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Abstract

Diffuse interface methods have proven their ability to simulate complex two-phase flows. A number of robust numerical
schemes have been developed to simulate such flows involving large density and pressure ratios. Diffusion induced by
these methods, however, makes it difficult to localize the interface between the two fluids. To overcome this issue, while
retaining the advantages of diffuse interface methods, a second-order extension using a Monotonic Upstream-centered
Scheme for Conservation Laws-type (MUSCL-type) method of the implicit—explicit acoustic-transport splitting scheme
introduced in [40] is presented. A specific compressive limiter is used for the volume fraction in order to limit the diffusion

of the interface between the two fluids.

Numerical simulations are presented to illustrate the capability of the proposed new method to simulate highly

complex compressible two-phase flows.

Keywords: Two-phase flows, MUSCL, Unstructured meshes, Implicit, Compressive limiter

1. Introduction

This work takes place in the context of liquid ablation.
When an object enters the atmosphere at very high speed
(see Fig. 1), it is subjected to significant heat flux which
may degrade its structure. Depending on its composition,
the object may sublimate or liquefy. Thus, when a liquid
phase appears, it is necessary to deal with the flow of both
the liquid and gas phases by an appropriate model.

S“O C\ﬂ

hypersonic
gas flow

Figure 1: Schematic representation of an object entering the atmo-
sphere.

The modelling of two-phase flows has been the subject
of numerous studies. Several methods have been devel-
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oped, each with advantages and disadvantages. They can
be grouped into two distinct families: the sharp interface
methods and the diffuse interface methods.

Among these methods, the first one is the so-called
Lagrangian method [52]. Each phase can be modeled with
different equations, and the interface is followed explicitly
by moving the mesh at the material speed. In the so-called
ALE methods (Arbitrary Lagrangian-Eulerian methods),
the mesh follows the displacement of the interface. The
mesh can, however, be subject to strong distortions that
can impact the robustness of the calculations.

Moreover, among the Eulerian methods with no or al-
most no diffusion, there are the Front capturing meth-
ods as Volume Of Fluid (VOF) [27] and Moment Of Fluid
(MOF) [1] methods, the Front tracking methods [9] and
the Level Set method [38]. Although widely used for their
satisfactory results, these methods are complex to imple-
ment and some may be not conservative, which can be a
serious drawback depending on the targeted applications.

Diffuse interface methods, on the other hand, are based
on two-phase models, i.e. models containing conservation
equations for each of the two phases that are artificially as-
sumed to be present at any point in space. The equations
are solved on a fixed mesh in a Eulerian manner. The same
equations are solved over the whole domain. These meth-
ods allow the diffusion of the interface between each fluid.
Thus, mixing zones appear, corresponding to a numerical
spreading of the interface over a few cells. These areas
require special processing to preserve the thermodynamic
consistency of the model. Many studies have been carried
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out with the aim of developing two-phase models, following
the work of Baer & Nunziato [4] and their seven-equation
model. Indeed, there is a whole hierarchy of two-phase
models deduced from the seven-equation model [19, 33].
A local velocity equilibrium between the two fluids [45]
allows us to reduce to a six-equation model. If the equilib-
rium of the pressures is assumed, the five-equation model
of Kapila et al. [29, 31| or the reduced five-equation model
of [2, 35, 36] can be obtained.

Another approach to simulate two-phase flow consists
in writing the same set of equations for each fluid, and to
close the model by defining the mixing quantities as the
quantities of each fluid weighted by its volume fraction [13,
23, 7]. An isobaric closure assumption and the resolution
of a 2 x 2 system allows the volume fraction in the mixing
region to be determined.

Another approach existing in the class of diffuse in-
terface methods is the phase field method [3, 25]. This
method introduces an auxiliary field (the phase field or
color function) that acts as an order parameter taking two
distinct values in each of the phases, with a smooth change
between the two values in the area around the interface.
In two-phase flow models, the notion of color function or
phase field parameter is not explicitly introduced but its
role is implicitly played by the volume fraction of one of
the two fluids.

In this work, a diffuse interface method based on a
two-phase flow model is considered. The advantages of
such method are numerous: the same equations are solved
over the whole domain, interfaces do not require any spe-
cific processing and appearance of new interfaces as well as
the changes of topology are achieved naturally. In the case
where one wishes to model the two-phase flow between a
gaseous phase and a liquid phase, where the second phase
is not present initially and appears from solid fusion, these
methods seem the most relevant and the easiest to imple-
ment. The counterpart of these methods is the diffusion
of the interface between the two fluids, which can deterio-
rate the solution when the fluids are immiscible. Each of
the fluids is assumed to be present at any point in space,
with a volume fraction very close to 0 or 1 depending on
whether we are in fluid 1 or fluid 2. It is only in the vicinity
of the interface between the fluids that the volume frac-
tion of each of the fluids pass through the value 1/2. Since
we do not consider that fluids slide relative to each other
at the mesh scale, a two-phase model with one velocity
and one pressure is used. This avoids having to consider
a model with two velocities and two pressures [4] which
poses greater theoretical and numerical difficulties and is
not necessary when the mixing zone is purely numerical
and as fine as possible, and does not model a zone with
inclusions such as drops or bubbles of a size smaller than
the scale resolved by the mesh. As the two phases are not
initially mixed, the non-conservative term in the Kapila et
al. model [29, 31] is null. The reduced five-equation model
of [2, 35] will therefore be used in this work. Several meth-
ods have been developed in order to limit this numerical

diffusion of the interface. Kokh and Lagoutiére used the
anti-diffusive scheme [30] developed in [18], which consists
in using a flux as downwind as possible, while guaran-
teeing the stability and consistency of the scheme. This
method limits the diffusion of the interface to 2 mixture
cells. Jung et al. [26] combined the Glimm’s random pro-
jection method near the material interface with the upwind
scheme to simulate two-phase flow without any diffusion
cells. They extended this method to the second order in
space and time. Extension to higher dimension is achieved
with directional splitting. Shyue and Xiao [47] adapted the
THINC method of [53] as a sharpening technique to simu-
late two-phase flows. The main idea is to reconstruct the
solution with the hyperbolic tangent function, controlling
the compressive character of the reconstruction with a (-
parameter. This is widely combined with the Boundary
Variation Diminishing algorithm [48, 17, 14] to simulate
two-phase flows on structured and unstructured grids. In
the context of MUSCL-type schemes [32], where flux are
computed with piecewise linear reconstruction with slope
limitation, slope limiters can be designed to have compres-
sive properties and give a sharp interface when applied to
the volume fraction transport equation. This approach has
been widely used in the literature as for instance in Qian
et al. [42], Blanchard [7], Chiapolino et al. [15] and De
Vuyst et al. [16].

This paper is an extension of the work presented in [40]
where the splitting strategy of [10] is used to solve the five-
equation system of [35, 2|. The strategy consists in solving
the acoustic part with an implicit scheme while the trans-
port step is solved explicitly. The effects related to heat
dissipation and viscosity can be easily added to the first
step [41], which justifies its implicit treatment. We will fo-
cus here only on the hyperbolic part of the equations. The
aim is to increase the accuracy of the first-order method
described in [40] and to improve the resolution of the mate-
rial interface. A MUSCL-type scheme on an unstructured
grid is used, in order to improve the accuracy of the numer-
ical scheme. A strategy to improve the resolution of the
two-phase interface on an unstructured grid is employed.
Indeed, the method must be able to handle a body-fitted
mesh composed of quadrilaterals and deformed by the ab-
lation. In the context of the splitting strategy, a new and
more accurate implicit-explicit time-scheme is presented.

The paper is organized as follows. First, the governing
equations used to simulate two-phase flow are introduced
and the first order numerical scheme is briefly recalled in
Section 2. Then, a second-order in space extension and
improvement of the time scheme are derived in Section 3.
Some numerical results are presented in Section 4.

2. Model and numerical scheme

2.1. The five-equation system

We denote by pg, € and pg, the density, internal energy
and pressure of fluid £ = 1,2. Each fluid is equipped with



an Equation Of State (EOS) of the form py = pr(pk, €k)-
The volume fraction zx, such that z; + 2o = 1, allows the
position of the interface to be located. In the sequel, we
denote by z = z; the volume fraction of the first fluid. The
mixture density and internal energy are given by

p=p1z+p2(l —2),

2.1
pe = p1e12 + paca(l — 2). (2.1)

Both fluids share the same velocity u and the same pres-
sure p. The five-equation system of 2, 35| for non-miscible
fluids with isobaric closure reads

O(p12) + V- (p12u) = 0,
O(p2(1=2)) + V-(p2(1-2)u) = 0,
9 (pu) + V-(pueu)+Vp= 0, (22
9 (pE) + V-(pEu+pu) = 0,
Oz 4+ uw-Vz = 0,

where £ = ¢ + @ is the total energy of the two-fluid
media.

Each fluid is considered to be governed by a stiffened
gas EOS, since we consider flows with a liquid phase and
a gas phase. The EOS of phase k thus reads

Pk = pree(vk — 1) — Wk, (2.3)

where v, > 1 is the adiabatic exponent and 7 > 0 is a
reference pressure. Note that perfect gas EOS is obtained
with 7, = 0. The mixture pressure p is the solution of the
system

{p1(01a€1) = p2(p2,€2), (2.4)

pe = p1e1z + paea(l — 2).

In the case of two stiffened gases, (2.4) can be solved ex-
plicitly and we get the following expression for the mixture
pressure

p=pe(y—1) =, (2.5)

where the adiabatic exponent mixture v and the reference
pressure 7 are given by

2
R and W:’Y—lzzm’kﬂk
5 — -
Z Zk v 1 Tk —1
i1 Ye—1

y=1+ (2.6)

The speed of sound ¢y, of each phase is defined by ¢i =
g%“k, where sy is the entropy. The mixture sound speed

for two stiffened gas reads

(2.7)

Note before going further that the system (2.2) can
be written, introducing the mass fraction of the first fluid

Y= %, in the following form

dp + V-(pu) = 0,
d(py) + V- (pyu) 0,
d(pu) + V-(pu®u)+Vp= 0, (2.8)
O (pE)+ V-(pFu+pu) = 0,
O 2 + u-Vz = 0

The evolution equation of p is obtained by summing the
evolution equation of p1z; and paze of system (2.2). The
evolution equation of py is nothing but the evolution equa-
tion of p;z; by definition. This form allows us to write in
the Lagrangian form the acoustic step, described below.

Remark 1

If the volume fraction only takes the values 0 and 1, then
(2.8) is equivalent to the 4-equation model i.e (2.8) without
the equation on py.

2.2. Splitting strategy

We will briefly recall the method of solving the five-
equation system, where a detailed approach is described
in [40]. The expansion of system (2.8) reads

Orp + pV-u + u-Vp = 0,
Ailpy) + pyV-u + uw-V(py) = 0,
O(pu) + puV-u+Vp + u-V(pu) = 0,
O(pE)+ pEV-u+V-(pu)+ u-V(pE)= 0,
Osz + uw-Vz = 0.
(2.9)

The five-equation system is then split into two subsystems
[10, 11, 40]. The first system contains only the acous-
tic waves, while the second system takes into account the
propagation of material waves through the fluid.

The system corresponding to the acoustic step is hy-
perbolic with eigenvalues 0 and £c. It is rewritten and
then solved in its Lagrangian form, which reads

oV +9V-G(V) =0, (2.10)
where V' = (J,y,u, E,z) are the Lagrangian variables,
G(V) = (u,0,p,pu,0) is the flux and ¥ = 1/p is the spe-
cific volume. Note that during this step, volume fraction
and mass fraction are not modified.

The transport step system, where the propagation speed
is only u, reads

U +uV -U =0, (2.11)

with U = (p, py, pu, pE, z) the conservative variables.

2.3. Numerical scheme

Let us first consider a domain Q € R2 discretized in N
cells 2; such that v(7) is the set of cells neighboring the



cell Q; by the edges, |€2;] is the area of the cell €, |T';;] is
the length of the edge common to the cells €2; and €2; and

n;; is the unit vector normal to ; (see Fig. 2). The mass
centers x; of cell 2; is defined as
! / d (2.12)
X, =— [ xdx. .
21 Ja,

Figure 2: Notations associated with the unstructured mesh.

The time is discretized by t"™ = nAt for n € N, where
At > 0 is the time step. In the finite volume approach
that is used, the notation ¢} is an approximation of

1
m/ﬂq&(x,t”)dx

for any quantity ¢(x,t).
In the sequel, the first order in space and time scheme
is described.

2.8.1. Acoustic step

An approximate four-state Riemann solver [21], or the
Lagrangian scheme EUCCLHYD [34] can be used to solve
this system. The numerical scheme for the acoustic step
reads

vi=vn— mﬁf > |ri;| GE (2.13)
jev(d)
where Gf; = (—ij4, 0, Pijij, Dijliij,0)* is the numerical

flux and { corresponds to the intermediate state between
the acoustic step and the transport step. The scheme can
be explicit by taking # = n or implicit with # = . For
the approximate four-state Riemann solver of Gallice [21],
the flux reads

o Cuuit Cluy  pi—p
Uij = C'*—i—C_'* '"zJ_C—ﬁ_i_C—vw
- i j & (2.14)
Bij = Copit Ogi o wi—ws
“ Ci; +CE wrues+chk Y
where C_'[j and C_'jj are the Riemann solver slopes. The

choice of slopes is crucial to guarantee the positivity of the
intermediate states of the Riemann solver and thus of the
associated Godunov type scheme [21] (see also [12]). Their
computation is detailed in [40]. In the explicit case, the

Courant-Friedrichs-Lewy (CFL) condition ensures that no
wave cross within the same cell. It is given by

At m B max (|T;]Cy;) | < 1

2.15
1<z<N ‘Q | JjEv(i) 2 ( )

When the two phases have large pressure or density
ratios, the CFL (2.15) related to the acoustic system can
be very constraining. This is the case for liquid/gas inter-
actions. Thus, the acoustic step is solved with an implicit
time-scheme [10, 11, 40]. This approach is extensively de-
tailed in [40]. We will recall here the main ideas. For
the sake of simplicity, a one-dimensional problem is con-
sidered. The extension in dimension 2 follows the same
lines. The speed of sound and the Riemann solver slopes
are frozen at time n. Since the numerical flux G;; de-
pends only on the velocity and the pressure, we solve the
following subsystem

8tp + azﬁazu = 0,

(2.16)
Oy +  V0.p 0,

where a = pc is the Lagrangian sound speed. We now look
for the solution of the system

At
Xt xn4 229 H) = 2.1
FrEy =0, @)
where X = (p;,u;) and
([H]] = (a?(ﬁgﬂ/z I 1/2):P j+1/2 3—1/2)’ (2.18)

are the jumps of the numerical flux, computed with (2.14).
Since the system (2.16) is linear in (p,u), it can be rewrit-
ten as

A
xt o x4+ Slarxt = 0,
Ax

where M X = ¢"[[H]]. The matrix M depends on the
choice made to evaluate the flux. It is given in [40] for the
four-state Riemann solver of [21]. Basically, it depends on
the Riemann solver slope and the sound speed. In practice,
the system obtained is solved under the delta-form

(2.19)

At

(Id + AtM) (XT—X")=——MX". (2.20)

Ax

The resolution of this linear system then gives a new
velocity and a prediction of the pressure. These pressure
predictions are used to evaluate the numerical flux G’I j and
update the acoustic variables 97 and ET explicitly with
formulae (2.13). The real pressure is then determined by
the EOS (2.5). It does not seem possible to prove that the
pressure obtained at the end of the acoustic step is close
to the pressure given by the EOS.

2.3.2. Transport step
The transport system is resolved under the equivalent

form
Op + V- (uy)

—pV u =0, (2.21)



where 9 corresponds to the variables (p, py, pu, pE, z) of
the system (2.11). The transport equation (2.21) consists
of a first conservative term V - (u1)) followed by a second
non-conservative term ¥V - u.

The first-order numerical scheme of the transport step
is as follows

R \Q| Z \F”|¢”u”+w

JjEv(4)

‘ Z |F7«J ‘ Uij.

Jev(z)

(2.22)
It is solved with an explicit time scheme. The most natural
choice is to use the upwind scheme to solve the conservative
term. A judicious choice on the material velocity u;; gives
a globally conservative scheme. This choice consists in
taking the opposite of the first component of the acoustic
flux [40]. In the case of the Gallice’s Riemann solver [21],

we have u;; = u . The transport step is stable under the

|

This scheme is clearly conservative for the densities,
momentum, and total energy equations. It preserves the
contact discontinuities, namely constant u and p states.

Remark 2

Numerical flux depends on At. Indeed, the variables of the
flux with the exponent | are updated by the acoustic step
(2.13) which depends on the time step. Thus, stationary
solutions depend on the time step. We can see the two
steps as an implicit method to calculate the numerical flux
associated with (2.24).

3. Second-order extension

3.1. Second-order in space extension

When using diffuse interface methods, the volume frac-
tion will naturally be diffused at the interface between
the two fluids considered. The simple first-order in space
scheme used in both the acoustic and the transport step
will produce a numerical diffusion of the solution that is

following CFL condition

At1<z<N \Q| Z Tajl luss| | < 1. (2.23)

JEv(4)

2.3.8. Global scheme
The overall algorithm for a time step between t" and
t"*+1 reads

Step 1: From a state (p, py, pu, pe, 2)™, compute
(p, py, pu, pe, 2)T, the approximation of the acoustic
system (2.13).

Step 2: Find the fluid state (p, py, pu, pe, 2)"*! by
solving the transport system (2.11) with the initial

state (p, py, pu, pe, 2)1.
The global scheme reads

n+1 n

ler = P - | Z |F13|pz] I
J€v (4)

(py)n+1 = (py)'? - | Z |F7f.7| py 7,] 13’
JGv (4)

(pw)i™ = (pu)} — ‘Q | Z ITi5] ( pu)! +p”) (2.24)
Jev (%)

(VB = (oB)} - Z Tl (o) z,um+pf§ i),
Jev (%)

2l = 2P | Z |F”|zfju”—|—z | Z |F,J|u .
Jev(i) jev(i)

(

far too large to accurately follow the interface. To over-
come this problem, we use a second-order MUSCL-type
method [32] called U-MUSCL [8]. It consists in using in
the numerical flux the polynomial reconstructions &;; and
&; of the solution on I';; such that

K
5 (@ —a)

R K
bji = aj + 5 (@i — )

Qij = o + + (1 - k)Va,.(xf — x;),
(3.1)

+ (1 - k)Va,.(x5 — x5),

with xk € [—1, 1] a parameter. The use of the mass center
x; given by (2.12), instead of any point in cell €;, ensures
that the reconstructions &' of variable o' are conservative,

i.e.
1

4 (x)dx = of 3.2
ol o, aj'(x) (3.2)
By writing (3.1) it in the form

& ZHM—I—(I—K) (o + Va,.(xy —x5)), (3.3)

2

it can be seen as a combination of the linear interpolation
(first term) and the linear extrapolation (second term) of



Gyj. It is an extension of van Leer’s x-scheme on unstruc-
tured grids. Note that k = 0 returns the conventional
MUSCL reconstruction. As shown in [37], the U-MUSCL
scheme with x = 1/3 gives more accurate results than
k = 0. However, this method is second-order only if the
center of the face x¢ lies exactly between the mass centers
of cells x; and x; (see Fig. 2). Therefore, a modification
from [37] must be employed to preserve the second-order
accuracy. This consists in modifying the reconstruction
(3.1) such that

g = i+ 5 (ap = ai) + (1= W)V (xy = xi), (3.4)

where

ap = a; + Voy.(2x7 — % — X5). (3.5)

The U-MUSCL scheme (3.4) with the second-order pre-
serving modification will be used as the reconstruction
method due to its simplicity and accuracy when using
k =1/3. As shown in [39], U-MUSCL with x = 1/3 can
be third-order accurate in cell-averaged solutions on reg-
ular grids for one-dimensional problem, and in the point-
valued solution on regular grids for linear equations in all
dimensions. However, only second-order can be obtained
in our configuration, namely the two-dimensional case on
unstructured grid.

3.1.1. Gradient computation on unstructured meshes

The MUSCL-type scheme presented previously requires
the computation of the gradient of the unknowns on un-
structured meshes. There are two methods main for gradi-
ent computation: the Green-Gauss method (GG) and the
Least SQuares method (LSQ). The first one is based on the
application of the Green-Ostrogradski theorem. Although
easy to implement and inexpensive, it is not very accurate
on deformed meshes [49]. Thus, the LSQ method is pre-
ferred here for its robustness and accuracy. It is based on
the Taylor development of the solution within a cell 7 on a
stencil v(¢) composed of its neighbors. It can be composed
of neighbors per edge, neighbors per vertex, or from an
even more extended stencil. These first two configurations
are represented in Fig. 3. An enlarged stencil for gradient
computation enables greater accuracy, especially when the
mesh is highly distorted.

The LSQ method consists in solving an over-determined
system AX = b where X = Vo, (see Appendix A). By
construction, the method is exact for any linear function,
regardless of the mesh. This is essential to obtain second-
order accuracy with MUSCL-type schemes. The accuracy
of the gradient computation can be improved by using a
weighted matrix W, usually diagonal, with coefficients wgy,
such as

wik =[xz, — xil| 7%, (3.6)

where ¢ is a positive parameter. When ¢ = 0, we find the
unweighted method. With ¢ = 1, the weight corresponds
to the inverse of the distance between the mass center of
cell i and cell j. In this work, ¢ is set to 3/2 [49]. We

Figure 3: Schematic representation of the neighborhood by edge
(gray) and the neighborhood by vertex (white and gray) for the cal-
culation of the gradient on cell ¢ by the LSQ method.

thus need to resolve WAX = Wb. This over-determined
system is solved by going through the normal equations,
i.e., by multiplying the system by (W A)T', and the solution
reads

X = (ATWTWA) L ATWTWb. (3.7)

In the case where the matrix is ill-conditioned however, the
gradient calculation could be imprecise. Another approach
to avoid such a problem is to use the QR decomposition.
The matrix W A can be decomposed as WA = QR where
Q@ is an orthogonal matrix and R is an upper triangular
matrix. The solution is then written

X =R'QTwo. (3.8)
The second method is thus preferred. The QR decompo-
sition is performed with the modified Gram-Schmidt algo-
rithm [22]. Note that the matrix R~1QTW consists only
of geometrical parameters. When the mesh is not moving,
it is then sufficient to calculate it once when initializing the
calculations and to store it. This method can give second-
order accurate gradient reconstruction for smooth curvi-
linear mesh or on meshes of identical parallelograms [49].

8.1.2. Gradient limiter

In order to eliminate oscillations inherent to high-order
schemes and capture discontinuities, these reconstructions
are limited by a function of the local gradient, called “lim-
iter”. Many limiters exist in the literature, designed to
have different properties. In the case of the five-equation
system, the volume fraction is a discontinuous variable,
which follows a transport equation. Following the lines of
[42, 7, 15], the idea here is to apply a compressive limiter
to this variable, which allows a better representation of the
interface between the two fluids. For the other variables,
namely densities, velocity and pressure, the limiter should
be as robust as possible, given the implicit treatment of
the acoustic step.

The reconstruction &?j is rewritten in the form

OAlz‘j = Q4 + ¢iAai,j, (39)



where ¢; is the gradient limiter, and

Aa;; = g (0p — i) + (1 — K)Vai.(x; —x;).  (3.10)
Proposition 1
Let ¢; the limiter of the reconstruction of c;; in cell i, such

that

max

Q; — it X _ g
win (5. S T ) i Aa

|Aai|max ’ |Aai|max

bi =

0 otherwise.

(3.11)

with | Ao ™" = maxje, ;) | A j|, 4™ = minje, ) (i, @;)

and o™ = max;c, ;) (i, @;). Depending on the parame-
ters B and oy, this limiter displays different properties :

QWi + QjW;
w; + (JJj

x;||~1 then the limiter is monotonicity preserving,

i.€.

o If 3 =1and a; = with w; = ||xj, —

V] c ’U(i), a; < a; = dij < CAk]Z (312)

o If 3> 1 and &; = «, the limiter is compressive.

Proof. The design of the previous limiter is provided in
Appendix B. O

This approach is used in [42] in the framework of one-
dimensional limiter for two-phase flows, where the com-
pressive limiter is used on the density whereas the min-
mod limiter is used on the velocity and the pressure. In
[7], a similar S-limiter is designed without the monotonic-
ity preserving condition. The compressive limiter (3.11)
with 8 = 2 is used on the volume fraction of a two—phase
model while the less compressive limiter with 8 = 1 is used
on the others variables. In the work presented in [15], a
family of S-limiters is designed from the approach of [5]
where as previously, the compressive limiter is used on the
volume fraction only.

Monotonicity preserving. When dealing with large pres-
sure or density ratio, as in the study of liquid-gas inter-
action, the monotonicity preserving property can be es-
sential, in order to improve robustness. The well-known
minmod limiter verifies this condition, which explains why
it is very popular in industrial codes.

Compressive property. The compressive nature of a method
or limiter reflects the ability to accurately reproduce a dis-
continuity. For example, the superbee limiter [50] is well-
known to sharpen sinusoidal profiles and to behave well
on discontinuity transport. This property is particularly
valuable in the context of immiscible fluid flows, as it im-
proves the representation of the interface between these
two fluids [42, 7, 15]. When the limiter (3.11) is allowed
to take values greater than 1, it is then compressive.

Remark 3

When a second-order in space scheme is used, the maxi-
mum time step given by CFL conditions (2.15) and (2.23)
must be divided by two (see [6] for example).

8.1.3. Second-order in space scheme in the splitting strat-
€qy

The limiter (3.11) is used in the context of the five-
equation system, while reconstructions are performed with
the U-MUSCL scheme with k = 1/3. The objective is to
sharpen the fluid’s discontinuities by reducing the num-
ber of mixture cells. The reconstructed variables are the
primitive variables, in order to limit velocity and pressure
oscillations. They are reconstructed as follows

Acoustic step: (u,p)" are reconstructed with 8 =
1.

Transport step: (pi1,p2,u,p)” are reconstructed
with 8 = 1 and 2# with 8 = 2. The conservative
variables are deduced from the primitive ones with

p = zp1+(1—2)p2,
Py = Zzp1,
pu = (zp1+ (1= 2)p2) u, (3.13)
pe = Zk ZEPEER = Zk Zk%7
pE = pe+ %pu - U.
Remark 4

The limiter needs the computation of o™ and a***, the
local extrema. The 5-point stencil, i.e., with the edges
neighbors, is used for the acoustic step, while the 9-point
stencil i.e., with the vertex neighbors is utilized for the
transport step (see Fig. 3). Better convergence properties
have been observed numerically on the acoustic step with
only 5 points.

3.2. Time-scheme

8.2.1. The Heun method

The time scheme is important to increase the accuracy
of the overall scheme, especially when high-order in space
schemes are used. This prevents the appearance of nu-
merical artifacts that will degrade the solution, as shown
in [16] for instance. To this end, we could use the Heun
method also called Runge-Kutta TVD, which we apply on
the global scheme (2.24). It reads

U* = U™+ AtF(U", At),

U™ = U+ AF(U*, At), (3.14)
1

Un—i—l — 5 (Un + U**) ;

with U being the conservative variables (p, py, pu, pe, z)
and F is a numerical flux discretized in (2.24). It is not



clear that this scheme is second-order in the case of the
splitting strategy because of the time step dependence of
the numerical flux (see Rem. 2). Indeed, the numerical
flux is a first-order in time approximation of the spatial
operator. However, it does improve the numerical solution,
which will be shown in the results section.

3.2.2. An alternative implicit time-scheme

The scheme described above is simple to implement
and robust. When an implicit approach is used in the
acoustic step however, it must be repeated twice per time
step, which induces a significant cost in computation time.
For this, a new implicit scheme based on the Crank-Nicolson
scheme has been developed. The modified scheme pro-
posed here reads

vi-vn

1 n n
=5 (V-GVH+V-GWV™). (3.15)

This scheme is not the Crank-Nicolson scheme because it
is not second-order since we kept 9" for the explicit and
implicit terms. It can be seen as the average of the flux
given by the explicit (2.13) and the implicit (2.13) versions
of the acoustic step. The truncation error of this modified
Crank-Nicolson scheme is smaller than that of the first
implicit scheme (see Appendix C). The numerical scheme
for the acoustic step reads

At 1
vi—vn— o .Z' i3l 5 (G;;. + Gij). (3.16)
jev(i)
The resolution of (3.16) follows the same line as the first-
order implicit time scheme. In the one-dimensional case,
it is easy to show that the new scheme leads to solve under
the delta-form the system

<|d + NM) (Xt —Xx") = A e,

2Azx Az (3:.17)

From an implementation point of view, this represents a
small modification of the velocity-pressure system (2.16)
resolution algorithm. Once again, the other equations are
solved explicitly. In order to have a globally conservative
scheme, the material velocity used in the transport step
must read :
ar 4 al.
Ui = 4 (3.18)
2

This comes from the same arguments used in [10, 40] in

order to have a globally conservative scheme.

3.2.8. Eaxtension with the second-order in space scheme
When using the second-order scheme in space, nonlin-
earities introduced by the limiter make it impossible to
write the flux jump as a matrix-vector product of X. A
conventional way to solve non-linear equations is to use a

quasi-Newton method. Using this method, the solution is
obtained by iterating over the following equation

At k+1 k\ __ k n
(Id+AIM)(X XF) =-X"+X

At

o [H].
with £ = 0,...,00. The matrix M is built with the first-
order flux while the right-hand side of (3.19) is computed
with the second order flux. Note that a single iteration
over (3.19) gives exactly (2.20), the system solved when
first-order in space scheme is used. Through this method,
the implicit time scheme converges to the second-order in
space solution. When using the second implicit scheme,
equation (3.19) becomes

(3.19)

At

Iy + ——M ) (XF - XF) = X+ 4+ X»

(d+2Am )( ) +
At

— o0 (HM) + [[HM) .

A (3.20)

Remark 5

In practice, we use a convergence threshold e set to 107>
with a maximum of 10 iterations. These values have proven
to be sufficient in the simulations performed.

4. Numerical results

In this section, a selection of numerical results for the
one and two-dimensional cases are presented. The first
cases will illustrate the accuracy of the compressive limiter
(8 = 2) on the classical pure transport equation. The
RK2-TVD time scheme presented in the previous section
is always used for pure transport cases.

The next cases will show the ability of the second-order
method to simulate complex two-phase flows. We denote
by EXEX the explicit scheme for both the acoustic and
transport steps, while IMEX is the implicit-explicit strat-
egy of the splitting scheme. When adding RK2, the RK2-
TVD scheme is thus used on the overall algorithm. The
CNEX scheme denotes the new implicit-explicit scheme
built from a modification of the Crank-Nicolson scheme.
For two-dimensional liquid-gas or gas-gas cases, the den-
sity gradient will be computed in log scale during post-
processing, as log(|Vp|), in order to reproduce numerical
Schlieren.

4.1. Zalesak’s disk

We consider here the classical Zalesak’s disk test case
[54], namely a disk with a slot rotating in the velocity
field u(z,y) = (0.5 — y,x — 0.5) m.s~! on the domain
Q =[0,1] m x [0,1] m. The disk is defined at the initial
time by

1if (||x —c||<r) and
z(x,y) = (lt —cz|>eory—cy >1),
0 otherwise,



with x = (z,y), ¢ = (0.5,0.75) m, r = 0.15m, e =
0.025 m and ! = 0.1 m. The CFL is set to 0.4 and 256 x 256
cells are used with constant boundary conditions. The re-
sults in Fig. 4 are obtained after one revolution at the final
time ¢ty = 27s.

The present limiter gives very good results. The in-
terface is very sharp and the shape of the disk is well-
preserved, almost symmetrical. The use of kK = 1/3 (see
Fig. 4.a) gives a good resolution of the slot and the corners,
compared to the conventional MUSCL method with k = 0
(see Fig. 4.b). This might be because the method with
k = 1/3 is third-order accurate on the transport equation
on Cartesian mesh.

4.2. Kothe-Rider advection

We now consider the Kothe-Rider forward-backward
advection test case [43] on the domain £ = [0,1] m X
[0,1] m. This test case consists in transport a circle in
a backward-forward velocity field such that

u(x’yat) = (

— sin(7y) cos(my) sin(rx)? cos(wt/tf)> .

sin(mz) cos(mz) sin(my)? cos(mt /t ;)

The circle of radius R = 0.15 m is set at (0.5,0.75) m.
The CFL is set to 0.2 and 256 x 256 cells are used with
constants boundary conditions. The results in Fig. 5 are
obtained at the intermediate time ¢t = 3s and at the final
time ¢ty = 6s.

At first, until t = 3s, the velocity field deforms the disk
into a filament. The filament obtained (see Fig. 5.a) is well-
captured in regions where it is large enough regarding the
cell’s size. In a second time, the velocity field rewinds the
filament to reform a disk. At the end, the shape of the
disk is quite well-preserved (see Fig. 5.b). Some diffusion
from the forward part deteriorates the results. A mesh
with more cells gives a better disk resolution.

4.8. One-dimensional liquid-gas shock tube

We consider here the classical one-dimensional liquid-
gas shock tube test on 2 = [0,1] m, studied in [51] for
instance. The stiffened gas EOS is used for the liquid,
while the gas is modelled by the perfect gas EOS. The
initial conditions read

(10%,0,10°,4.4,6 x 10%)  if x < 0.7 m,

7u7 ) 77T =
(P, ,7,) {(5,0,105,1.4,0) else.

The CFL number for the transport step is set to 0.25, and
we use 400 cells with constant boundary conditions. The
final time is set to ¢ty = 240us. This case serves to test
the accuracy of the different time schemes to represent
the three waves of the problem, that are rarefaction wave,
contact discontinuity and shock. This is a challenging test
case, since large pressure and density ratios are involved.
The results are presented in Fig. 6.

The results are in very good agreement with the exact
solution. The three waves are well-represented, especially

the contact discontinuity, thanks to the compressive lim-
iter used on the volume fraction. One can see an under-
shoot on contact discontinuity of the density (see Fig. 6.a).
This observation is quite common when sharp interface
techniques are used, as the anti-diffusive scheme [30, 20].
Regarding velocity and pressure, the CNEX time scheme
gives more accurate results than the IMEX scheme or the
IMEX-+RK2 strategy, especially near the rarefaction wave.
It also reduces the overshoot on the density and better lo-
calizes the shock position.

4.4. Two-dimensional Air-R22 interaction

We shall now consider the experiment of Haas & Sturte-
vant [24]. In this test case, a shock wave at Mach 1.22
propagating through the air hits an R22 gas cylinder of
radius R = 25 mm located at (130 mm, 44.5 mm). Many
simulations of this case can be found in the literature,
such as [46, 30, 26]. The computational domain © =
[0,200] mm x [0,89] mm is described in Fig. 7.

The initial states of both fluids in the pre- and post-
shock regions are given in Tab. 1. Both fluids are modeled
by perfect gas EOS with v = 1.4 for the air and v = 1.249
for the R22. The pre-shock density, velocity, and pressure
are computed with the shock wave relation (see [50] for
instance) such that the Mach shock is 1.22. Each phase is
modeled by perfect gas EOS.

Location p(kgm™3) w(ms 1) p(10°Pa)
Air (shock) 1926019 (-105.495,0) 1.5608
Air 1.4 (0,0) 1

R22 4.4154 (0,0) 1

Table 1: Two-dimensional Air-R22 interaction : initial data.

Because of the symmetry of the problem, we use a do-
main of © = [0,200] mm x [44.5,89] mm with boundary
symmetric condition at the lower side, a wall boundary
condition at the upper side, an outflow boundary con-
ditions on the left side and a supersonic inlet boundary
condition on the right side. The mesh is composed of
1600 x 356 cells. In this case, the implicit time scheme
is not useful since the ratio of densities and pressures is
approximately 1. The explicit version of the time scheme
is therefore used. The CFL number for both steps is set
to 0.25. The final time is ¢t; = 1020us.

The numerical Schlieren of this case is presented in
Fig. 8. For the lower half, the results are obtained with
the EXEX time-scheme, while the EXEX+RK2 strategy
is used for the upper half. For both simulations, the
second-order in space scheme with compressive limiter is
used. When the shock impacts the R22 gas, the cylin-
der is deformed. This velocity difference, combined with
the interaction of the interface with the transmitted shock
waves produce hydrodynamic instabilities, and curling vor-
tices are generated at the interface between the two gases.
The scheme is able to reproduce a large scale and finer
flow structure, while maintaining a very sharp interface



(a)

(b)
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Figure 4: Zalesak’s disk test case. Initial condition (a), solution after one rotation with k = 1/3 (b) and with k =0 (c).

(a)

(b)

(c)

Figure 5: Kothe-Rider advection test case. Initial condition (a), solution obtained at the intermediate time ¢t = 3s (b) and solution at the

final time t = 6s (c).

throughout the simulation. The results are in good agree-
ment with the experiments of [24] and with numerical
results from the literature [30, 31, 28, 14]. The use of
the EXEX-RK2 scheme appears to attenuate the spurious
waves that appear with the EXEX scheme.

4.5. Two-dimensional liquid-gas interaction

We shall now consider a two-dimensional liquid-gas in-
teraction, widely studied in the literature [44, 30, 28, 40].
The rectangular computational domain Q = [0,2] m X
[0,1] m is described in Fig. 9. A gas cylinder of radius
R = 0.4 m is initially at rest in a liquid at (0.5,0.5) m
while a shock at x = 0.04 m propagates in the liquid from
left to right.

The initial conditions of each phase are provided in
Tab. 2. The air is modeled by perfect gas EOS with v =
1.4 while the liquid is modeled by stiffened gas EOS with
v=4.4and T = 6.8 x 108.

Because of the symmetry of the problem, a domain of
Q2 =[0,2] mx[0.5,1] m is used with a boundary symmetric

10

Location p(kem™3) w(ms1) p(Pa)
Liquid (shock) 1030.9 (300,0) 3 x 10°
Liquid 1000 (0,0) 10°
Gas 1 (0,0) 10°

Table 2: Two-dimensional liquid-gas interaction : initial data

condition at the lower side, a wall boundary condition at
the upper side and inflow /outflow boundary conditions on
the other sides. The mesh is composed of 1600 x 400 cells.
The CNEX time scheme is used with the second-order in
space strategy. Since the acoustic step is implicit, the time
step is computed with the transport condition (2.23) with
a CFL number set to 0.25.

Volume fraction and numerical Schlieren are presented
on Fig. 10. The results are in good agreement with the
results presented in [44, 30, 28, 40]. The compressive lim-
iter gives a sharp interface of the volume fraction. The
propagation waves are shown on numerical Schlieren. The



o
o T 4
S solution
IMEX -
IMEX RK2 -
o CNEX -
&8 - ’!ﬁ 1
50
—~ 3
@ © [ 7
IE. 40
2
= g| 9 ! |
<
20
et 10 )
=) 0.8 0.826 0.852 0.878 [l
0 0.1 02 03 04 05 06 07 08 09 1
x (m)
(a)
[o2]
o T |
3 solution
- IMEX -
IMEX RK2
Q| CNEX - ]
S R 3e+06
(s}
© 2e+06
o L 4
3
= & 1e+06
S
e 81 0 A
2
Q
< ' -1e+06 4
| \ 028 0433 0586 0.739 |
$ 3
[\ ":.
X
© | l L\ !
0 0.1 02 03 04 05 06 07 08 09 1
x (m)

500

o
o 4
<
o
o L 4
- (<o}
‘o
E
> 8L 4
3\
o
9 |- . -
0.35 0.526 0.702 0.87
° Sertss L L L L L L L &
0 01 02 03 04 05 06 07 08 09 1
x (m)
(b)
solution
IMEX
© IMEX RK2
St ’ CNEX ]
© 0.8
d L 4
N 0.6
<
L - ]
e 04 \
N 0.2
St \ ]
0
o 0.814 0.817 0.82 0.823
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x (m)
(d)
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Figure 7: Two-dimensional Air-R22 interaction : geometric descrip-
tion of the test case.

shock wave hits the gas cylinder and compresses it while
propagating inside. When the shock reaches at the left of
the cylinder, the gas is split into two different cylinders.

Remark 6

11

Many schemes are unable to cope with this test case be-
cause of the high ratio of pressure and density, even with
explicit time schemes. The robustness of the method come
from the exact conditions on the Riemann solver slopes to
ensure positivity of the intermediate states [40]. However,
these conditions are derived from the explicit time-scheme
of the acoustic step. In our case, when an implicit time-
scheme is used, no conditions can be derived to guarantee
that the solution remains in the convex set of admissi-
ble solutions, which ensures that the sound speed given by
(2.7) is real, and the mixture density is positive. When us-
ing the compressive limiter however, it happens in this test
case that p + m becomes negative in mixture cells where
the volume fraction of liquid is approximately 10~* and
the mixture density is about 1073. To overcome this is-
sue, when the square of the velocity of the mixing sound
speed in cell 7 is negative, it is calculated with

2 2 2
G = maX(Ci,liqa Ci,gas)

(4.1)

where c¢; 154 and ¢; gqs are the sound speed of the liquid



(a) t = Opus.

(b) t = 204us.

(c) t = 408us.

phase and gas phase in cell . This fix can be seen as
adding diffusion to the implicit resolution of the acoustic
step, where the slopes of the Riemann solver are locally
increased. It is the only part where the sound speed is
needed.

4.6. Two-dimensional liquid-gas interaction on deformed
mesh

All the cases presented above were performed on Carte-
sian grids. Thus, the last liquid-gas test case is repro-
duced on a deformed mesh, in order to show that the
method works on unstructured grids. The deformation
is performed from a Cartesian mesh, where the nodes are
randomly moved. A small portion of the mesh is shown in
Fig. 11.

12

(d) t = 612us.

(e) t = 816us.

(f) t = 1020ps.

Figure 8: Numerical Schlieren of the air-R22 interaction test case.
Results of the EXEX scheme (lower half) and results with the
EXEX+RK2 scheme (upper half) at several times.

The same parameters, scheme and number of cells are
used. This time, the calculation is performed on the com-
plete domain, without using any symmetry conditions.

The numerical Schlieren at several times are presented
in Fig. 12. The results are in good agreement with the
previous simulation on a Cartesian grid. One can observe
that the shape of the gas cylinders are not perfectly sym-
metrical with the horizontal axis. This comes from the
non-symmetry of the randomly deformed grid. The differ-
ent waves are, however, well-captured, and the two-phase
interface remains sharp.
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Figure 9: Two-dimensional liquid-gas interaction : geometric descrip- (d) t = 400us.

tion of the test case.

(e) t = 500us.

(a) t = 100us.

(f) t = 600us.

Figure 10: Two-dimensional liquid-gas interaction test case. Numer-
(b) t = 200us. ical Schlieren (upper half) and volume fraction (lower half) at several
times.

Figure 11: Mesh used for the Two-dimensional liquid-gas interaction
(c) t = 300us. on deformed mesh.
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(a) t = 100us. (e) t = 500us.
(b) t = 200us. (f) t = 600us.

Figure 12: Two-dimensional liquid-gas interaction test case on ran-
dom mesh. Numerical Schlieren at several times.

(c) t = 300us.

(d) t = 400us.
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5. Conclusion

In this work, several methods for reducing numerical
diffusion when studying compressible two-phase flows with
immiscible fluids were presented and combined. Since non-
miscible fluids are considered, the five-equation system
of [2, 35] was used. A robust implicit—explicit acoustic-
transport splitting scheme for two-phase flows is used to
solve the governing equations. The main contribution of
this work is to improve the accuracy of numerical meth-
ods used on meshes potentially distorted by ablation. A
new and more accurate implicit-explicit time scheme was
developed. The second-order extension of the method was
performed with a MUSCL-type scheme, that serves to im-
prove the resolution of the numerical scheme. The U-
MUSCL scheme [8] with x = 1/3 is used, with the correc-
tion of [37] for deformed grids. A multidimensional lim-
iter is designed to capture shock and contact discontinuity
without oscillations. A 3 parameter serves to control the
compressive property of the limiter, used only on the vol-
ume fraction. It sharpens the interface between phases,
reduce the numerical diffusion and reproduces finer flow
structures. The continuation of this work consists in en-
riching the model by taking into account capillary effects.
These physics will be included in the acoustic step, still
with an implicit time-scheme.

Appendix A. Least-squares method

The least-squares method used to compute the local
gradient is described in this appendix. We consider the
solution «; in x;, the center of the cell i. We then define
the following linear model

di(x) = q; +V0éi.(X—Xi). (Al)
The method consists in finding the minimum of the sum
Si= Y (ai(x)) = a;)?, (A.2)
jev(i)
where v(4) is a set of neighbors of cell 7. The minimization
problem (A.2) can be written in the form

S; = [l AX — b1 (A.3)
with
Ao Tjy —Ti  Yjn —Yi
X = o%- , A= Ijz__mi yb._yi and
1 . .
Dy Tjn = Ti Yjn —Yi
ozjl — QO
b _ Oéjz — Oy
Ay —

where N is the number of neighboring cells. Thus, finding
the minimum of (A.2) consists in finding the minimum of
the function f(X) = ||AX —b||%. Its gradient is zero when
AX =b.

Appendix B. Design of the limiter

In this appendix, the main lines used to obtain the
limiter from the inequalities on the local monotonicity pre-
serving principle are detailed.

First, the monotonicity principle is derived. To satisfy
the monotonicity principle, the reconstruction of «; need
to hold between minc,«(as,a;) and max;e, ) (as, a;)
where &; is the average value between a; and o; on their
common face. It is such that

O mi 90y . (B.1)
e = xall Il — %]
Thus,
q; = vt (B.2)
W + wj
with w; = ||Xjk- — Xi||71.
Lemma 1
Let 65 be the extrapolation of a; on I';; such that
&ij = Q4 -+ QZSZ'AOZZ'J', (B3)
where ¢; is the gradient limiter, and
Aay; = 5 (ap — @) + (1= K)Vai(xs —x,).  (BA)

The reconstruction (B.3) and its symmetrical preserve the
monotonicity of the solution i.e.

Vj S U(i), Oénin <aq;* qbiAai,j < ainax. (B5)
where a1t = mine, (i (s, @), ™ = max;e, ;) (i, @;),

the limiter ¢; reads

. [ — Qi oM )
mm( Ao Ao if Ao j # 0,

¢i =
0 otherwise,
(B.6)
with A ™= max;c, )| Ay j|.

Proof. From B.5, we have Vj € v(i)

min max
o < o+ ¢iAa; <ot
min max
(% < o= il <o
which gives
min max
o —a; < iAoy < o™ -y,
max min
Q; — Oy S gbiAai,j S Q; — oy .

Then, two cases should be distinguished
o if Aozi’j > 0 then

g s
Aai)] Aai,j .
o — ot oy — ot
Qg Qi j



o if Aa; ; <0 then

max min

a; — @y a; — o
Jn%lai,ﬂ ' Lﬁf‘i’j' ’

OLZ- — Q4 < (]51 S Oél- — Oy )
|Aci; |Aay ;]

Because ¢; has to be positive, the left inequalities are al-
ways true. The right inequalities have to be true Vj € v(i)
so the minimum value is chosen. The limiter thus reads

min

o — oy oy — oy
min ( L L= L ) if Ao ; <0,
Aai,j AO&Z‘J
¢z — min ) o — Oé%nin a;’nax — o )
icv(i) | min , if Aa; ; >0,
e Al Aag]
0 otherwise,
(B.7)
which is equivalent to (B.6). O

The constraint ¢; < 1 must be added in order to en-
sure the reconstruction to be exact for linear solution on
admissible mesh. The final expression of limiter is thus

. amin
(o7} oy

min <1, Ao ) if Ao ; # 0,
0 otherwise,
(B.8)
Secondly, if the limiter must be compressive, the only
condition that need to be satisfy is the maximum principle

« — Q4
|Aai|max

mazx
3

b

Vj, min (ay, ) < & < max (o, ;). B.9
J jEU(i)( j) J jEU(z’)( J) (B.9)
The limiter is thus
o — i gmar _ o
. % i % it A y O,
N G e L
0 otherwise,
(B.10)
with o™ = minje, ;) (s, o) and @ = max;je, ) (o, ;).

The 8 parameter is added to control the compressive prop-
erty of the limiter. For the volume fraction which is theo-
retically piecewise constant, preservation of the maximum
principle is the only desired property. It is not necessary
to preserve the linearity of the solution so f > 1 can be
employed.

Appendix C. Truncation error of implicit acoustic
time-schemes

In this appendix, the calculation of the truncation error
of both implicit time-scheme used for the acoustic step
(2.10) is detailed.

Lemma 2
The truncation error of the implicit time-scheme (2.13)
that reads

Vn+1 _yn

_ _qn . n+1
G = UV-GVTY,

(C.1)
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is given by

a2V v aG v L O(AR), (C.2)

while the truncation error of the modified Crank-Nicolson
time-scheme (3.15) that reads

VnJrl -v" 1 n n n+1
T = 5 (T GV 4 VGV,
(C.3)
s given by
2 .

Proof. The truncation error of the first implicit time-scheme
scheme is

V(t+At)— V(1)
At

oV (t) + %aEV(t) +9()V -GV (t)

+ALV - (O, G(V (1)) + O(A?),
AU atG(V(t)):| + O(AF).

2
(C.5)
The truncation error of the modified Crank-Nicolson
scheme is

+I9()V - G(V (t+ At)),

At

V(t+ At) - V(1)
At
Jr%lg(t) (V-G(V(t+At) +V-GV({1)),

oV () + %BEV(t) +I9()V-G(V(t)

+%V (0 G(V (1)) + O(At?),
% [0}V (1) +9(t)V - 0,G(V (1))] + O(AL?).
(C.6)
O

From the truncation errors calculated earlier, one can
see that the new implicit scheme, called the modified Crank-
Nicolson scheme, produces a smaller error than the first
implicit scheme. We then expect to achieve more accurate
numerical results with the second scheme.
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