining geometries

The ability to split and join geometries in tomosipo’s API allows users to customize their design
easily. Tomosipo allows subsampling a geometry to obtain a sub-geometry. In addition, it allows
joining the time steps of sequences of geometries into a single geometry.

First, we demonstrate subsampling of geometries. Here, we limit ourselves to projection
geometries. Subsampling of volume geometries and geometric transforms works similarly and
is described in the documentation. A projection geometry pg can be subsampled to obtain a
geometry describing a subset of the detector surface. In the code below, the detector surface is
cropped, removing a border of 100 pixels from each side. On the next line, the detector surface is
subsampled, selecting every other row and column of pixels. Subsampling induces a slight shift
in the detector’s center, which is taken into account and described in detail in the documentation.

1 pg_cropped = pg[:, 100:-100, 100:-100] # Crop detector surface
2 pg_subsampled = pg[:, ::2, ::2] # Subsample detector surface

Subsampling the angular dimension is also possible. In this dimension, subsampling supports
both slicing and Boolean masks [30]. In the code below, the angular direction is subsampled,
obtaining a geometry that contains every other projection angle. In the line below, angles are
selected when a condition array equals True.

1 pg_even_angles = pg[::2] # Subsample in angular direction
2 pg_boolean = pg[condition == True] # Select angles using a Boolean mask

In Section 4.3, Boolean masking is demonstrated in the case study of X-ray diffraction
tomography, where diffraction only occurs in a subset of projection angles.

In addition to subsampling, tomosipo includes the ts.concatenate function that concate-
nates geometries and transforms. The concatenation of multiple projection geometries combines
their time steps into a single geometry. In the code below, two projection geometries pg1
and pg2 are combined. In the next line, a rotation R is repeatedly composed with different
translations T1, T2, T3.

1 pg_combined = ts.concatenate([pg1, pg2])
2 TR_combined = ts.concatenate([T1 * R, T2 * R, T3 * R])

The concatenation of transforms is demonstrated in the case study of X-ray scattering tensor
tomography in Section 4.4, where it is used to define a repeated rotation at several tilt angles.

3.5. Splitting and joining geometries

The ability to split and join geometries in tomosipo’s API allows users to customize their design
easily. Tomosipo allows subsampling a geometry to obtain a sub-geometry. In addition, it allows
joining the time steps of sequences of geometries into a single geometry.

First, we demonstrate subsampling of geometries. Here, we limit ourselves to projection
geometries. Subsampling of volume geometries and geometric transforms works similarly and
is described in the documentation. A projection geometry pg can be subsampled to obtain a
geometry describing a subset of the detector surface. In the code below, the detector surface is
cropped, removing a border of 100 pixels from each side. On the next line, the detector surface is
subsampled, selecting every other row and column of pixels. Subsampling induces a slight shift
in the detector’s center, which is taken into account and described in detail in the documentation.

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 9

On line 1, the data is first moved to the GPU, the forward projection is calculated, and the
data is moved back to the CPU. On line 2, no data movement takes place: the forward projection
is calculated on the GPU. In iterative algorithms, where the forward and backprojection are
repeatedly executed substeps of the algorithm, the latency imposed by CPU-GPU communication
can dominate the computation time, as we demonstrate in Section 6. Note that PyTorch arrays
can also be created on the CPU. In that case, the computation of the forward projection goes
through exactly the same steps as a NumPy array would.

There are cases where it is beneficial to keep data on CPU. When data is too big to fit in
GPU memory, the ASTRA Toolbox automatically splits data residing on CPU and performs
the computation on the GPU in a streaming fashion. In this case, the user does not have to
split up the data manually. When multiple GPUs are present on the system, they can be used
automatically. In the code below, the ASTRA Toolbox is instructed to use four GPUs on line 1.
The computation of the forward projection on line 2 is distributed over the four GPUs.

1 astra.set_gpu_index([0, 1, 2, 3])
2 y_numpy = A(np.ones(A.domain_shape, dtype=[...]))

3.5. Splitting and joining geometries

The ability to split and join geometries in tomosipo’s API allows users to customize their design
easily. Tomosipo allows subsampling a geometry to obtain a sub-geometry. In addition, it allows
joining the time steps of sequences of geometries into a single geometry.

First, we demonstrate subsampling of geometries. Here, we limit ourselves to projection
geometries. Subsampling of volume geometries and geometric transforms works similarly and
is described in the documentation. A projection geometry pg can be subsampled to obtain a
geometry describing a subset of the detector surface. In the code below, the detector surface is
cropped, removing a border of 100 pixels from each side. On the next line, the detector surface is
subsampled, selecting every other row and column of pixels. Subsampling induces a slight shift
in the detector’s center, which is taken into account and described in detail in the documentation.

1 pg_cropped = pg[:, 100:-100, 100:-100] # Crop detector surface
2 pg_subsampled = pg[:, ::2, ::2] # Subsample detector surface

Subsampling the angular dimension is also possible. In this dimension, subsampling supports
both slicing and Boolean masks [30]. In the code below, the angular direction is subsampled,
obtaining a geometry that contains every other projection angle. In the line below, angles are
selected when a condition array equals True.

1 pg_even_angles = pg[::2] # Subsample in angular direction
2 pg_boolean = pg[condition == True] # Select angles using a Boolean mask

In Section 4.3, Boolean masking is demonstrated in the case study of X-ray diffraction
tomography, where diffraction only occurs in a subset of projection angles.

In addition to subsampling, tomosipo includes the ts.concatenate function that concate-
nates geometries and transforms. The concatenation of multiple projection geometries combines
their time steps into a single geometry. In the code below, two projection geometries pg1
and pg2 are combined. In the next line, a rotation R is repeatedly composed with different
translations T1, T2, T3.

1 pg_combined = ts.concatenate([pg1, pg2])
2 TR_combined = ts.concatenate([T1 * R, T2 * R, T3 * R])

The concatenation of transforms is demonstrated in the case study of X-ray scattering tensor
tomography in Section 4.4, where it is used to define a repeated rotation at several tilt angles.

Subsampling the angular dimension is also possible. In this dimension, subsampling supports
both slicing and Boolean masks [30]. In the code below, the angular direction is subsampled,
obtaining a geometry that contains every other projection angle. In the line below, angles are
selected when a condition array equals True.

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 9

On line 1, the data is first moved to the GPU, the forward projection is calculated, and the
data is moved back to the CPU. On line 2, no data movement takes place: the forward projection
is calculated on the GPU. In iterative algorithms, where the forward and backprojection are
repeatedly executed substeps of the algorithm, the latency imposed by CPU-GPU communication
can dominate the computation time, as we demonstrate in Section 6. Note that PyTorch arrays
can also be created on the CPU. In that case, the computation of the forward projection goes
through exactly the same steps as a NumPy array would.

There are cases where it is beneficial to keep data on CPU. When data is too big to fit in
GPU memory, the ASTRA Toolbox automatically splits data residing on CPU and performs
the computation on the GPU in a streaming fashion. In this case, the user does not have to
split up the data manually. When multiple GPUs are present on the system, they can be used
automatically. In the code below, the ASTRA Toolbox is instructed to use four GPUs on line 1.
The computation of the forward projection on line 2 is distributed over the four GPUs.

1 astra.set_gpu_index([0, 1, 2, 3])
2 y_numpy = A(np.ones(A.domain_shape, dtype=[...]))

3.5. Splitting and joining geometries

The ability to split and join geometries in tomosipo’s API allows users to customize their design
easily. Tomosipo allows subsampling a geometry to obtain a sub-geometry. In addition, it allows
joining the time steps of sequences of geometries into a single geometry.

First, we demonstrate subsampling of geometries. Here, we limit ourselves to projection
geometries. Subsampling of volume geometries and geometric transforms works similarly and
is described in the documentation. A projection geometry pg can be subsampled to obtain a
geometry describing a subset of the detector surface. In the code below, the detector surface is
cropped, removing a border of 100 pixels from each side. On the next line, the detector surface is
subsampled, selecting every other row and column of pixels. Subsampling induces a slight shift
in the detector’s center, which is taken into account and described in detail in the documentation.

1 pg_cropped = pg[:, 100:-100, 100:-100] # Crop detector surface
2 pg_subsampled = pg[:, ::2, ::2] # Subsample detector surface

Subsampling the angular dimension is also possible. In this dimension, subsampling supports
both slicing and Boolean masks [30]. In the code below, the angular direction is subsampled,
obtaining a geometry that contains every other projection angle. In the line below, angles are
selected when a condition array equals True.

1 pg_even_angles = pg[::2] # Subsample in angular direction
2 pg_boolean = pg[condition == True] # Select angles using a Boolean mask

In Section 4.3, Boolean masking is demonstrated in the case study of X-ray diffraction
tomography, where diffraction only occurs in a subset of projection angles.

In addition to subsampling, tomosipo includes the ts.concatenate function that concate-
nates geometries and transforms. The concatenation of multiple projection geometries combines
their time steps into a single geometry. In the code below, two projection geometries pg1
and pg2 are combined. In the next line, a rotation R is repeatedly composed with different
translations T1, T2, T3.

1 pg_combined = ts.concatenate([pg1, pg2])
2 TR_combined = ts.concatenate([T1 * R, T2 * R, T3 * R])

The concatenation of transforms is demonstrated in the case study of X-ray scattering tensor
tomography in Section 4.4, where it is used to define a repeated rotation at several tilt angles.

In Section 4.3, Boolean masking is demonstrated in the case study of X-ray diffraction
tomography, where diffraction only occurs in a subset of projection angles.

In addition to subsampling, tomosipo includes the ts.concatenate function that concate-
nates geometries and transforms. The concatenation of multiple projection geometries combines
their time steps into a single geometry. In the code below, two projection geometries pg1
and pg2 are combined. In the next line, a rotation R is repeatedly composed with different
translations T1, T2, T3.

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 9

On line 1, the data is first moved to the GPU, the forward projection is calculated, and the
data is moved back to the CPU. On line 2, no data movement takes place: the forward projection
is calculated on the GPU. In iterative algorithms, where the forward and backprojection are
repeatedly executed substeps of the algorithm, the latency imposed by CPU-GPU communication
can dominate the computation time, as we demonstrate in Section 6. Note that PyTorch arrays
can also be created on the CPU. In that case, the computation of the forward projection goes
through exactly the same steps as a NumPy array would.

There are cases where it is beneficial to keep data on CPU. When data is too big to fit in
GPU memory, the ASTRA Toolbox automatically splits data residing on CPU and performs
the computation on the GPU in a streaming fashion. In this case, the user does not have to
split up the data manually. When multiple GPUs are present on the system, they can be used
automatically. In the code below, the ASTRA Toolbox is instructed to use four GPUs on line 1.
The computation of the forward projection on line 2 is distributed over the four GPUs.

1 astra.set_gpu_index([0, 1, 2, 3])
2 y_numpy = A(np.ones(A.domain_shape, dtype=[...]))

3.5. Splitting and joining geometries

The ability to split and join geometries in tomosipo’s API allows users to customize their design
easily. Tomosipo allows subsampling a geometry to obtain a sub-geometry. In addition, it allows
joining the time steps of sequences of geometries into a single geometry.

First, we demonstrate subsampling of geometries. Here, we limit ourselves to projection
geometries. Subsampling of volume geometries and geometric transforms works similarly and
is described in the documentation. A projection geometry pg can be subsampled to obtain a
geometry describing a subset of the detector surface. In the code below, the detector surface is
cropped, removing a border of 100 pixels from each side. On the next line, the detector surface is
subsampled, selecting every other row and column of pixels. Subsampling induces a slight shift
in the detector’s center, which is taken into account and described in detail in the documentation.

1 pg_cropped = pg[:, 100:-100, 100:-100] # Crop detector surface
2 pg_subsampled = pg[:, ::2, ::2] # Subsample detector surface

Subsampling the angular dimension is also possible. In this dimension, subsampling supports
both slicing and Boolean masks [30]. In the code below, the angular direction is subsampled,
obtaining a geometry that contains every other projection angle. In the line below, angles are
selected when a condition array equals True.

1 pg_even_angles = pg[::2] # Subsample in angular direction
2 pg_boolean = pg[condition == True] # Select angles using a Boolean mask

In Section 4.3, Boolean masking is demonstrated in the case study of X-ray diffraction
tomography, where diffraction only occurs in a subset of projection angles.

In addition to subsampling, tomosipo includes the ts.concatenate function that concate-
nates geometries and transforms. The concatenation of multiple projection geometries combines
their time steps into a single geometry. In the code below, two projection geometries pg1
and pg2 are combined. In the next line, a rotation R is repeatedly composed with different
translations T1, T2, T3.

1 pg_combined = ts.concatenate([pg1, pg2])
2 TR_combined = ts.concatenate([T1 * R, T2 * R, T3 * R])

The concatenation of transforms is demonstrated in the case study of X-ray scattering tensor
tomography in Section 4.4, where it is used to define a repeated rotation at several tilt angles.
The concatenation of transforms is demonstrated in the case study of X-ray scattering tensor

tomography in Section 4.4, where it is used to define a repeated rotation at several tilt angles.

3.6. Visualization

Tomosipo provides extensive support for visualizing geometries. Animations can be saved as
a video or as a scalable vector graphic (SVG). In addition, geometries can be investigated in a
3D-accelerated environment on the desktop, allowing the user to zoom, pan, and rotate the view.
Finally, an interactive SVG animation can be shown in an online Jupyter notebook, allowing
for quick inspection of intermediate results. These options are illustrated in Fig. 4. All other
illustrations in this article have been generated using tomosipo. They were saved in the SVG
format and extended using Inkscape.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40503

anim.window()
anim = animate(*vg, pg) svg = ts.svg(vg, pg)anim = animate(vg, pg)

a b c

anim.save("video.mp4") svg.save("fig.svg")

Fig. 4. Visualization options in tomosipo: (a) interactive 3D environment, (b) video,
(c) interactive animation in a Jupyter Notebook. A single-particle Cryo-EM setup [33]
is shown in panes (a) and (b), and a circular cone beam acquisition is shown in pane (c).
Code snippets demonstrate how visualizations are created.

The concatenation of transforms is demonstrated in the case study of X-ray scattering tensor
tomography in Section 4.4, where it is used to define a repeated rotation at several tilt angles.

3.6. Visualization

Tomosipo provides extensive support for visualizing geometries. Animations can be saved as
a video or as a scalable vector graphic (SVG). In addition, geometries can be investigated in a
3D-accelerated environment on the desktop, allowing the user to zoom, pan, and rotate the view.
Finally, an interactive SVG animation can be shown in an online Jupyter notebook, allowing for
quick inspection of intermediate results. These options are illustrated in Figure 4. All other
illustrations in this article have been generated using tomosipo. They were saved in the SVG
format and extended using Inkscape.

4. Case studies

In this section, the concepts developed in the previous section are put into practice. We describe
two simple examples and two complex acquisition schemes that are in use at synchrotron
tomography beamlines. The first example demonstrates how geometric transforms can be
composed to create a helical cone beam geometry. The second example models single-axis
parallel beam tomography with a non-standard center of rotation in the frame of reference
of the laboratory. In the first case study, we describe X-ray diffraction contrast tomography,
which demonstrates the use of reflection and subsampling using a Boolean mask. In the second
case study, we describe X-ray scattering tensor tomography, which demonstrates the use of
concatenation. The case studies demonstrate that X-ray diffraction and scattering can be modeled
using tomosipo’s projection operators.

4.1. Basic example: Helical cone beam geometry

As a demonstration of the composition of two primitive transforms, we define the helical cone
beam geometry [34]. Here, the source and detector follow a helical path around the object. Using
the notation of [34], we describe the helical geometry as a composition of translation and rotation
in Figure 5. First, a static volume and a static cone beam geometry are defined. Next, a rotation
' and translation) are defined, which rotate around and translate along the z-axis. The helical
transform � is defined such that it applies the rotation '8 and then a translation)8 at time step 8.
When it is applied to the cone beam geometry, the resulting trajectory of the source and detector
is helical. We note that the helical trajectory could have been obtained as a translation of a
non-static cone beam geometry, effectively hiding the rotation in the cone beam geometry.

Fig. 4. Visualization options in tomosipo: (a) interactive 3D environment, (b) video, (c)
interactive animation in a Jupyter Notebook. A single-particle Cryo-EM setup [33] is shown
in panes (a) and (b), and a circular cone beam acquisition is shown in pane (c). Code
snippets demonstrate how visualizations are created.

4. Case studies

In this section, the concepts developed in the previous section are put into practice. We describe
two simple examples and two complex acquisition schemes that are in use at synchrotron
tomography beamlines. The first example demonstrates how geometric transforms can be
composed to create a helical cone beam geometry. The second example models single-axis
parallel beam tomography with a non-standard center of rotation in the frame of reference
of the laboratory. In the first case study, we describe X-ray diffraction contrast tomography,
which demonstrates the use of reflection and subsampling using a Boolean mask. In the second
case study, we describe X-ray scattering tensor tomography, which demonstrates the use of
concatenation. The case studies demonstrate that X-ray diffraction and scattering can be modeled
using tomosipo’s projection operators.

4.1. Basic example: Helical cone beam geometry

As a demonstration of the composition of two primitive transforms, we define the helical cone
beam geometry [34]. Here, the source and detector follow a helical path around the object. Using
the notation of [34], we describe the helical geometry as a composition of translation and rotation
in Fig. 5. First, a static volume and a static cone beam geometry are defined. Next, a rotation R
and translation T are defined, which rotate around and translate along the z-axis. The helical
transform H is defined such that it applies the rotation Ri and then a translation Ti at time step i.
When it is applied to the cone beam geometry, the resulting trajectory of the source and detector
is helical. We note that the helical trajectory could have been obtained as a translation of a
non-static cone beam geometry, effectively hiding the rotation in the cone beam geometry.

4.2. Basic example: Parallel beam in the lab frame

Acquisition using the single-axis parallel beam geometry is common at synchrotron beam lines.
The detector is often positioned at a fixed location and the sample is mounted on a movable
rotation stage. Typically, it is assumed that the center of rotation and the center of the detector
coincide. In many cases in practice, however, it is difficult to achieve this with the described
setup. Therefore, the offset between the center of rotation and the center of the detector has to be
taken into account in order to achieve an accurate reconstruction. This is possible in tomosipo by
positioning the detector, volume, and rotation axis independently from each other.

In Fig. 6, the acquisition geometry is defined in the frame of reference of the laboratory. First,
a static detector is translated from the origin to its final position by a transform T. Next, a static
volume geometry is created at the initial position of the sample. A rotation is defined with a
specific position of the rotation axis. Finally, the rotation is applied to the static volume, obtaining
a rotating volume whose center rotates around the rotation axis.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40504

t = np.linspace(-1, 1, 100) # Time t = -1.0, -.98, ..., 1
s = 2 * np.pi * t # Angle
radius = 2 # Radius of helix
h = 1.0 # Vertical "speed"

R = ts.rotate(pos=0, axis=(1, 0, 0), angles=s)
T = ts.translate(axis=(1, 0, 0), alpha = h * s / (2 * np.pi))
H = T * R

vg = ts.volume()
pg = ts.cone(src_orig_dist=radius, src_det_dist=2 * radius)

ts.svg(vg, H * pg.to_vec())

Fig. 5. A helical cone beam geometry can be obtained as a composition of translation
and rotation. The volume and cone beam geometries are defined to be non-moving. At
each time step, the helical transform � applies a rotation ' and then a translation) to
the cone beam geometry.

4.2. Basic example: Parallel beam in the lab frame

Acquisition using the single-axis parallel beam geometry is common at synchrotron beam lines.
The detector is often positioned at a fixed location and the sample is mounted on a movable
rotation stage. Typically, it is assumed that the center of rotation and the center of the detector
coincide. In many cases in practice, however, it is difficult to achieve this with the described
setup. Therefore, the offset between the center of rotation and the center of the detector has to be
taken into account in order to achieve an accurate reconstruction. This is possible in tomosipo by
positioning the detector, volume, and rotation axis independently from each other.
In Figure 6, the acquisition geometry is defined in the frame of reference of the laboratory.

First, a static detector is translated from the origin to its final position by a transform T. Next,
a static volume geometry is created at the initial position of the sample. A rotation is defined
with a specific position of the rotation axis. Finally, the rotation is applied to the static volume,
obtaining a rotating volume whose center rotates around the rotation axis.
There is an advantage to this formulation. In existing tomography packages, the position of

the volume is commonly chosen to coincide with the rotation axis. However, this causes the
reconstructed images to be translatedwhen a different center of rotation is provided. This can cause
problems when the determination of the correct center of rotation is based on the reconstructed
images. In contrast, the proposed formulation opens up the possibility of determining the correct
center of rotation by maximizing the auto-correlation in the reconstruction at several values of
the center of rotation.

Static detector at custom position
T = ts.translate(det_pos)
static_pg = ts.parallel(angles=1, shape=det_shape)
pg = T * pg_static.to_vec()

Rotate the volume
R = ts.rotate(pos=rot_axis_pos, axis=z_axis, angles=angles)

vg_static = ts.volume(pos=vol_pos, shape=vol_shape)

vg = R * vg_static.to_vec()

Static volume at custom position

A = ts.operator(vg, pg)

Fig. 6. A single-axis parallel beam acquisition with a custom center of rotation. An
object, whose changing position during rotation is indicated in blue, is rotated around a
non-standard axis of rotation (in red). The center of the detector is indicated in green.

Fig. 5. A helical cone beam geometry can be obtained as a composition of translation and
rotation. The volume and cone beam geometries are defined to be non-moving. At each
time step, the helical transform H applies a rotation R and then a translation T to the cone
beam geometry.

t = np.linspace(-1, 1, 100) # Time t = -1.0, -.98, ..., 1
s = 2 * np.pi * t # Angle
radius = 2 # Radius of helix
h = 1.0 # Vertical "speed"

R = ts.rotate(pos=0, axis=(1, 0, 0), angles=s)
T = ts.translate(axis=(1, 0, 0), alpha = h * s / (2 * np.pi))
H = T * R

vg = ts.volume()
pg = ts.cone(src_orig_dist=radius, src_det_dist=2 * radius)

ts.svg(vg, H * pg.to_vec())

Fig. 5. A helical cone beam geometry can be obtained as a composition of translation
and rotation. The volume and cone beam geometries are defined to be non-moving. At
each time step, the helical transform � applies a rotation ' and then a translation) to
the cone beam geometry.

4.2. Basic example: Parallel beam in the lab frame

Acquisition using the single-axis parallel beam geometry is common at synchrotron beam lines.
The detector is often positioned at a fixed location and the sample is mounted on a movable
rotation stage. Typically, it is assumed that the center of rotation and the center of the detector
coincide. In many cases in practice, however, it is difficult to achieve this with the described
setup. Therefore, the offset between the center of rotation and the center of the detector has to be
taken into account in order to achieve an accurate reconstruction. This is possible in tomosipo by
positioning the detector, volume, and rotation axis independently from each other.
In Figure 6, the acquisition geometry is defined in the frame of reference of the laboratory.

First, a static detector is translated from the origin to its final position by a transform T. Next,
a static volume geometry is created at the initial position of the sample. A rotation is defined
with a specific position of the rotation axis. Finally, the rotation is applied to the static volume,
obtaining a rotating volume whose center rotates around the rotation axis.
There is an advantage to this formulation. In existing tomography packages, the position of

the volume is commonly chosen to coincide with the rotation axis. However, this causes the
reconstructed images to be translatedwhen a different center of rotation is provided. This can cause
problems when the determination of the correct center of rotation is based on the reconstructed
images. In contrast, the proposed formulation opens up the possibility of determining the correct
center of rotation by maximizing the auto-correlation in the reconstruction at several values of
the center of rotation.

Static detector at custom position
T = ts.translate(det_pos)
static_pg = ts.parallel(angles=1, shape=det_shape)
pg = T * pg_static.to_vec()

Rotate the volume
R = ts.rotate(pos=rot_axis_pos, axis=z_axis, angles=angles)

vg_static = ts.volume(pos=vol_pos, shape=vol_shape)

vg = R * vg_static.to_vec()

Static volume at custom position

A = ts.operator(vg, pg)

Fig. 6. A single-axis parallel beam acquisition with a custom center of rotation. An
object, whose changing position during rotation is indicated in blue, is rotated around a
non-standard axis of rotation (in red). The center of the detector is indicated in green.

Fig. 6. A single-axis parallel beam acquisition with a custom center of rotation. An object,
whose changing position during rotation is indicated in blue, is rotated around a non-standard
axis of rotation (in red). The center of the detector is indicated in green.

There is an advantage to this formulation. In existing tomography packages, the position of
the volume is commonly chosen to coincide with the rotation axis. However, this causes the
reconstructed images to be translated when a different center of rotation is provided. This can cause
problems when the determination of the correct center of rotation is based on the reconstructed
images. In contrast, the proposed formulation opens up the possibility of determining the correct
center of rotation by maximizing the auto-correlation in the reconstruction at several values of
the center of rotation.

4.3. Complex case study: X-ray diffraction contrast tomography

X-ray diffraction contrast tomography (DCT) [2] is an imaging technique used to investigate
the internal structure of poly-crystalline materials. The crystal lattice is divided into grains,
homogeneous regions where the lattice has a similar orientation. The orientation, size, shape,
and arrangement of individual grains strongly influence macroscopic properties of the material.
Therefore, mapping the orientation of grains is important to characterize a poly-crystalline
material [35]. Here, we take as an example the three-dimensional DCT acquisition geometry as
described in [2] to demonstrate specific features of tomosipo.

The goal of DCT is to reconstruct a vector field representing the intra-granular orientation of
the crystal lattice. This is achieved by discretizing the orientation space on a regular grid that can
be represented by unit vectors ô1, . . . , ôNo . For each orientation ôk, a scalar field, i.e., a volume,
is reconstructed that represents the diffraction “intensity” at that orientation. A variational
reconstruction algorithm ensures that neighboring voxels have similar orientations.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40505

A crystal lattice reflects an incoming X-ray beam at specific incidence directions, characterized
by the so-called Bragg angles. When the diffraction geometry of the material under investigation
is known beforehand, the intra-granular orientation of the crystal lattice can be recovered from
those projection images at which Bragg diffraction is expected to occur.

As shown in Fig. 7, the acquisition uses a monochromatic parallel box beam and the diffracted
signal of the sample is measured on a flat-panel detector. As the sample is rotated, the reflection
of the incoming beam in a voxel with local orientation ô forms a figure of eight on the detector.
Bragg diffraction only occurs in the instances where the beam and local lattice are in Bragg
condition. Occurrence of the Bragg condition is relatively rare, as shown in Fig. 7(b). Both the
reflection and its intermittent nature can be modeled in tomosipo.

Crystal

Grain

Beam

360° rotation

Detector

Local

orientation

spread

Rotation angle index

0 20 40 60 80

0

10

O
ri

e
n
ta

ti
o
n
 i
n
d
e
x

Bragg diffraction occurrence

a b

ô

Fig. 7. (a) In X-ray diffraction contrast tomography, a crystal sample is illuminated by
a monochromatic X-ray box beam. The crystal sample is divided into grains, which
have a minimal spread in local orientation. As the sample is rotated, the incoming
beam is diffracted when its incident angle with the local lattice plane equals the Bragg
angle. The intersection points of the reflected beam with the detector form a figure of
eight, on which Bragg diffraction occurs only twice (marked in red) as the sample is
rotated. (b) For a random sample of 20 orientations, the occurrence of Bragg diffraction
at a rotation angle is indicated in black. Here, diffraction occurs in just 3.3% of the
orientation-rotation combinations.

4.3. Complex case study: X-ray diffraction contrast tomography

X-ray diffraction contrast tomography (DCT) [2] is an imaging technique used to investigate
the internal structure of poly-crystalline materials. The crystal lattice is divided into grains,
homogeneous regions where the lattice has a similar orientation. The orientation, size, shape,
and arrangement of individual grains strongly influence macroscopic properties of the material.
Therefore, mapping the orientation of grains is important to characterize a poly-crystalline
material [35]. Here, we take as an example the three-dimensional DCT acquisition geometry as
described in [2] to demonstrate specific features of tomosipo.
The goal of DCT is to reconstruct a vector field representing the intra-granular orientation

of the crystal lattice. This is achieved by discretizing the orientation space on a regular grid
that can be represented by unit vectors ô1, . . . , ô#>

. For each orientation ô: , a scalar field,
i.e., a volume, is reconstructed that represents the diffraction “intensity” at that orientation. A
variational reconstruction algorithm ensures that neighboring voxels have similar orientations.

A crystal lattice reflects an incoming X-ray beam at specific incidence directions, characterized
by the so-called Bragg angles. When the diffraction geometry of the material under investigation
is known beforehand, the intra-granular orientation of the crystal lattice can be recovered from
those projection images at which Bragg diffraction is expected to occur.
As shown in Figure 7, the acquisition uses a monochromatic parallel box beam and the

diffracted signal of the sample is measured on a flat-panel detector. As the sample is rotated, the
reflection of the incoming beam in a voxel with local orientation ô forms a figure of eight on the
detector. Bragg diffraction only occurs in the instances where the beam and local lattice are in
Bragg condition. Occurrence of the Bragg condition is relatively rare, as shown in Figure 7 (b).
Both the reflection and its intermittent nature can be modeled in tomosipo.
Bragg diffraction (reflection). The diffraction, i.e., reflection, of an incident X-ray beam can

be represented in tomosipo. As shown in Figure 7, a parallel bundle of rays remains parallel after
it has been reflected. Therefore, the measurement of a diffracted parallel beam can be modeled
using a standard parallel-beam geometry with altered ray direction.

The code below models the reflection of the incoming beam by a rotating crystal lattice. The
orientation of the lattice is represented by a plane normal vector. First, the plane normal of the
crystal lattice is rotated. Then, a reflection " is created in the rotating plane normal. The position

Fig. 7. (a) In X-ray diffraction contrast tomography, a crystal sample is illuminated by a
monochromatic X-ray box beam. The crystal sample is divided into grains, which have
a minimal spread in local orientation. As the sample is rotated, the incoming beam is
diffracted when its incident angle with the local lattice plane equals the Bragg angle. The
intersection points of the reflected beam with the detector form a figure of eight, on which
Bragg diffraction occurs only twice (marked in red) as the sample is rotated. (b) For a random
sample of 20 orientations, the occurrence of Bragg diffraction at a rotation angle is indicated
in black. Here, diffraction occurs in just 3.3% of the orientation-rotation combinations.

Bragg diffraction (reflection). The diffraction, i.e., reflection, of an incident X-ray beam can
be represented in tomosipo. As shown in Fig. 7, a parallel bundle of rays remains parallel after it
has been reflected. Therefore, the measurement of a diffracted parallel beam can be modeled
using a standard parallel-beam geometry with altered ray direction.

The code below models the reflection of the incoming beam by a rotating crystal lattice. The
orientation of the lattice is represented by a plane normal vector. First, the plane normal of the
crystal lattice is rotated. Then, a reflection M is created in the rotating plane normal. The position
of the reflection is arbitrary, as it is used to transform the direction of the beam and not its location.
Finally, a static parallel beam geometry is modified such that the ray direction corresponds to that
of the beam reflected in the rotating plane normal. The position and orientation of the detector
remain static.

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 13

1 # Rotation of the rotation stage
2 R = ts.rotate(pos=0, axis=(1, 0, 0), angles=rot_angles)
3

4 def diffracted_pg(pg_static, plane_normal, R):
5 # 1. Rotate the plane normal
6 rotated_plane_normal = R.transform_vec(plane_normal)
7 # 2. Create a reflection in the rotating plane normal
8 M = ts.reflect(pos=0, axis=rotated_plane_normal)
9 # 3. Create a new vector geometry with dynamic ray direction

10 return ts.parallel_vec(
11 shape=pg_static.det_shape,
12 ray_dir=M.transform_vec(pg_static.ray_dir), # Reflect ray direction
13 det_pos=pg_static.det_pos,
14 det_v=pg_static.det_v,
15 det_u=pg_static.det_u,
16)

Bragg condition (Boolean masking). The occurrence of Bragg diffraction can be considered
as a Boolean mask, an example of which is shown in Fig. 7(b). It is computed in the code below.
First, the plane normal is rotated. Then, the Bragg condition is determined at each rotation angle.

1 bragg_mask = np.empty((num_orientations, num_angles), dtype=bool)
2

3 for i in range(num_orientations):
4 # 1. Rotate the plane normal associated with the lattice orientation
5 rotated_normal = R.transform_vec(plane_normals[i])
6 # 2. Determine whether the rotated plane normal is in Bragg condition
7 for j in range(num_angles):
8 bragg_mask[i, j] = in_bragg_condition(
9 rotated_normal[j], incoming_ray_dir, bragg_angle

10)

The created Boolean mask is used to select a subset of each projection geometry. For each
orientation, the code below creates an operator that computes the forward projection only at
rotation angles where Bragg diffraction occurs.

1 vg = R * ts.volume(shape=100).to_vec()
2 # Create a list of geometries using a list comprehension
3 diffracted_pgs = [
4 diffracted_pg(pg_static, normal, R) for normal in plane_normals
5]
6

7 # Compute an operator per orientation
8 operators = [
9 ts.operator(vg[bragg_mask[i]], diffracted_pgs[i][bragg_mask[i]])

10 for i in range(num_orientations)
11]

Multi-orientation tomography (sums of masked operators). The forward projection com-
putes the diffraction pattern of x ∈ RNo×N3

v , representing all discretized plane orientations at N3
v

locations, onto y ∈ RNθ×N2
p , representing the N2

p pixel intensities at Nθ rotation angles. The
operation is a linear combination of the masked operators defined above. The backprojection
operation can be defined similarly as we show in Code 1 (Ref. [36]), containing the full code listing.

Bragg condition (Boolean masking). The occurrence of Bragg diffraction can be considered
as a Boolean mask, an example of which is shown in Fig. 7(b). It is computed in the code below.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40506

First, the plane normal is rotated. Then, the Bragg condition is determined at each rotation angle.

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 13

1 # Rotation of the rotation stage
2 R = ts.rotate(pos=0, axis=(1, 0, 0), angles=rot_angles)
3

4 def diffracted_pg(pg_static, plane_normal, R):
5 # 1. Rotate the plane normal
6 rotated_plane_normal = R.transform_vec(plane_normal)
7 # 2. Create a reflection in the rotating plane normal
8 M = ts.reflect(pos=0, axis=rotated_plane_normal)
9 # 3. Create a new vector geometry with dynamic ray direction

10 return ts.parallel_vec(
11 shape=pg_static.det_shape,
12 ray_dir=M.transform_vec(pg_static.ray_dir), # Reflect ray direction
13 det_pos=pg_static.det_pos,
14 det_v=pg_static.det_v,
15 det_u=pg_static.det_u,
16)

Bragg condition (Boolean masking). The occurrence of Bragg diffraction can be considered
as a Boolean mask, an example of which is shown in Fig. 7(b). It is computed in the code below.
First, the plane normal is rotated. Then, the Bragg condition is determined at each rotation angle.

1 bragg_mask = np.empty((num_orientations, num_angles), dtype=bool)
2

3 for i in range(num_orientations):
4 # 1. Rotate the plane normal associated with the lattice orientation
5 rotated_normal = R.transform_vec(plane_normals[i])
6 # 2. Determine whether the rotated plane normal is in Bragg condition
7 for j in range(num_angles):
8 bragg_mask[i, j] = in_bragg_condition(
9 rotated_normal[j], incoming_ray_dir, bragg_angle

10)

The created Boolean mask is used to select a subset of each projection geometry. For each
orientation, the code below creates an operator that computes the forward projection only at
rotation angles where Bragg diffraction occurs.

1 vg = R * ts.volume(shape=100).to_vec()
2 # Create a list of geometries using a list comprehension
3 diffracted_pgs = [
4 diffracted_pg(pg_static, normal, R) for normal in plane_normals
5]
6

7 # Compute an operator per orientation
8 operators = [
9 ts.operator(vg[bragg_mask[i]], diffracted_pgs[i][bragg_mask[i]])

10 for i in range(num_orientations)
11]

Multi-orientation tomography (sums of masked operators). The forward projection com-
putes the diffraction pattern of x ∈ RNo×N3

v , representing all discretized plane orientations at N3
v

locations, onto y ∈ RNθ×N2
p , representing the N2

p pixel intensities at Nθ rotation angles. The
operation is a linear combination of the masked operators defined above. The backprojection
operation can be defined similarly as we show in Code 1 (Ref. [36]), containing the full code listing.

The created Boolean mask is used to select a subset of each projection geometry. For each
orientation, the code below creates an operator that computes the forward projection only at
rotation angles where Bragg diffraction occurs.

1 x = np.zeros((num_orientations, *vg.shape), dtype=np.float32)
2

3 def fp(x):
4 y = np.zeros((det_shape[0], num_angles, det_shape[1]), dtype=np.float32)
5 for i in range(num_orientations):
6 mask = bragg_mask[i]
7 A = operators[i]
8 y[:, mask] += A(x[i])
9 return y
10

11 y = fp(x)

Implementing the variational reconstruction algorithm described in [2] is outside of the scope
of this manuscript. We have shown how the DCT geometry can be succinctly expressed using
tomosipo’s rotation and reflection transformations. In addition, we have used subsampling with
a Boolean mask to limit the forward projection to the few instances where Bragg diffraction
occurs.

4.4. Complex case study: X-ray scattering tensor tomography

X-ray scattering tensor tomography (XSTT) is an imaging technique used to investigate materials
with micro- and nano-scale structures over an orders of magnitude larger volumetric field of view,
compared to conventional tomographic modalities [36, 37]. Here, we take the XSTT acquisition
geometry that is described in [3] as an example to demonstrate specific features of tomosipo.
The goal of XSTT is to reconstruct a vector field representing the directional scattering

intensity of a sample. This is achieved by reconstructing #ŝ ≥ 6 scalar fields that represent the
squared scattering coefficient along unit vector ŝ1, . . . , ŝ#ŝ at each voxel. After reconstruction,
the directional scattering intensities are fine-tuned using per-voxel PCA (principal component
analysis) [38]. XSTT has various biological and industrial applications [3]. As an example, the
recovered local directional scattering intensities can be used to predict macroscopic properties
of fibrous materials. These properties depend on the local fiber arrangement. Fibers scatter
X-rays the least along their primary fiber orientation. Therefore, the local fiber orientation can be
recovered from the shortest principal axis (smallest scattering magnitude) of the fitted scattering
ellipsoid. The possibility to investigate these local structures over large enough volumes is
valuable for the research and development of new materials.

We describe the acquisition process to obtain one of the scalar fields xŝ, representing the
squared scattering coefficient along a unit vector ŝ. First, we discuss the forward model at a single

Grating

Detector

360° rotation

Unit c
ell

0 - 45° tilt

Sensitivity vectors ŝk

Unit cell directional vectors ĝi

VoxelBeam

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam.
The sample is repeatedly rotated at several tilt angles. The scattered signal passes
through an array of gratings before being measured on a detector. The detector pixels
are grouped into 9 × 9 pixel unit cells. In each unit cell, a directional intensity is
measured along vectors ĝ8 . In each voxel, scattering coefficients for multiple scattering
sensitivity vectors ŝ: are reconstructed.

Multi-orientation tomography (sums of masked operators). The forward projection com-
putes the diffraction pattern of x ∈ RNo×N3

v , representing all discretized plane orientations at N3
v

locations, onto y ∈ RNθ×N2
p , representing the N2

p pixel intensities at Nθ rotation angles. The
operation is a linear combination of the masked operators defined above. The backprojection
operation can be defined similarly as we show in Code 1 (Ref. [36]), containing the full code
listing.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 15

1 tilt = ts.rotate(pos=0, axis=(0, 0, 1), angles=tilt_angles)
2 rotate = ts.rotate(pos=0, axis=(1, 0, 0), angles=rotation_angles)
3 # For each tilt angle, perform a full rotation:
4 TR = ts.concatenate([tilt_single * rotate for tilt_single in tilt])

At each tilt and rotation angle, the scaling νb̂,ŝ,ĝi
from Eq. (3) is calculated as follows:

1 def calculate_nu(b, s, g, TR):
2 nu = np.zeros(TR.num_steps)
3 for j, s_rot in enumerate(TR.transform_vec(s)):
4 nu[j] = (norm(np.cross(b, s_rot)) * np.dot(s_rot, g)) ** 2
5 return nu

Because the calculation is performed in the lab frame, the vector ŝ is rotated rather than the
beam direction b̂ or sensitivity vector ĝ,

Scaled linear combinations. After ν ∈ RNŝ×Nĝ×NtiltNrot is calculated for all values of ŝ1, . . . , ŝNŝ ,
all ĝi, and all tilts and rotations, then the full projection can be calculated. Here, the measurement
along ĝi is the sum of the contributions of the Nŝ scalar fields representing the scattering
coefficients of the sample, as calculated below. The backprojection is defined in Code 1 (Ref.
[36]).

1 def fp(x, nu):
2 y = torch.zeros(num_g, *A.range_shape, device=x.device)
3 for k in range(num_s):
4 for i in range(num_g):
5 y[i] += nu[k, i][None, :, None] * A(x[k])
6

7 return y

Data size. The reconstruction problem considered in [3] fits in memory on modern GPUs. The
measured data consists of 46 tilt angles, 50 rotation angles, and 100×144 unit cells. Measuring
along 8 ĝi vectors, the total number of measured unit cells equals 46 × 50 × 100 × 144 × 8 ≈
25 × 106, which requires approximately 1 GB when stored in 32 bit precision. The reconstruction
volume consists of 44×71×71 voxels, repeated for each of Nŝ = 7 scattering directions. In total,
it requires roughly 6 MB to store in 32 bit precision. The size of the scaling matrix ν is negligible
in comparison. Modern data center GPUs range in memory size from 16 GB to 80 GB. Therefore,
it is possible to run an iterative SIRT reconstruction of the full problem on GPU. Benchmarks
comparing the performance on GPU versus CPU are provided in Section 6.

1 x = np.zeros((num_orientations, *vg.shape), dtype=np.float32)
2

3 def fp(x):
4 y = np.zeros((det_shape[0], num_angles, det_shape[1]), dtype=np.float32)
5 for i in range(num_orientations):
6 mask = bragg_mask[i]
7 A = operators[i]
8 y[:, mask] += A(x[i])
9 return y
10

11 y = fp(x)

Implementing the variational reconstruction algorithm described in [2] is outside of the scope
of this manuscript. We have shown how the DCT geometry can be succinctly expressed using
tomosipo’s rotation and reflection transformations. In addition, we have used subsampling with
a Boolean mask to limit the forward projection to the few instances where Bragg diffraction
occurs.

4.4. Complex case study: X-ray scattering tensor tomography

X-ray scattering tensor tomography (XSTT) is an imaging technique used to investigate materials
with micro- and nano-scale structures over an orders of magnitude larger volumetric field of view,
compared to conventional tomographic modalities [36, 37]. Here, we take the XSTT acquisition
geometry that is described in [3] as an example to demonstrate specific features of tomosipo.
The goal of XSTT is to reconstruct a vector field representing the directional scattering

intensity of a sample. This is achieved by reconstructing #ŝ ≥ 6 scalar fields that represent the
squared scattering coefficient along unit vector ŝ1, . . . , ŝ#ŝ at each voxel. After reconstruction,
the directional scattering intensities are fine-tuned using per-voxel PCA (principal component
analysis) [38]. XSTT has various biological and industrial applications [3]. As an example, the
recovered local directional scattering intensities can be used to predict macroscopic properties
of fibrous materials. These properties depend on the local fiber arrangement. Fibers scatter
X-rays the least along their primary fiber orientation. Therefore, the local fiber orientation can be
recovered from the shortest principal axis (smallest scattering magnitude) of the fitted scattering
ellipsoid. The possibility to investigate these local structures over large enough volumes is
valuable for the research and development of new materials.

We describe the acquisition process to obtain one of the scalar fields xŝ, representing the
squared scattering coefficient along a unit vector ŝ. First, we discuss the forward model at a single

Grating

Detector

360° rotation

Unit c
ell

0 - 45° tilt

Sensitivity vectors ŝk

Unit cell directional vectors ĝi

VoxelBeam

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam.
The sample is repeatedly rotated at several tilt angles. The scattered signal passes
through an array of gratings before being measured on a detector. The detector pixels
are grouped into 9 × 9 pixel unit cells. In each unit cell, a directional intensity is
measured along vectors ĝ8 . In each voxel, scattering coefficients for multiple scattering
sensitivity vectors ŝ: are reconstructed.

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam. The
sample is repeatedly rotated at several tilt angles. The scattered signal passes through an
array of gratings before being measured on a detector. The detector pixels are grouped into
9×9 pixel unit cells. In each unit cell, a directional intensity is measured along vectors
ĝi. In each voxel, scattering coefficients for multiple scattering sensitivity vectors ŝk are
reconstructed.

Implementing the variational reconstruction algorithm described in [2] is outside of the scope
of this manuscript. We have shown how the DCT geometry can be succinctly expressed using
tomosipo’s rotation and reflection transformations. In addition, we have used subsampling with a
Boolean mask to limit the forward projection to the few instances where Bragg diffraction occurs.

4.4. Complex case study: X-ray scattering tensor tomography

X-ray scattering tensor tomography (XSTT) is an imaging technique used to investigate materials
with micro- and nano-scale structures over an orders of magnitude larger volumetric field of view,
compared to conventional tomographic modalities [37,38]. Here, we take the XSTT acquisition
geometry that is described in [3] as an example to demonstrate specific features of tomosipo.

The goal of XSTT is to reconstruct a vector field representing the directional scattering
intensity of a sample. This is achieved by reconstructing Nŝ ≥ 6 scalar fields that represent the
squared scattering coefficient along unit vector ŝ1, . . . , ŝNŝ at each voxel. After reconstruction,
the directional scattering intensities are fine-tuned using per-voxel PCA (principal component
analysis) [39]. XSTT has various biological and industrial applications [3]. As an example, the
recovered local directional scattering intensities can be used to predict macroscopic properties

https://doi.org/10.5281/zenodo.5577147

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40507

of fibrous materials. These properties depend on the local fiber arrangement. Fibers scatter
X-rays the least along their primary fiber orientation. Therefore, the local fiber orientation can be
recovered from the shortest principal axis (smallest scattering magnitude) of the fitted scattering
ellipsoid. The possibility to investigate these local structures over large enough volumes is
valuable for the research and development of new materials.

We describe the acquisition process to obtain one of the scalar fields xŝ, representing the
squared scattering coefficient along a unit vector ŝ. First, we discuss the forward model at a single
orientation of the sample, i.e., without any rotation or tilting. Let xŝ ∈ RN3

v represent the sample’s
squared scattering coefficient along a vector ŝ. The sample is illuminated by a monochromatic
parallel X-ray beam. Before they are measured on a detector, the X-rays travel through a panel
that is etched with a periodic array of multi-circular gratings [3], generating a reference pattern.
The panel is placed at a fixed propagation distance from the detector to maximize the visibility of
the patterns. Different types of gratings require different acquisition geometries. The acquisition
discussed in this case study is specifically geared to circular gratings.

With the use of circular gratings, the pixels of the detector are grouped into 9×9 pixel unit
cells. In each unit cell, a 2D directional intensity is measured along multiple unit vectors ĝi.
The measured intensity yi along the vector ĝi on the detector for a single beam direction b̂ is
computed by scaling the forward projection with the scalar νb̂,ŝ,ĝi

[37], defined by

(︂
|b̂ × Ŝ| ⟨︁Ŝ, ĝi

⟩︁)︂2
Ab̂ xŝ = νb̂,ŝ,ĝi

Ab̂ xŝ = yi. (1)

The scaling is the same for each unit cell on the detector and varies as the sample (and thus ŝ)
is rotated.

Rotation and tilt (concatenation). When using circular gratings, the sample must be measured
with multiple tilted rotation axes [3,40]. In the XSTT acquisition described in [3], the sample
stage is rotated, while the stage is tilted in steps. At each step, the stage makes a full rotation,
as illustrated in Fig. 8. Each step can be represented in tomosipo by composing a single tilt
operation with a full rotation. In the code below, the full motion is computed by concatenating
each step.

1 x = np.zeros((num_orientations, *vg.shape), dtype=np.float32)
2

3 def fp(x):
4 y = np.zeros((det_shape[0], num_angles, det_shape[1]), dtype=np.float32)
5 for i in range(num_orientations):
6 mask = bragg_mask[i]
7 A = operators[i]
8 y[:, mask] += A(x[i])
9 return y
10

11 y = fp(x)

Implementing the variational reconstruction algorithm described in [2] is outside of the scope
of this manuscript. We have shown how the DCT geometry can be succinctly expressed using
tomosipo’s rotation and reflection transformations. In addition, we have used subsampling with
a Boolean mask to limit the forward projection to the few instances where Bragg diffraction
occurs.

4.4. Complex case study: X-ray scattering tensor tomography

X-ray scattering tensor tomography (XSTT) is an imaging technique used to investigate materials
with micro- and nano-scale structures over an orders of magnitude larger volumetric field of view,
compared to conventional tomographic modalities [36, 37]. Here, we take the XSTT acquisition
geometry that is described in [3] as an example to demonstrate specific features of tomosipo.
The goal of XSTT is to reconstruct a vector field representing the directional scattering

intensity of a sample. This is achieved by reconstructing #ŝ ≥ 6 scalar fields that represent the
squared scattering coefficient along unit vector ŝ1, . . . , ŝ#ŝ at each voxel. After reconstruction,
the directional scattering intensities are fine-tuned using per-voxel PCA (principal component
analysis) [38]. XSTT has various biological and industrial applications [3]. As an example, the
recovered local directional scattering intensities can be used to predict macroscopic properties
of fibrous materials. These properties depend on the local fiber arrangement. Fibers scatter
X-rays the least along their primary fiber orientation. Therefore, the local fiber orientation can be
recovered from the shortest principal axis (smallest scattering magnitude) of the fitted scattering
ellipsoid. The possibility to investigate these local structures over large enough volumes is
valuable for the research and development of new materials.

We describe the acquisition process to obtain one of the scalar fields xŝ, representing the
squared scattering coefficient along a unit vector ŝ. First, we discuss the forward model at a single

Grating

Detector

360° rotation

Unit c
ell

0 - 45° tilt

Sensitivity vectors ŝk

Unit cell directional vectors ĝi

VoxelBeam

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam.
The sample is repeatedly rotated at several tilt angles. The scattered signal passes
through an array of gratings before being measured on a detector. The detector pixels
are grouped into 9 × 9 pixel unit cells. In each unit cell, a directional intensity is
measured along vectors ĝ8 . In each voxel, scattering coefficients for multiple scattering
sensitivity vectors ŝ: are reconstructed.

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam. The
sample is repeatedly rotated at several tilt angles. The scattered signal passes through an
array of gratings before being measured on a detector. The detector pixels are grouped into
9×9 pixel unit cells. In each unit cell, a directional intensity is measured along vectors
ĝi. In each voxel, scattering coefficients for multiple scattering sensitivity vectors ŝk are
reconstructed.

At each tilt and rotation angle, the scaling νb̂,ŝ,ĝi
from Eq. (3) is calculated as follows:

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40508

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 15

the patterns. Different types of gratings require different acquisition geometries. The acquisition
discussed in this case study is specifically geared to circular gratings.

With the use of circular gratings, the pixels of the detector are grouped into 9×9 pixel unit
cells. In each unit cell, a 2D directional intensity is measured along multiple unit vectors ĝi.
The measured intensity yi along the vector ĝi on the detector for a single beam direction b̂ is
computed by scaling the forward projection with the scalar νb̂,ŝ,ĝi

[37], defined by
(︂
|b̂ × Ŝ| ⟨︁Ŝ, ĝi

⟩︁)︂2
Ab̂ xŝ = νb̂,ŝ,ĝi

Ab̂ xŝ = yi. (1)

The scaling is the same for each unit cell on the detector and varies as the sample (and thus ŝ)
is rotated.

Rotation and tilt (concatenation). When using circular gratings, the sample must be meas-
ured with multiple tilted rotation axes [3,40]. In the XSTT acquisition described in [3], the sample
stage is rotated, while the stage is tilted in steps. At each step, the stage makes a full rotation,
as illustrated in Fig. 8. Each step can be represented in tomosipo by composing a single tilt
operation with a full rotation. In the code below, the full motion is computed by concatenating each

step.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 15

1 tilt = ts.rotate(pos=0, axis=(0, 0, 1), angles=tilt_angles)
2 rotate = ts.rotate(pos=0, axis=(1, 0, 0), angles=rotation_angles)
3 # For each tilt angle, perform a full rotation:
4 TR = ts.concatenate([tilt_single * rotate for tilt_single in tilt])

At each tilt and rotation angle, the scaling νb̂,ŝ,ĝi
from Eq. (3) is calculated as follows:

1 def calculate_nu(b, s, g, TR):
2 nu = np.zeros(TR.num_steps)
3 for j, s_rot in enumerate(TR.transform_vec(s)):
4 nu[j] = (norm(np.cross(b, s_rot)) * np.dot(s_rot, g)) ** 2
5 return nu

Because the calculation is performed in the lab frame, the vector ŝ is rotated rather than the
beam direction b̂ or sensitivity vector ĝ,

Scaled linear combinations. After ν ∈ RNŝ×Nĝ×NtiltNrot is calculated for all values of ŝ1, . . . , ŝNŝ ,
all ĝi, and all tilts and rotations, then the full projection can be calculated. Here, the measurement
along ĝi is the sum of the contributions of the Nŝ scalar fields representing the scattering
coefficients of the sample, as calculated below. The backprojection is defined in Code 1 (Ref.
[36]).

1 def fp(x, nu):
2 y = torch.zeros(num_g, *A.range_shape, device=x.device)
3 for k in range(num_s):
4 for i in range(num_g):
5 y[i] += nu[k, i][None, :, None] * A(x[k])
6

7 return y

Data size. The reconstruction problem considered in [3] fits in memory on modern GPUs. The
measured data consists of 46 tilt angles, 50 rotation angles, and 100×144 unit cells. Measuring
along 8 ĝi vectors, the total number of measured unit cells equals 46 × 50 × 100 × 144 × 8 ≈
25 × 106, which requires approximately 1 GB when stored in 32 bit precision. The reconstruction
volume consists of 44×71×71 voxels, repeated for each of Nŝ = 7 scattering directions. In total,
it requires roughly 6 MB to store in 32 bit precision. The size of the scaling matrix ν is negligible
in comparison. Modern data center GPUs range in memory size from 16 GB to 80 GB. Therefore,
it is possible to run an iterative SIRT reconstruction of the full problem on GPU. Benchmarks
comparing the performance on GPU versus CPU are provided in Section 6.

1 x = np.zeros((num_orientations, *vg.shape), dtype=np.float32)
2

3 def fp(x):
4 y = np.zeros((det_shape[0], num_angles, det_shape[1]), dtype=np.float32)
5 for i in range(num_orientations):
6 mask = bragg_mask[i]
7 A = operators[i]
8 y[:, mask] += A(x[i])
9 return y
10

11 y = fp(x)

Implementing the variational reconstruction algorithm described in [2] is outside of the scope
of this manuscript. We have shown how the DCT geometry can be succinctly expressed using
tomosipo’s rotation and reflection transformations. In addition, we have used subsampling with
a Boolean mask to limit the forward projection to the few instances where Bragg diffraction
occurs.

4.4. Complex case study: X-ray scattering tensor tomography

X-ray scattering tensor tomography (XSTT) is an imaging technique used to investigate materials
with micro- and nano-scale structures over an orders of magnitude larger volumetric field of view,
compared to conventional tomographic modalities [36, 37]. Here, we take the XSTT acquisition
geometry that is described in [3] as an example to demonstrate specific features of tomosipo.
The goal of XSTT is to reconstruct a vector field representing the directional scattering

intensity of a sample. This is achieved by reconstructing #ŝ ≥ 6 scalar fields that represent the
squared scattering coefficient along unit vector ŝ1, . . . , ŝ#ŝ at each voxel. After reconstruction,
the directional scattering intensities are fine-tuned using per-voxel PCA (principal component
analysis) [38]. XSTT has various biological and industrial applications [3]. As an example, the
recovered local directional scattering intensities can be used to predict macroscopic properties
of fibrous materials. These properties depend on the local fiber arrangement. Fibers scatter
X-rays the least along their primary fiber orientation. Therefore, the local fiber orientation can be
recovered from the shortest principal axis (smallest scattering magnitude) of the fitted scattering
ellipsoid. The possibility to investigate these local structures over large enough volumes is
valuable for the research and development of new materials.

We describe the acquisition process to obtain one of the scalar fields xŝ, representing the
squared scattering coefficient along a unit vector ŝ. First, we discuss the forward model at a single

Grating

Detector

360° rotation

Unit c
ell

0 - 45° tilt

Sensitivity vectors ŝk

Unit cell directional vectors ĝi

VoxelBeam

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam.
The sample is repeatedly rotated at several tilt angles. The scattered signal passes
through an array of gratings before being measured on a detector. The detector pixels
are grouped into 9 × 9 pixel unit cells. In each unit cell, a directional intensity is
measured along vectors ĝ8 . In each voxel, scattering coefficients for multiple scattering
sensitivity vectors ŝ: are reconstructed.

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam. The
sample is repeatedly rotated at several tilt angles. The scattered signal passes through an
array of gratings before being measured on a detector. The detector pixels are grouped into
9×9 pixel unit cells. In each unit cell, a directional intensity is measured along vectors
ĝi. In each voxel, scattering coefficients for multiple scattering sensitivity vectors ŝk are
reconstructed.

1 x = np.zeros((num_orientations, *vg.shape), dtype=np.float32)
2

3 def fp(x):
4 y = np.zeros((det_shape[0], num_angles, det_shape[1]), dtype=np.float32)
5 for i in range(num_orientations):
6 mask = bragg_mask[i]
7 A = operators[i]
8 y[:, mask] += A(x[i])
9 return y
10

11 y = fp(x)

Implementing the variational reconstruction algorithm described in [2] is outside of the scope
of this manuscript. We have shown how the DCT geometry can be succinctly expressed using
tomosipo’s rotation and reflection transformations. In addition, we have used subsampling with
a Boolean mask to limit the forward projection to the few instances where Bragg diffraction
occurs.

4.4. Complex case study: X-ray scattering tensor tomography

X-ray scattering tensor tomography (XSTT) is an imaging technique used to investigate materials
with micro- and nano-scale structures over an orders of magnitude larger volumetric field of view,
compared to conventional tomographic modalities [36, 37]. Here, we take the XSTT acquisition
geometry that is described in [3] as an example to demonstrate specific features of tomosipo.
The goal of XSTT is to reconstruct a vector field representing the directional scattering

intensity of a sample. This is achieved by reconstructing #ŝ ≥ 6 scalar fields that represent the
squared scattering coefficient along unit vector ŝ1, . . . , ŝ#ŝ at each voxel. After reconstruction,
the directional scattering intensities are fine-tuned using per-voxel PCA (principal component
analysis) [38]. XSTT has various biological and industrial applications [3]. As an example, the
recovered local directional scattering intensities can be used to predict macroscopic properties
of fibrous materials. These properties depend on the local fiber arrangement. Fibers scatter
X-rays the least along their primary fiber orientation. Therefore, the local fiber orientation can be
recovered from the shortest principal axis (smallest scattering magnitude) of the fitted scattering
ellipsoid. The possibility to investigate these local structures over large enough volumes is
valuable for the research and development of new materials.

We describe the acquisition process to obtain one of the scalar fields xŝ, representing the
squared scattering coefficient along a unit vector ŝ. First, we discuss the forward model at a single

Grating

Detector

360° rotation

Unit c
ell

0 - 45° tilt

Sensitivity vectors ŝk

Unit cell directional vectors ĝi

VoxelBeam

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam.
The sample is repeatedly rotated at several tilt angles. The scattered signal passes
through an array of gratings before being measured on a detector. The detector pixels
are grouped into 9 × 9 pixel unit cells. In each unit cell, a directional intensity is
measured along vectors ĝ8 . In each voxel, scattering coefficients for multiple scattering
sensitivity vectors ŝ: are reconstructed.

Fig. 8. In X-ray scattering tensor tomography, a sample is illuminated by a box beam. The
sample is repeatedly rotated at several tilt angles. The scattered signal passes through an
array of gratings before being measured on a detector. The detector pixels are grouped into
9×9 pixel unit cells. In each unit cell, a directional intensity is measured along vectors
ĝi. In each voxel, scattering coefficients for multiple scattering sensitivity vectors ŝk are
reconstructed.

At each tilt and rotation angle, the scaling νb̂,ŝ,ĝi
from Eq. (3) is calculated as follows:

1 def calculate_nu(b, s, g, TR):
2 nu = np.zeros(TR.num_steps)
3 for j, s_rot in enumerate(TR.transform_vec(s)):
4 nu[j] = (norm(np.cross(b, s_rot)) * np.dot(s_rot, g)) ** 2
5 return nu

Because the calculation is performed in the lab frame, the vector ŝ is rotated rather than the
beam direction b̂ or sensitivity vector ĝ,

Scaled linear combinations. After ν ∈ RNŝ×Nĝ×NtiltNrot is calculated for all values of ŝ1, . . . , ŝNŝ ,
all ĝi, and all tilts and rotations, then the full projection can be calculated. Here, the measurement
along ĝi is the sum of the contributions of the Nŝ scalar fields representing the scattering
coefficients of the sample, as calculated below. The backprojection is defined in Code 1 (Ref.
[36]).

Because the calculation is performed in the lab frame, the vector ŝ is rotated rather than the
beam direction b̂ or sensitivity vector ĝ,

Scaled linear combinations. After ν ∈ RNŝ×Nĝ×NtiltNrot is calculated for all values of ŝ1, . . . , ŝNŝ ,
all ĝi, and all tilts and rotations, then the full projection can be calculated. Here, the measurement
along ĝi is the sum of the contributions of the Nŝ scalar fields representing the scattering
coefficients of the sample, as calculated below. The backprojection is defined in Code 1 (Ref.
[36]).

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

Research Article Vol. 0, No. 0 / 00 00 0000 / Optics Express 16

1 def fp(x, nu):
2 y = torch.zeros(num_g, *A.range_shape, device=x.device)
3 for k in range(num_s):
4 for i in range(num_g):
5 y[i] += nu[k, i][None, :, None] * A(x[k])
6

7 return y

Data size. The reconstruction problem considered in [3] fits in memory on modern GPUs. The
measured data consists of 46 tilt angles, 50 rotation angles, and 100×144 unit cells. Measuring
along 8 ĝi vectors, the total number of measured unit cells equals 46 × 50 × 100 × 144 × 8 ≈
25 × 106, which requires approximately 1 GB when stored in 32 bit precision. The reconstruction
volume consists of 44×71×71 voxels, repeated for each of Nŝ = 7 scattering directions. In total,
it requires roughly 6 MB to store in 32 bit precision. The size of the scaling matrix ν is negligible
in comparison. Modern data center GPUs range in memory size from 16 GB to 80 GB. Therefore,
it is possible to run an iterative SIRT reconstruction of the full problem on GPU. Benchmarks
comparing the performance on GPU versus CPU are provided in Section 6.

5. Experimental data

In this section, we show reconstructions of experimental data acquired using the standard
circular cone beam and single-axis parallel beam trajectories, as well as a reconstruction of an
X-ray scattering tensor tomography dataset. The reconstructions have been computed using the
algorithms implemented in the separate ts_algorithms package.

Circular cone beam. A laboratory micro-CT dataset of a bell pepper was acquired at the
FleX-ray laboratory [41] at the CWI, Amsterdam, The Netherlands. A polychromatic microfocus
X-ray point source with tube voltage and power of 90 kV and 49.5 W was used. The data consisted
of 3600 projection images of 1512×1912 pixels, acquired over a 360° rotation. A reconstruction
was computed on a grid of 1512×1912×1912 voxels using FDK, a backprojection-type algorithm
[42]. An axial slice of the reconstruction is shown in Fig. 9(a).

Fig. 9. Reconstructions of experimental data acquired using laboratory micro-CT (a) and
synchrotron micro-tomography (b – d). The yellow insets in the top-right corner show a
magnified region of interest. The yellow inset in the top-left of pane (b) displays a full view,
showing field-of-view artifacts due to the truncated projection images.

Single axis parallel beam. A 3D micro-tomography dataset of a fuel cell from the publicly
available TomoBank [43] was used. This dataset (#81) was acquired at the TOMCAT beamline at
the Swiss Light Source (SLS) at the Paul Scherrer Institut (PSI), Villigen, Switzerland [44]. The
first 3600 projection images of 1100×1440 pixels were used to compute a reconstruction on an
axial slice of 1400×1400 pixels. The reconstructions were computed using FBP (Ram-Lak filter),
SIRT (200 iterations), and TV-MIN (500 iterations with λ = 2 × 10−7), as shown in Fig. 9(b – d).

X-ray scattering tensor tomography. The same validation sample was used as in a previous

Data size. The reconstruction problem considered in [3] fits in memory on modern GPUs. The
measured data consists of 46 tilt angles, 50 rotation angles, and 100×144 unit cells. Measuring
along 8 ĝi vectors, the total number of measured unit cells equals 46 × 50 × 100 × 144 × 8 ≈
25 × 106, which requires approximately 1 GB when stored in 32 bit precision. The reconstruction
volume consists of 44×71×71 voxels, repeated for each of Nŝ = 7 scattering directions. In total,
it requires roughly 6 MB to store in 32 bit precision. The size of the scaling matrix ν is negligible
in comparison. Modern data center GPUs range in memory size from 16 GB to 80 GB. Therefore,
it is possible to run an iterative SIRT reconstruction of the full problem on GPU. Benchmarks
comparing the performance on GPU versus CPU are provided in Section 6.

5. Experimental data

In this section, we show reconstructions of experimental data acquired using the standard
circular cone beam and single-axis parallel beam trajectories, as well as a reconstruction of an
X-ray scattering tensor tomography dataset. The reconstructions have been computed using the
algorithms implemented in the separate ts_algorithms package.

Circular cone beam. A laboratory micro-CT dataset of a bell pepper was acquired at the
FleX-ray laboratory [41] at the CWI, Amsterdam, The Netherlands. A polychromatic microfocus
X-ray point source with tube voltage and power of 90 kV and 49.5 W was used. The data consisted
of 3600 projection images of 1512×1912 pixels, acquired over a 360° rotation. A reconstruction
was computed on a grid of 1512×1912×1912 voxels using FDK, a backprojection-type algorithm
[42]. An axial slice of the reconstruction is shown in Fig. 9(a).

Single axis parallel beam. A 3D micro-tomography dataset of a fuel cell from the publicly
available TomoBank [43] was used. This dataset (#81) was acquired at the TOMCAT beamline at
the Swiss Light Source (SLS) at the Paul Scherrer Institut (PSI), Villigen, Switzerland [44]. The
first 3600 projection images of 1100×1440 pixels were used to compute a reconstruction on an
axial slice of 1400×1400 pixels. The reconstructions were computed using FBP (Ram-Lak filter),
SIRT (200 iterations), and TV-MIN (500 iterations with λ = 2 × 10−7), as shown in Fig. 9(b – d).

X-ray scattering tensor tomography. The same validation sample was used as in a previous
publication [3], which was also acquired at the TOMCAT beamline. It consisted of a 4×4×4 mm3

plastic box containing three orthogonally oriented bundles of carbon fiber with a 12 µm diameter.
The pixel and resulting unit cell size was 11×11 µm2 and 99×99 µm2, generating the dataset size

https://doi.org/10.5281/zenodo.5577147

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40509

Fig. 9. Reconstructions of experimental data acquired using laboratory micro-CT (a) and
synchrotron micro-tomography (b – d). The yellow insets in the top-right corner show a
magnified region of interest. The yellow inset in the top-left of pane (b) displays a full view,
showing field-of-view artifacts due to the truncated projection images.

Validation sample

Bundle 1

Bundle 3

Bundle 2

Horizontal slices Lower slice Upper slice

3D

orientation

Fig. 10. X-ray scattering tensor tomography reconstruction of a validation sample. The
sample contains three orthogonally oriented carbon fiber bundles. A reconstruction of
the orientation map is shown in two axial slices.

6. Benchmarks

In this section, we give a demonstration of the computational speed of tomosipo. First, we compare
an implementation of SIRT in tomosipo to the built-in implementation in the ASTRA Toolbox.
Using the tomosipo implementation, we also investigate the impact of storing intermediate data
on the CPU rather than on the GPU. This comparison is run on the examples from Section 4
with data sizes that fit on a single GPU. We exclude DCT, as its reconstruction algorithm is out
of the scope of this manuscript. We also benchmark a non-iterative algorithm on a circular cone
beam dataset that does not fit on the GPU. Here, we compare the speed of the built-in FDK
implementation of the ASTRA Toolbox to the FDK implementation in ts_algorithms, tomosipo’s
accompanying reconstruction algorithms package.

We describe the algorithms, data size, and benchmark methodology. The SIRT reconstructions
were computed in 50 iterations. The implementation in tomosipo used PyTorch and the
ASTRA implementation used the SIRT3D_CUDA algorithm. The FDK benchmark compared
the FDK implementation provided by ts_algorithms to ASTRA’s built-in accumulate_FDK
implementation. The dataset of the parallel beam and helical cone beam cases consisted of
768 × 768 pixel projection images acquired over 512 angles and was reconstructed on a 5123

voxel volume. The sizes of the XSTT and circular cone beam dataset are described in Sections 4.4
and 5, respectively. The benchmarks were conducted on a dual-socket system containing 8-core
Intel Xeon Silver 4110 CPUs at 2.10 GHz (Intel, Santa Clara, CA, USA) with 192 GB of RAM
and four Nvidia GeForce GTX 1080 Ti GPUs (Nvidia, Santa Clara, CA, USA). Each benchmark
was run once without measurement to minimize startup and caching effects. The mean and
standard deviation of three trials are reported.
SIRT on GPU-sized problems. The results of the SIRT benchmark are shown in Figure 11.

The ASTRA Toolbox and the Tomosipo implementation with intermediate data on the GPU
are close in performance. They are are 2 – 9× faster than the tomosipo implementation with
intermediate data located on CPUmemory. This indicates that CPU-GPU communication latency
is non-negligible and that reconstruction algorithms benefit from being completely computed on
the GPU. We note that in all three implementations the forward and backprojection are computed
on the GPU using the ASTRA Toolbox. The native ASTRA SIRT implementation does not have
an option to store intermediate data on CPU memory.
FDK on a lab-CT-sized problem. The FDK dataset is too big to fit in GPU memory. In

tomosipo’s implementation, the filtering step is performed on the CPU and the computation of
the backprojection on chunks of projection data is distributed over multiple GPUs. The FDK
implementation in the ASTRA Toolbox, on the other hand, first distributes chunks of projection
data over available GPUs and performs the filtering and backprojection in a single step on each
GPU.

Fig. 10. X-ray scattering tensor tomography reconstruction of a validation sample. The
sample contains three orthogonally oriented carbon fiber bundles. A reconstruction of the
orientation map is shown in two axial slices.

described at the end of Section 4.4. An illustration of the validation sample and its reconstruction
using tomosipo is shown in Fig. 10. The reconstructions show the orientation of the fibers after
post-processing using PCA and a similar thresholding strategy as in [3]. Thresholding causes
noise in the background to be suppressed, as the X-ray scattering induced by plastic container is
known to be negligible.

6. Benchmarks

In this section, we give a demonstration of the computational speed of tomosipo. First, we compare
an implementation of SIRT in tomosipo to the built-in implementation in the ASTRA Toolbox.
Using the tomosipo implementation, we also investigate the impact of storing intermediate data
on the CPU rather than on the GPU. This comparison is run on the examples from Section 4 with
data sizes that fit on a single GPU. We exclude DCT, as its reconstruction algorithm is out of
the scope of this manuscript. We also benchmark a non-iterative algorithm on a circular cone
beam dataset that does not fit on the GPU. Here, we compare the speed of the built-in FDK
implementation of the ASTRA Toolbox to the FDK implementation in ts_algorithms, tomosipo’s
accompanying reconstruction algorithms package.

We describe the algorithms, data size, and benchmark methodology. The SIRT reconstructions
were computed in 50 iterations. The implementation in tomosipo used PyTorch and the
ASTRA implementation used the SIRT3D_CUDA algorithm. The FDK benchmark compared
the FDK implementation provided by ts_algorithms to ASTRA’s built-in accumulate_FDK
implementation. The dataset of the parallel beam and helical cone beam cases consisted of

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40510

768×768 pixel projection images acquired over 512 angles and was reconstructed on a 5123 voxel
volume. The sizes of the XSTT and circular cone beam dataset are described in Sections 4.4 and
5, respectively. The benchmarks were conducted on a dual-socket system containing 8-core Intel
Xeon Silver 4110 CPUs at 2.10 GHz (Intel, Santa Clara, CA, USA) with 192 GB of RAM and
four Nvidia GeForce GTX 1080 Ti GPUs (Nvidia, Santa Clara, CA, USA). Each benchmark was
run once without measurement to minimize startup and caching effects. The mean and standard
deviation of three trials are reported.

SIRT on GPU-sized problems. The results of the SIRT benchmark are shown in Fig. 11.
The ASTRA Toolbox and the Tomosipo implementation with intermediate data on the GPU
are close in performance. They are are 2 – 9× faster than the tomosipo implementation with
intermediate data located on CPU memory. This indicates that CPU-GPU communication latency
is non-negligible and that reconstruction algorithms benefit from being completely computed on
the GPU. We note that in all three implementations the forward and backprojection are computed
on the GPU using the ASTRA Toolbox. The native ASTRA SIRT implementation does not have
an option to store intermediate data on CPU memory.

Fig. 11. Comparison of reconstruction times using SIRT on a GPU-sized problem and using
FDK on a lab-CT-sized problem. The SIRT implementations are compared on a parallel,
helical and X-ray scattering tensor tomography (XSTT) acquisition geometry. The XSTT
reconstruction cannot be implemented using the built-in ASTRA SIRT API. Because the
FDK dataset is too large, intermediate data cannot be stored on the GPU, and the ASTRA
implementation is compared to a tomosipo implementation that performs the filtering step
on the CPU.

FDK on a lab-CT-sized problem. The FDK dataset is too big to fit in GPU memory. In
tomosipo’s implementation, the filtering step is performed on the CPU and the computation of
the backprojection on chunks of projection data is distributed over multiple GPUs. The FDK
implementation in the ASTRA Toolbox, on the other hand, first distributes chunks of projection
data over available GPUs and performs the filtering and backprojection in a single step on each
GPU.

Figure 11 shows the results of the FDK benchmark using one and four GPUs. Using one
GPU, tomosipo’s implementation of FDK is faster than ASTRA’s. This can be attributed to
fast filtering on the CPU, which is implemented using the Fast Fourier Transform provided by
PyTorch and is approximately as fast as filtering on a single GPU. Using four GPUs, the run
times of both implementations are reduced, but the ASTRA implementation comes out ahead.
When four GPUs are available, the ASTRA implementation distributes the computation of the
filter step over four GPUs, whereas the tomosipo implementation still computes the filtering step
on the same amount of CPU cores.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40511

The results show that a naive implementation of an iterative algorithm in tomosipo is not
necessarily slower than a native implementation in the ASTRA Toolbox. In addition, the results
illustrate the substantial negative impact that CPU-GPU communication has on reconstruction
speed. Finally, the FDK results illustrate the benefits of interoperability with fast array libraries,
but highlight the need for effective APIs to address multi-device streaming computation.

7. Discussion and conclusion

In short, tomosipo provides the expressive power to quickly and naturally define complex
geometries, thereby unlocking the flexibility provided by the ASTRA Toolbox. We have
demonstrated the ease of making common adjustments to an acquisition geometry, such as
changing the center of rotation. In addition, the design and implementation of more complex
geometries, such as the demonstrated X-ray diffraction and scattering setups, is made considerably
easier by using tomosipo, especially compared to entering the formulas for all directional vectors
manually. Reconstructions of real-world data from synchrotron and laboratory micro-CT sources
are shown, computed using several common reconstruction algorithms. Finally, bechmarks
demonstrate that the package enables the user to write fully GPU-accelerated reconstruction
algorithms in Python whose speed is on par with native implementations. Because of tomosipo’s
interoperability with GPU-accelerated Python array libraries, intermediate results can remain on
the GPU, avoiding the latency imposed by CPU-GPU communication.

The tomosipo package follows best practices. It has a comprehensive unit test suite, it is
installable through the Anaconda package manager, it follows semantic versioning, it is developed
in the open on GitHub, and it has extensive documentation.

Future developments are expected to go hand in hand with improvements in the ASTRA
Toolbox. This includes support for curved detectors and more fine grained control of streams
on the GPU, allowing for concurrency through pipelining. In addition, we intend to extend the
interoperability of tomosipo’s projection operator to more optimization packages. We note that
the integration of tomosipo’s projection operator in deep learning-based reconstruction methods
using PyTorch is possible and is described in the documentation.

Compared to existing tomographic software packages, two features set tomosipo apart. First,
the facilities to manipulate geometries significantly simplify defining complex acquisition
geometries such as those in the described case studies. Although other packages including
the ASTRA Toolbox and the Core Imaging Library (CIL) [14] can represent these acquisition
geometries, they do not provide tools to define them. Specifically, the geometric transforms,
subsampling, concatenation, and visualization features are not provided by the ASTRA Toolbox.
Second, the extensible integration of tomosipo with GPU-accelerated Python array libraries
provides two advantages. It enables the user to write custom reconstruction algorithms in Python
that are comparable in computational efficiency to a native implementation. In addition, it
enables integrating tomographic operators in deep learning-based reconstruction methods. This
is technically possible using the ASTRA Toolbox, but the APIs that it exposes are designed to be
wrapped by a user-friendly library, such as tomosipo.

We stress that tomosipo aims to be a building block in a larger system. Therefore, other software
packages may be preferable for many purposes. Facilities for loading of various file formats,
preprocessing of tomographic data, or post-processing of reconstructed images are present
in TomoPy, Savu, and CIL [10,12,14]. Packages such as PyLops, CIL, and JUDI [14,16,17]
provide building blocks and built-in optimization algorithms that enable rapid prototyping of
variational reconstruction methods, among others. The reconstruction algorithms show-cased in
this manuscript, on the other hand, are implemented in a separate package [25]. An advantage of
the focused scope of tomosipo, is that it has only two required dependencies (NumPy and the
ASTRA Toolbox), making it easy to install on various platforms, but contains several integrations
with third-party packages, making it easy integrate into an existing system.

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40512

In summary, tomosipo provides scientists with an excellent tool to model and visualize complex
tomographic acquisition geometries while maintaining and extending the fast reconstruction
capabilities of the ASTRA Toolbox.
Funding. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (016.Veni.192.235, 639.073.506); Horizon
2020 Framework Programme (765604).

Acknowledgments. We thank TESCAN XRE for their support of the Flex-ray laboratory and Greefa VA
International B.V. for their role in arranging the bell pepper micro-CT scan.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the fuel cell reconstructions presented in Section 5 are available in [43] and the
X-ray scattering tensor tomography dataset underlying the reconstructions presented in Section 5 is publicly available
[45]. Restrictions apply to the public availability of the bell pepper dataset. Data are however available from the authors
upon reasonable request and with permission of Greefa VA International B.V., Tricht, The Netherlands.

References
1. T. M. Buzug, Computed Tomography : from Photon Statistics to Modern Cone-Beam CT (Springer, 2008).
2. N. Viganò and W. Ludwig, “X-Ray orientation microscopy using topo-tomography and multi-mode diffraction

contrast tomography,” Curr. Opin. Solid State Mater. Sci. 24(4), 100832 (2020).
3. J. Kim, M. Kagias, F. Marone, and M. Stampanoni, “X-ray scattering tensor tomography with circular gratings,”

Appl. Phys. Lett. 116(13), 134102 (2020).
4. M. Krumm, C. Sauerwein, V. Hämmerle, S. Heile, T. Schön, A. Jung, and M. Sindel, “Rapid robotic X-ray computed

tomography of large assemblies in automotive production,” in Proceedings of the 8th Conference on Industrial
Computed Tomography (iCT 2018), Wels, Austria, (2018), pp. 6–9.

5. D. Evangelista, M. Terreran, A. Pretto, M. Moro, C. Ferrari, and E. Menegatti, “3D mapping of X-Ray images in
inspections of aerospace parts,” in 2020 25th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 1 (2020), pp. 1223–1226.

6. A. Katsevich, “Theoretically exact filtered backprojection-type inversion algorithm for spiral CT,” SIAM J. Appl.
Math. 62(6), 2012–2026 (2002).

7. X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection
for image reconstruction?” Inverse Problems 25(12), 123009 (2009).

8. J. Gregor and T. Benson, “Computational analysis and improvement of SIRT,” IEEE Trans. Med. Imaging 27(7),
918–924 (2008).

9. E. Y. Sidky, J. H. Jørgensen, and X. Pan, “Convex optimization problem prototyping for image reconstruction in
computed tomography with the Chambolle-Pock algorithm,” Phys. Med. Biol. 57(10), 3065–3091 (2012).

10. D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “Tomopy: a framework for the analysis of synchrotron tomographic
data,” J. Synchrotron Radiat. 21(5), 1188–1193 (2014).

11. A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed
tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nuclear Instruments
and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 324, 41–48 (2014).

12. N. Wadeson and M. Basham, Savu: a python-based, MPI framework for simultaneous processing of multiple,
N-dimensional, large tomography datasets, CoRR (2016).

13. N. T. Vo, R. C. Atwood, M. Drakopoulos, and T. Connolley, “Data processing methods and data acquisition for
samples larger than the field of view in parallel-beam tomography,” Opt. Express 29(12), 17849–17874 (2021).

14. J. S. Jørgensen, E. Ametova, G. Burca, G. Fardell, E. Papoutsellis, E. Pasca, K. Thielemans, M. Turner, R. Warr, W.
R. B. Lionheart, and P. J. Withers, “Core Imaging Library - part I: a versatile Python framework for tomographic
imaging,” Phil. Trans. R. Soc. A. 379(2204), 20200192 (2021).

15. D. N. Mastronarde and S. R. Held, “Automated tilt series alignment and tomographic reconstruction in IMOD,” J.
Struct. Biol. 197(2), 102–113 (2017).

16. M. Ravasi and I. Vasconcelos, “Pylops — a linear-operator Python library for scalable algebra and optimization,”
SoftwareX 11, 100361 (2020).

17. P. A. Witte, M. Louboutin, N. Kukreja, F. Luporini, M. Lange, G. J. Gorman, and F. J. Herrmann, “A large-scale
framework for symbolic implementations of seismic inversion algorithms in Julia,” Geophysics 84(3), F57–F71
(2019).

18. C. Syben, M. Michen, B. Stimpel, S. Seitz, S. Ploner, and A. K. Maier, “Technical note: Pyro-NN: python
reconstruction operators in neural networks,” Med. Phys. 46(11), 5110–5115 (2019).

19. A. Biguri, R. Lindroos, R. Bryll, H. Towsyfyan, H. Deyhle, I. E. k. Harrane, R. Boardman, M. Mavrogordato, M.
Dosanjh, S. Hancock, and T. Blumensath, “Arbitrarily large tomography with iterative algorithms on multiple GPUs
using the TIGRE toolbox,” Journal of Parallel and Distributed Computing 146, 52–63 (2020).

20. W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. Batenburg,
and J. Sijbers, “Fast and flexible X-Ray tomography using the ASTRA toolbox,” Opt. Express 24(22), 25129–25147
(2016).

https://doi.org/10.1016/j.cossms.2020.100832
https://doi.org/10.1063/1.5145361
https://doi.org/10.1137/S0036139901387186
https://doi.org/10.1137/S0036139901387186
https://doi.org/10.1088/0266-5611/25/12/123009
https://doi.org/10.1109/TMI.2008.923696
https://doi.org/10.1088/0031-9155/57/10/3065
https://doi.org/10.1107/S1600577514013939
https://doi.org/10.1016/j.nimb.2013.09.030
https://doi.org/10.1016/j.nimb.2013.09.030
https://doi.org/10.1364/OE.418448
https://doi.org/10.1098/rsta.2020.0192
https://doi.org/10.1016/j.jsb.2016.07.011
https://doi.org/10.1016/j.jsb.2016.07.011
https://doi.org/10.1016/j.softx.2019.100361
https://doi.org/10.1190/geo2018-0174.1
https://doi.org/10.1002/mp.13753
https://doi.org/10.1016/j.jpdc.2020.07.004
https://doi.org/10.1364/OE.24.025129

Research Article Vol. 29, No. 24 / 22 Nov 2021 / Optics Express 40513

21. W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The ASTRA
toolbox: a platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47
(2015).

22. J. M. Perkel, “Why Jupyter is data scientists’ computational notebook of choice,” Nature 563(7729), 145–146 (2018).
23. F. Bleichrodt, T. van Leeuwen, W. J. Palenstijn, W. van Aarle, J. Sijbers, and K. J. Batenburg, “Easy implementation

of advanced tomography algorithms using the ASTRA toolbox with Spot operators,” Numerical Algorithms 71(3),
673–697 (2016).

24. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala, “PyTorch: An imperative style high-performance deep learning library,” in Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, H. M. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, eds. (2019), pp. 8024–8035.

25. A. A. Hendriksen and D. Schut, “ahendriksen/ts_algorithms,” Zenodo 2021
https://doi.org/10.5281/ZENODO.5556004.

26. L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” American Journal of
Mathematics 73(3), 615–624 (1951).

27. G. Van Rossum and F. L. Drake Jr, Python tutorial (Centrum voor Wiskunde en Informatica, 1995).
28. P. A. Midgley and R. E. Dunin-Borkowski, “Electron tomography and holography in materials science,” Nat. Mater.

8(4), 271–280 (2009).
29. D. Rogers and J. Adams, Mathematical Elements for Computer Graphics (McGraw-Hill, 1990).
30. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S.

Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P.
Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature 585(7825), 357–362 (2020).

31. R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy: a NumPy-compatible library for NVIDIA GPU
calculations,” in Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual
Conference on Neural Information Processing Systems (NIPS), (2017).

32. Python array API standard, https://data-apis.org/array-api/latest/purpose_and_scope.html. Retrieved 19 Oct 2021.
33. T. Bendory, A. Bartesaghi, and A. Singer, “Single-particle Cryo-Electron microscopy: Mathematical theory,

computational challenges, and opportunities,” IEEE Signal Processing Magazine 37(2), 58–76 (2020).
34. A. Katsevich, “An improved exact filtered backprojection algorithm for spiral computed tomography,” Advances in

Applied Mathematics 32(4), 681–697 (2004).
35. S. A. McDonald, P. Reischig, C. Holzner, E. M. Lauridsen, P. J. Withers, A. P. Merkle, and M. Feser, “Non-destructive

mapping of grain orientations in 3D by laboratory x-ray microscopy,” Sci. Rep. 5(1), 14665 (2015).
36. A. A. Hendriksen, Tomosipo-code-repository, v1.0 Zenodo 2021 https://doi.org/10.5281/zenodo.5577147.
37. A. Malecki, G. Potdevin, T. Biernath, E. Eggl, K. Willer, T. Lasser, J. Maisenbacher, J. Gibmeier, A. Wanner, and F.

Pfeiffer, “X-Ray tensor tomography,” EPL 105(3), 38002 (2014).
38. M. Liebi, M. Georgiadis, A. Menzel, P. Schneider, J. Kohlbrecher, O. Bunk, and M. Guizar-Sicairos, “Nanostructure

surveys of macroscopic specimens by small-angle scattering tensor tomography,” Nature 527(7578), 349–352 (2015).
39. J. Vogel, F. Schaff, A. Fehringer, C. Jud, M. Wieczorek, F. Pfeiffer, and T. Lasser, “Constrained X-Ray tensor

tomography reconstruction,” Opt. Express 23(12), 15134–15151 (2015).
40. M. Liebi, M. Georgiadis, J. Kohlbrecher, M. Holler, J. Raabe, I. Usov, A. Menzel, P. Schneider, O. Bunk, and M.

Guizar-Sicairos, “Small-Angle X-Ray Scattering Tensor Tomography: Model of the Three-Dimensional Reciprocal-
Space Map, Reconstruction Algorithm and Angular Sampling requirements,” Acta Crystallogr A Found Adv 74(1),
12–24 (2018).

41. S. B. Coban, F. Lucka, W. J. Palenstijn, D. Van Loo, and K. J. Batenburg, “Explorative imaging and its implementation
at the Flex-Ray laboratory,” J. Imaging 6(4), 18 (2020).

42. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1(6), 612–619
(1984).

43. F. De Carlo, D. Gürsoy, D. J. Ching, K. J. Batenburg, W. Ludwig, L. Mancini, F. Marone, R. Mokso, D. M. Pelt, J.
Sijbers, and M. Rivers, “TomoBank: a tomographic data repository for computational X-ray science,” Meas. Sci.
Technol. 29(3), 034004 (2018).

44. M. Bührer, M. Stampanoni, X. Rochet, F. Büchi, J. Eller, and F. Marone, “High-numerical-aperture macroscope
optics for time-resolved experiments,” J. Synchrotron Radiat. 26(4), 1161–1172 (2019).

45. J. Kim and F. Marone, “X-ray scattering tensor tomography data for a validation sample,” PSI 2021
https://doi.psi.ch/detail/10.16907/c4fdaf60-562b-4501-a314-a7c153d676ee.

https://doi.org/10.1016/j.ultramic.2015.05.002
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1007/s11075-015-0016-4
https://doi.org/10.5281/ZENODO.5556004
https://doi.org/10.2307/2372313
https://doi.org/10.2307/2372313
https://doi.org/10.1038/nmat2406
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MSP.2019.2957822
https://doi.org/10.1016/S0196-8858(03)00099-X
https://doi.org/10.1016/S0196-8858(03)00099-X
https://doi.org/10.1038/srep14665
https://doi.org/10.5281/zenodo.5577147
https://doi.org/10.1209/0295-5075/105/38002
https://doi.org/10.1038/nature16056
https://doi.org/10.1364/OE.23.015134
https://doi.org/10.1107/S205327331701614X
https://doi.org/10.3390/jimaging6040018
https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1088/1361-6501/aa9c19
https://doi.org/10.1088/1361-6501/aa9c19
https://doi.org/10.1107/S1600577519004119
https://doi.psi.ch/detail/10.16907/c4fdaf60-562b-4501-a314-a7c153d676ee

