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Abstract: The effect of dimethyl sulfoxide (DMSO) in rheumatoid arthritis (RA) human fibroblast-like
synoviocytes (FLSs) has been studied on five different samples harvested from the joints (fingers,
hands and pelvis) of five women with RA. At high concentrations (>5%), the presence of DMSO
induces the cleavage of caspase-3 and PARP-1, two phenomena associated with the cell death
mechanism. Even at a 0.5% concentration of DMSO, MTT assays show a strong toxicity after 24 h
exposure (≈25% cell death). Therefore, to ensure a minimum impact of DMSO on RA FLSs, our study
shows that the concentration of DMSO has to be below 0.05% to be considered safe.

Keywords: fibroblast-like synoviocytes; dimethyl sulfoxide; rheumatoid arthritis

1. Introduction

Hydrophilicity is key when designing drugs, since it helps the distribution and ensures
a precise concentration. However, sometimes, the physiological solubility is poor or null,
and an additional solvent is required to prepare stock solutions. Dimethyl sulfoxide
(DMSO) is one of the most common solvents for dissolving drugs that show low solubility
in water or physiological media for in vitro and in vivo studies [1–6]. This is due to the
physicochemical characteristics of this solvent (Table 1). DMSO has a high polarization,
is aprotic and possesses apolar groups (Figure 1), which account for its amphipathic
nature [7]. DMSO can also pass through cell membranes and displace water, which is why
it is commonly used as a cryopreservation agent [8–10]. In addition, the use of DMSO
has been reported to have beneficial effects in certain diseases, such as gastrointestinal
disorders [11], brain edema [12] and schizophrenia [13]. However, it is not prudent to
use it lightly, since it presents drawbacks both at a chemical and biological level. At the
chemical level, being a compound with a high coordinating capacity, it can lead to changes
in the structure of drugs. For example, degradation and/or secondary products are often
observed with metal-based compounds, and in such cases, the stability of the compounds
in DMSO needs to be addressed methodically [14,15]. At the biological level, adverse effects
vary enormously with experimental conditions and cell types. Although concentrations
in a range of 0.1–0.5% (v/v) are usually recommended, there is no single criterion for
DMSO concentration. It can even improve cell proliferation in small concentrations. For
instance, 1.0% (v/v) of DMSO is enough to affect lactate dehydrogenase activity [16], more
than 0.6% reduces proliferation in HepG2, MDA-MB-231 and MCF-7 cancer cell lines [17],
0.01% increases proliferation in stem cells [18], 0.1% induces alterations in cardiac and
hepatic cells [19] and 2% reduces the viability of human blood cells [20]. Given this lack of
standardization, we decided to carry out the evaluation of DMSO toxicity in fibroblast-like
synoviocytes (FLSs) from patients with rheumatoid arthritis (RA) cells, with which we
currently work with and for which there is no defined criteria on the use of DMSO. In
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this way, we could reliably evaluate the results of our research, confidently ruling out the
significant influence of DMSO on cellular viability.

Table 1. Standard physicochemical characteristics of water (left) and DMSO (right) [21–23].

Water DMSO

Chemical formula H2O C2H6OS
Appearance Colorless liquid Colorless liquid
Molecular weight 18.02 78.13
Polarity 1.000 0.444
Boiling point 100.0 189.0
Melting point 0.0 17.9
Density (g/mL) 0.9982 1.1010
Viscosity (cP) at 20 ◦C 1.002 1.996
Dipole moment (Debye) 1.850 3.960
Ebullioscopy constant
(K·kg/mol) 0.513 3.220

Cryoscopic constant
(K·kg/mol) 1.860 3.850

Specific heat at 25 ◦C (cal/g) 1.000 0.470
pKa (25 ◦C) 14.0 35.1
Flash point (open dish, ◦C) n/a 95
Dielectric constant at 20 ◦C 80.4 48.9
Refractive index 1.4793 1.333
Point group C2v Cs
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Figure 1. Formulation of the DMSO structure through a resonance hybrid (left) of the S=O double 
bond and the structure with a polarized S–O bond (right). This representation was more in agree-
ment with the physical properties and reactivity observed for DMSO [22]. The angles and distances 
corresponded to the structure with a polarized S–O bond. 

2. Results and Discussion 
In order to determine the effect of DMSO on FLSs, we decided to use FLSs from five 

different patients with RA, and from different joints: RA FLSs from the fingers of 60-, 71- 
and 72-year-old women (samples 60F, 71F and 72F), RA FLSs from the hands of a 65-year-
old woman (65H) and RA FLSs from the pelvis of a 69-year-old woman (69P). RA FLSs 
were isolated from extracted tissue in synovectomy and treated as explained in the exper-
imental part. We first decided to find a suitable DMSO concentration range using only 
one of the samples (71F). To do this, we first established a wide range of concentrations 
and evaluated the mortality rate using flow cytometry. Next, we narrowed the range and 
evaluated the presence of cell death mediators using protein quantification and Western 

Figure 1. Formulation of the DMSO structure through a resonance hybrid (left) of the S=O double
bond and the structure with a polarized S–O bond (right). This representation was more in agreement
with the physical properties and reactivity observed for DMSO [22]. The angles and distances
corresponded to the structure with a polarized S–O bond.

2. Results and Discussion

In order to determine the effect of DMSO on FLSs, we decided to use FLSs from
five different patients with RA, and from different joints: RA FLSs from the fingers of
60-, 71- and 72-year-old women (samples 60F, 71F and 72F), RA FLSs from the hands of a
65-year-old woman (65H) and RA FLSs from the pelvis of a 69-year-old woman (69P). RA
FLSs were isolated from extracted tissue in synovectomy and treated as explained in the
experimental part. We first decided to find a suitable DMSO concentration range using only
one of the samples (71F). To do this, we first established a wide range of concentrations
and evaluated the mortality rate using flow cytometry. Next, we narrowed the range and
evaluated the presence of cell death mediators using protein quantification and Western
blotting. Finally, once we established a precise range of concentrations to be evaluated,
antiproliferative assays (MTT) were carried out on all samples (60F, 65H, 69P, 71F and 72F).
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2.1. Cell Death Evaluation

First, we performed a flow cytometry study to measure the population of alive/dead
cells using a wide range of DMSO concentrations (0, 2.5, 5, 7.5 and 10%) on 71F cells. It
should be noted that when using concentrations higher than 5% of DMSO, we observed
that most cells were floating in the culture media 24 h after the addition of the DMSO
solution. This could be indicative of damage or degradation in the cell membrane as a
consequence of initial apoptotic stages and/or the downregulation of adhesion proteins
located in the plasmatic membrane [24,25]. Using 7.5 and 10% of DMSO, there were no cells
adhering at the bottom of the flask. The results observed in cytometry showed clear signals
of high toxicity at high concentrations. While the 2.5% DMSO dose showed seven times
more dead cells than the control experiment (0% DMSO), the 5% DMSO dose gave rise to
thirty-five times more dead cells, forty times more dead cells with 7.5% and forty-seven
times more dead cells with the 10% DMSO concentration (Figure 2). At this point, based
on the results, since our main objective was to find adequate and nontoxic concentrations
of DMSO in RA FLSs, we reduced the range of the concentrations in the following tests,
establishing 5% as the maximum concentration tolerated by RA FLSs.
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the enzyme caspase-3’s activity [26]. This enzyme makes the cell death process more effi-
cient and its role in apoptosis is considered essential [27]. Caspase-3 remains inactive until 
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Figure 2. Graphic representation of the population of alive/dead cells determined with flow cytom-
etry. RA FLSs were cultured and treated as described in the experimental part. Propidium iodide
(PI) was used as the internal standard. No significant difference was observed with 7.5% (data not
shown) and 10% DMSO.

Subsequently, we evaluated one of the main mediators of programmed cell death,
the enzyme caspase-3’s activity [26]. This enzyme makes the cell death process more
efficient and its role in apoptosis is considered essential [27]. Caspase-3 remains inactive
until it is cleaved once apoptotic signaling processes have occurred [28,29]. Increasing
concentrations of DMSO were evaluated (0, 0.05, 0.5, 1, 2.5 and 5% DMSO) in 71F over
a 24 h exposure. Only in the highest evaluated concentration (5%) was the cleavage of
caspase-3 evidenced (Figure 3).
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Figure 3. Identification of the presence of caspase-3 and cleaved caspase-3 using Western blot. ß-actin
was used as a loading control. In total, 2 × 106 RA FLSs were seeded in a 75 cm2 flask and incubated
24 h at 37 ◦C and 5% of CO2. After 24 h, DMSO was added and the medium homogenized gently.
After 24 h, cells were trypsinized and washed with PBS. Protein extraction and Western blot were
performed as described in the experimental part. All experiments were conducted in triplicate.

On the other hand, the poly (ADP-ribose) polymerase (PARP) family are proteins
responsible for DNA repair [30]. PARP-1 perceives fractures in DNA and contributes to
certain processes that lead to its reparation [31]. Caspase-3 activity is the main enzyme
responsible for the cleavage and activation of PARP-1 when cell death is initiated [32]. In
accordance with the results observed in the evaluation of caspase-3 activity, the 5% DMSO
dose showed the cleavage of PARP-1 (Figure 4).
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Figure 4. Identification of the presence of PARP-1 and cleavage of PARP-1 with Western blot. ß-actin
was used as a loading control. Same method as described for caspase-3.

Despite having no evidence of proapoptotic marker (caspase-3 or PARP-1) activity
at lower concentrations, minor toxicity may still have occurred without showing signs in
these tests. Nevertheless, these results helped us to determine a range to focus on during
the antiproliferative assays.

2.2. Antiproliferative Assays

The antiproliferative influence of DMSO in RA FLSs was examined using 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assays. Looking for better
precision, we narrowed the range of DMSO concentrations to 0, 0.01, 0.05, 0.1, 0.5, 1 and
5%. The five different RA FLSs (60F, 71F, 72F, 65H and 69P) were evaluated. The results
showed no significant differences between the RA FLSs from the five patients, regardless of
age or joint (Figure 5), after 24 h exposure to DMSO. Considering the convergence of the
results (Table 2), concentrations lower than 0.01% of DMSO could be considered safe in
RA FLSs. For 0.05% of DMSO, approximately 1–4% of toxicity was detected (Figure 5 and
Table 2). Toxicity became significant at 0.1% DMSO, as it reached approximately 5–12%.
Concentrations above 0.1% should not be used, as significant toxicity was observed (≈15%).
As expected, at the 5% DMSO concentration, most of the cells were floating in the culture
medium after 24 h of exposure to the solvent, suggesting apoptotic events and/or the
degradation of cell membrane adhesion proteins [24,25].
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The toxicity depending on the exposure time to DMSO (24, 48 and 72 h) was also 
evaluated in three samples (60F, 71F and 72F). In all cases, the cells of the three patients 
showed a similar behavior, and this was why only the results associated with 71F were 
presented here. Interestingly, the results showed how the exposure time to DMSO in-
creased the toxicity considerably (Figure 6). While a 24 h exposure using 0.01% of DMSO, 
or even 0.05%, can be considered safe, a longer exposure started to show significant tox-
icity. This was more obvious at higher concentrations, where a longer exposure time was 
clearly tied to higher toxicity. Therefore, 72 h exposure is not recommended when DMSO 
is used in vitro on FLSs. 

Figure 5. Results of the MTT assays in RA FLSs from the five patients after 24 h of exposure at different
DMSO concentrations. Antiproliferative assays were performed as described in the experimental part.
Statistical significance was evaluated with two-tailed unpaired Student’s t-test, p-value < 0.001 (***).

Table 2. Results of the MTT assays carried out as described in the experimental part. The cell viability
percentage is expressed as the main of three assays ± 3 sigma standard deviation.

Entry DMSO (%) 60F 65H 69P 71F 72F Average (%)

1 0 100.0 ± 9.7 100.0 ± 8.8 100.0 ± 7.8 100.0 ± 4.1 100.0 ± 7.1 100.0 ± 7.6
2 0.01 99.6 ± 5.7 98.7 ± 7.1 99.8 ± 4.5 100.9 ± 3.9 98.6 ± 8.4 99.7 ± 5.9
3 0.05 97.1 ± 2.7 96.4 ± 7.8 91.8 ± 6.1 95.6 ± 8.7 95.4 ± 6.7 95.5 ± 6.4
4 0.1 89.2 ± 8.0 86.7 ± 7.1 85.6 ± 4.4 87.7 ± 9.6 85.4 ± 4.0 86.6 ± 6.6
5 0.5 74.1 ± 5.1 70.9 ± 9.4 69.6 ± 8.0 72.9 ± 5.6 70.5 ± 2.5 71.7 ± 6.1
6 1 61.4 ± 7.5 60.2 ± 7.7 58.9 ± 7.3 64.1 ± 5.2 60.4 ± 5.1 62.2 ± 6.6
7 5 9.8 ± 1.6 11.5 ± 7.3 2.5 ± 3.5 6.4 ± 7.0 1.4 ± 2.5 3.9 ± 4.4

The toxicity depending on the exposure time to DMSO (24, 48 and 72 h) was also evaluated
in three samples (60F, 71F and 72F). In all cases, the cells of the three patients showed a similar
behavior, and this was why only the results associated with 71F were presented here. Interest-
ingly, the results showed how the exposure time to DMSO increased the toxicity considerably
(Figure 6). While a 24 h exposure using 0.01% of DMSO, or even 0.05%, can be considered
safe, a longer exposure started to show significant toxicity. This was more obvious at higher
concentrations, where a longer exposure time was clearly tied to higher toxicity. Therefore, 72 h
exposure is not recommended when DMSO is used in vitro on FLSs.
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3. Conclusions

We demonstrated that DMSO can be used in human RA FLSs to a maximum of 0.05%
for a 24 h exposure. For longer exposures, only 0.01% can be considered safe and nontoxic.
In addition, the results suggested that DMSO toxicity does not depend on the origin of RA
FLSs, since the results in the antiproliferative assays did not show significant differences
between different patients and different joints. Overall, this study might help researchers
working on human fibroblast-like synoviocytes to establish reliable protocols when DMSO
is required for the preparation of stock solutions of a poorly water-soluble drug.

4. Materials and Methods
4.1. General

DMEM medium, fetal bovine serum (FBS), L-glutamine and penicillin–streptomycin
were bought from Gibco BRL. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide
(MTT), dimethyl sulfoxide (DMSO), collagenase and dispase II were purchased from Sigma-
Aldrich. Human anti-β-actin was bought from Sigma Aldrich. Caspase-3 and PARP-1
were purchased from Cell Signaling Technologies (Ozyme, Saint-Cyr-l’École, France). All
reagents used in this work were purchased from commercial sources and used without
further treatment or purification.

4.2. Preparation of Human RA Fibroblast-like Synoviocytes

FLSs were extracted and isolated from fresh synovial biopsies obtained from five RA
patients undergoing finger, hand and pelvis arthroplasties. All patients satisfied the 1987
American Rheumatism Association criteria for RA [33]. The mean age of the patients was
67.4 ± 4.9 years (range 60–72 years). The mean disease duration was 8.7 ± 2.3 years. At
the moment of surgery, the disease activity score (DAS 28) was greater than 3.2. These
scientific activities were approved by local institutional review boards, and all subjects gave
written informed consent. Synovia were cut into little pieces and digested with 1.5 mg/mL
collagenase–dispase for 4 h at 37 ◦C, as previously described [34]. After centrifugation, cells
were resuspended in DMEM supplemented with 10% FCS, 4.5 g/L L-glutamine, 100 U/mL
penicillin and 100 µg/mL streptomycin (Gibco BRL) at 37 ◦C in a humidified atmosphere
containing 5% (v/v) CO2. Subsequently, after 48 h, nonadherent cells were washed using
phosphate-buffered saline (PBS). Adherent cells (macrophage-like and RA FLSs) were
cultured in a complete DMEM medium, and, at confluence, cells were trypsinized and
only RA FLSs were passed. These cells were used between passages 4 and 8, when they
morphologically resembled FLSs after indirect immunofluorescence study (see subsection
Culture of Human RA FLSs and Treatment). RA FLSs were cultured for 45–60 days before
experimentation. This interval granted the exclusion of all possible interactions resulting
from any preoperative treatment (with nonsteroidal anti-inflammatory drugs, analgesics,
steroids or disease-modifying antirheumatic drugs).

4.3. Culture of Human RA FLSs and Treatment

Between passages 4 and 8, RA FLSs underwent a dissociation process using trypsin.
Cell count and viability were determined, and cells were plated in culture plates or flasks
(Falcon, Dutscher SA, Bernolsheim, France). Viability was always greater than 95% and
was measured with histological staining and exclusion using trypan blue [35], at the start
and at the end of culture.

4.4. Flow Cytometry

In total, 2 × 105 RA FLSs were cultured in DMEM in a 25 cm2 flask and incubated at
37 ◦C and 5% CO2 for 24 h. Then, the desired percentage (v/v) of DMSO was added to
the medium, carefully homogenized and the cells were incubated at the same conditions
described before. After 24 h, RA FLS cells were trypsinized and added to 200 µL of PBS. In
total, 5 µL of propidium iodide (PI) was added as internal standard. Flow cytometry was
performed using a BD FACSCalibur flow cytometer.
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4.5. Protein Extraction and Western Blot Assays

For total protein extraction, the RA FLSs were washed in 1 mL of PBS; then, the
total cell pool was centrifuged at 4 ◦C at 200× g for 5 min. Next, it was homogenized
in a radioimmunoprecipitation (RIPA) lysis buffer (50 mM HEPES ((4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid)), pH 7.5, 150 mM NaCl, 1% sodium deoxycholate, 1%
NP-40, 0.1% SDS, 20 mg/mL of aprotinin) containing protease inhibitors (CompleteTM

Mini, Roche Diagnostics, Paris, France) according to the manufacturer’s instructions. Pro-
teins (60 µg) were separated with electrophoresis on 10% SDS–PAGE gels, transferred to
polyvinylidene fluoride (PVDF) membranes (Amersham Pharmacia Biotech, Amersham,
United Kingdom) and probed with human caspase-3 (mouse) or human PARP-1 (rabbit)
antibodies. After incubation, secondary antibody blots were developed using the ECL Plus
Western Blotting Detection System (Amersham Pharmacia Biotech, Amersham, United
Kingdom) and G: BOX system (Syngene, Ozyme, Saint-Cyr-l’École, France). Membranes
were then reblotted with human anti-β-actin (Sigma Aldrich, St. Quentin Fallavier, France)
used as a loading control.

4.6. Antiproliferative Assays

RA FLSs were trypsinized in a DMEM culture medium. Homogeneous solutions were
prepared in 10 mL of medium with 7 × 105 cells. In a 96-well plate, 7000 cells per well
(100 µL of the solution) were poured and the cells were incubated at 37 ◦C and 5% CO2.
After 24 h of incubation, 100 µL of DMEM medium, with the desired concentration of
DMSO (0, 0.01, 0.05, 0.1, 0.5, 1 and 5%,) was poured per row into the 96-well plate and then
incubated for 24, 48 or 72 h in the same conditions described above. After this time, 10
µL of MTT solution (5 g/L) was added per well and the plate was then put again inside
the incubator for 4 h. Following this period, the medium was removed, 200 µL of DMSO
were added per well, and the plate was stirred softly for 3 min. Absorbance after the MTT
assay was measured at 540 nm using a Dynex Triad Multi Mode Microplate Reader, Dynex
Technologies (Chantilly, VA, USA). The assays were carried out three times.

4.7. Statistical Analysis

All quantitative results were expressed as the mean ± 3 standard deviation (SEM) of
separate experiments using Excel (Microsoft Office, Version 2019, Microsoft Corporation,
Washington, DC, USA). Data normalization was carried out separately between the cells of
each patient, corresponding to 0% in each lineage. Statistical significance was evaluated
with the two-tailed unpaired Student’s t-test, p-value < 0.001 (***) and < 0.05 (*).
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