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ABSTRACT: As the most abundant material of rocky planets,
high-pressure polymorphs of iron- and aluminum-bearing
magnesium silicates have long been sought by both observations
and experiments. Meanwhile, it was recently revealed that iron
oxides form (FeO)m(Fe2O3)n homologous series above ∼10 GPa
according to laboratory high-pressure experiments. Here, we report
a new high-pressure iron-magnesium silicate, recently approved by
the International Mineralogical Association as a new mineral (No.
2020-086) and named elgoresyite, in a shock-induced melt vein of
the Suizhou L6 chondrite with a chemistry of (Mg,Fe)5Si2O9. The
crystal structure of this new silicate is the same as the iron oxide
Fe7O9, strongly suggesting that silicates also form ((Mg,Fe)-
O)m + n(SiO2)n series that are isostructural to iron oxides via
(Mg2+,Fe2+) + Si4+ = 2Fe3+ substitution. To test this hypothesis, the phase relationships of the silicates and iron oxides should be
further investigated at higher temperature conditions. Newly found iron-magnesium silicate is a potential constituent mineral in
rocky planets with relatively high MgO + FeO content.

KEYWORDS: interior of the Earth and planets, iron oxide, silicate, high-pressure and high-temperature, meteorite

■ INTRODUCTION

According to the current state-of-the-art knowledge, more than
half of the Earth by volume is made of iron- and aluminum-
bearing magnesium silicates. As the dominant constituent
materials, the stability of these compounds is fundamental to
understanding the structure and dynamics of Earth and rocky
planets, such as Mercury, Venus, and Mars. The seismic
discontinuities observed in Earth’s deep mantle can be
explained by phase transitions and chemical transformations
of the magnesium silicates to denser form.1−4 Changes in
phase and chemical composition are expected to have a strong
effect on mantle convection and the thermal history of Earth.5,6

The types of mantle convection are likely different between
rocky planets, partly because of variations in their bulk
chemistry and resultant constituent magnesium-rich silicates.
For instance, the most abundant mineral in Earth, MgSiO3-rich
bridgmanite,7 may not be stable in the Martian mantle because
of the low internal pressure. It is suggested that the types of
convection largely vary depending on the absence or presence
of a bridgmanite layer inside Mars.8 This may lead to different
thermal histories between Earth and Mars. Likewise, the
chemical evolution of the rocky planets has been strongly
controlled by the melting phase relationships of magnesium
silicate.9−11 Freezing of Earth’s magma ocean has possibly
generated rocks enriched in bridgmanite, which can be a

geochemical reservoir of different elements due to its high
viscosity.12

Although planetary interiors are mostly under high-pressure
conditions, high-pressure polymorphs of magnesium silicates
have been rarely found in natural rock samples due to
retrograde reactions to low-pressure phases during their ascent
to the surface.13,14 Instead, the stability of iron-bearing
magnesium silicates has long been understood based on
experiments, seismology, and observations of shocked
meteorites. According to laboratory high-pressure experiments,
(Mg,Fe)2SiO4 olivine undergoes a phase transition to
wadsleyite and ringwoodite at ∼14 and ∼18 GPa, respec-
tively.4 The crystal structure of ringwoodite is a spinel-type
with four- and sixfold coordinated cation sites for Si4+ and M2+

(M2+ = Mg2+ + Fe2+), respectively. Ringwoodite breaks down
to (Mg,Fe)SiO3 bridgmanite and (Mg,Fe)O ferropericlase at
∼24 GPa.1,2 Bridgmanite has six- and eightfold cation sites for
SiO6 and MO8. It is known that bridgmanite further transforms
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into post-perovskite at ∼120 GPa.3 Seismic discontinuities
observed at 410 and 660 km depths are commonly accepted to
be related to phase transitions from olivine to wadsleyite and
from ringwoodite to bridgmanite + ferropericlase, respectively.
The high-pressure polymorphs are consequently found in
naturally occurring shock-induced melt veins of meteorites,
such as ringwoodite,15 bridgmanite,7 and hiroseite.16 Minerals
trapped in diamonds are claimed to have been delivered from
the deep mantle based on the bulk chemistry of their
inclusions.17,18 However, recognizing them as high-pressure
phases is difficult as their original crystal structures are rarely
preserved. Indeed, only four X-ray diffraction spots from a
high-pressure magnesium silicate crystal (ringwoodite) have
ever been observed from a diamond inclusion.14 Recently,
many iron oxide phases have been discovered experimentally in
the Fe−O system at high-pressure conditions above 5−10 GPa
with novel crystal structures and stoichiometries.19−23 Iron
oxides form a (FeO)m(Fe2O3)n homologous series24 that
includes, for example, Fe4O5 (m = 2, n = 1), Fe5O6 (m = 3, n =
1), Fe5O7 (m = 1, n = 2), and Fe7O9 (m = 3, n = 2). The
homologous series is based on crystallographic building blocks
of two types of FeO6 polyhedra: octahedra and prisms.23

Possible relics of these new high-pressure phases have been
reported in diamond inclusions with various redox con-
ditions.24,25

Here, we report a new naturally occurring high-pressure
iron-magnesium silicate in a shock-induced melt vein of the
Suizhou meteorite with (Mg,Fe)5Si2O9 model stoichiometry. It
has been accepted as a new mineral by the Commission on
New Minerals and Nomenclature Classification of the
International Mineralogical Association (No. 2020-086) and
named elgoresyite after Ahmed El Goresy, a highly regarded
mineralogist working on planetary materials. The holotype
material containing elgoresyite is deposited in the collections
of the Museo di Storia Naturale, Universita ̀ degli Studi di
Firenze, Firenze, Italy, catalogue number 3238/I.
Elgoresyite exhibits the same crystal structure as the high-

pressure iron oxide Fe7O9 stable at 24−26 GPa and 1873−
1973 K.22 This new iron-magnesium silicate may be a
constituent mineral of iron-rich rocky planetary interiors that
have relatively high MgO/(MgO + SiO2) ratios. Additionally,
this finding strongly suggests that iron-bearing magnesium
silicates could adopt crystal structures in a homologous series
analogous to high-pressure iron oxides. Moreover, as a
potential liquidus phase of deep magmas, new iron-magnesium
silicates would control the chemical evolution of rocky
planetary interiors.

■ METHODS AND RESULTS
Occurrence. Elgoresyite was detected as a unique grain in a

shock-induced melt vein of the Suizhou meteorite. Suizhou L6
chondrite is a shocked meteorite with the occurrence of thin
shock-induced melt veins less than 300 μm in thickness. The
shock-induced melt veins contain abundant high-pressure
polymorphs including ringwoodite, majorite, majorite-pyrope
garnet, akimotoite, magnesiowüstite, lingunite, tuite, xieite, a
tetragonal form of ringwoodite, hemleyite, asimowite, and
hiroseite.16,26−36 During a crystallographic study of the
different high-pressure phases present in the shock-induced
melt veins of the Suizhou meteorite, several ringwoodite grains
were investigated by single-crystal X-ray diffraction. During this
search, most of the grains turned out to be ringwoodite with
the canonical cubic Fd-3m spinel structure. However, one of

them (indicated as SPD in Figure 1) turned out to be a
tetragonal variant of ringwoodite and it was described in detail

by Bindi et al.27 Furthermore, when the ringwoodite grain
(indicated as RGW in the bottom panel of Figure 1) was
checked, it was found to be composed of two phases with
almost identical chemical composition: one is ringwoodite and
the other turned out to be elgoresyite (indicated as ELG in
Figure 1). The two phases are almost indistinguishable in the
SEM-back-scattered electron image shown in Figure 1 as they
are almost identical from the chemical point of view. Indeed, if
the chemical data of elgoresyite are normalized on the basis of
four oxygen atoms, we obtain (Mg1.48Fe0.70)Σ = 2.18Si0.85O4,
which is close to the Suizhou ringwoodite stoichiometry, i.e.,
(Mg1.58Fe0.42)SiO4. This could imply that elgoresyite could be
much more common than thought in shock-induced melt veins
of meteorites due to misidentification as ringwoodite.

Appearance and Properties. Elgoresyite occurs as a very
rare, subhedral μm-sized crystal closely associated with
ringwoodite in a MgSiO3 glass (Figure 1). The fragment
used for the X-ray investigation (dotted red line in the bottom
panel of Figure 1), is about 6 × 8 × 10 μm3 in size. Color,
luster, streak, hardness, tenacity, cleavage, fracture, and density
could not be determined because of the small grain size, and
optical properties could also not be determined because of the
small grain size. The mean refractive index (n = Kc * D + 1) is

Figure 1. Scanning electron microscopy image of the newly found
iron-magnesium silicate. Top: SEM-BSE panoramic image of the
section containing new magnesium silicate (OL: olivine). The dashed
lines indicate the walls of the shock-induced melt vein. The red
rectangular area indicates the region enlarged in the bottom BSE
image. Bottom: enlarged area depicted in the top panel; elgoresyite
(ELG) [(Mg,Fe)5Si2O9], indicated with the dotted red line, is
associated with ringwoodite (RGW), olivine (OL), tetragonal
ringwoodite (SPD), taenite (TAE), and MgSiO3-rich glass.

ACS Earth and Space Chemistry http://pubs.acs.org/journal/aesccq Article

https://doi.org/10.1021/acsearthspacechem.1c00157
ACS Earth Space Chem. 2021, 5, 2124−2130

2125

https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00157?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00157?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00157?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00157?fig=fig1&ref=pdf
http://pubs.acs.org/journal/aesccq?ref=pdf
https://doi.org/10.1021/acsearthspacechem.1c00157?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


1.95 on the basis of the Gladstone−Dale relationship. Density
(calc) is 4.315 g·cm−3 based on the empirical formula and
single-crystal XRD data.
Chemical Data. A preliminary chemical analysis using EDS

performed on the crystal fragment used for the structural study
did not indicate the presence of elements (Z > 9) other than
Mg, Fe, Si, and minor Na, Al, and Ca. Analyses (4) were then
carried out using a JEOL 8200 microprobe (WDS mode, 15
kV, 10 nA, 1 μm beam size, counting times 20 s for peak and
10 s for background). For the WDS analyses the Kα lines for
all the elements were used. The crystal fragment was found to
be homogeneous within analytical error. Analytical data are
given in Supporting Information Table ST1. The empirical
formula (based on nine oxygen atoms pf u) is
(Mg3.38Si1.95Fe

2+
1.60Al0.05Na0.03Ca0.02)Σ = 7.03O9. The simplified

and ideal chemical formula is (Mg,Fe,Si)7O9.
Crystallography. Single-crystal X-ray studies were carried

out using a Bruker D8 Venture diffractometer equipped with a
Photon II CCD detector, with graphite-monochromatized
MoKα radiation (λ = 0.71073 Å), with 30 s exposure time per
frame; the detector-to-sample distance was 6 cm. The crystal
system is monoclinic, and the space group is C2/m (#12). The
unit cell parameters are: a = 9.397(2) Å, b = 2.763(1) Å, c =
11.088(3) Å, β = 94.25(2)°, V =287.10(14) Å3, and Z = 2. X-
ray powder diffraction data (Supporting Information Table
ST2) were obtained with a Bruker D8 Venture diffractometer
equipped with a Photon III CCD detector and using copper
radiation (CuKα, λ = 1.54138 Å) with 600 s of exposure; the
detector-to-sample distance was 7 cm. The program APEX337

was used to convert the observed diffraction rings to a
conventional powder diffraction pattern. The least-squares
refinement gave the following values; crystal system:
monoclinic, space group: C2/m (#12), a = 9.3946(4) Å, b =
2.7640(1) Å, c = 11.0804(5) Å, β = 94.233(4)°, V = 286.94(1)
Å3, and Z = 2.
Crystal Structure. The small elgoresyite fragment was

extracted from the polished section under a reflected light
microscope and mounted on a 5 μm diameter carbon fiber,
which was, in turn, attached to a glass rod. Single-crystal X-ray
diffraction intensity data of the sample were integrated and
corrected for standard Lorentz polarization factors and
absorption with the APEX3 software.37 A total of 732 unique
reflections were collected. Given the similarity in the unit cell
values and in the space groups, the structure was refined
starting from the atomic coordinates reported for synthetic
Fe7O9

22 using the program SHELXL-97.38 The site occupation
factor (s.o.f.) at the cation sites was allowed to vary (Fe vs Mg
for the M sites) using scattering curves for neutral atoms taken
from the International Tables for Crystallography.39 The site
occupancy factors (s.o.f.) are given in Supporting Information
Table ST3. At this point, taking into account: (i) the observed
bond distances (Supporting Information Table ST4), (ii) the
bond valence sums, and (iii) the s.o.f. occurring at the M sites
(Supporting Information Table ST5), we proposed the
following site populations: M1 = Mg0.45Si0.40Fe0.15; M2 =
Mg0.43Si0.34Fe0.23; M3 = Mg0.55Si0.36Fe0.09; and M4 =
Mg0.50Fe0.40Si0.10. Such populations were then fixed at the M
sites in the subsequent refinement cycles. We attempted to
refine an anisotropic model of the structure, but several ADPs
were nonpositive definite. For these reasons, here, we present
an isotropic model of the structure. R = 0.0309 for 230
reflections with Fo > 4σ(Fo). Crystallographic data (CCDC
2050890) can be obtained free of charge from the Cambridge

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.
The crystal structure of the elgoresyite grain is shown in

Figure 2. It is isostructural with the high-pressure iron oxide

Fe7O9
22 (Figure 2) with four different crystallographic sites for

cations. Three are octahedrally coordinated and connected in a
3D network (M1, M2, and M3), while the fourth, M4, has a
trigonal-prismatic geometry with an additional long bond with
O2 (Supporting Information Table ST4). As already pointed
out by Sinmyo et al.,22 M4 is the bigger site and hosts the
largest cations (i.e., Fe2+ and probably also the minor amounts
of Na and Ca). The unit cell parameters of the new phase are
influenced by the incorporation of Si into the structure. We
observed a general reduction of the unit cell from pure [a =
9.696(2) Å, b = 2.8947(6) Å, c = 11.428(3) Å, β = 101.69(2)°,
and V = 314.10(12) Å3] to Mg-doped Fe7O9 [a = 9.6901(12)
Å, b = 2.8943(5) Å, c = 11.4397(15) Å, β = 102.045(14)°, and
V = 313.77(8) Å3].22 The assignment of Si substituting for
Mg/Fe at the M sites is required both to account for the
electron density at that site and to justify the decrease of the
mean bond distances relative to pure and Mg-doped Fe7O9.

22

The Mg/Fe-for-Si substitution has different effects on the
distortion of the M sites. In particular, we observed an increase
in the bond-angle variance σ240 of theM1 site from 9.69 in Mg-
doped Fe7O9,

22 through 11.38 in pure Fe7O9
22 to 25.30 in the

new phase. In contrast, we observed a decrease in σ2 of the M2
site from 76.79 in pure Fe7O9 through 66.57 in Mg-doped
Fe7O9 to 56.56 in the new phase.22 The values of the σ2 bond-
angle variance for M3 and M4 are similar in the three
structures.

Figure 2. Crystal structure of elgoresyite. Large circles are atomic
positions for Mg, Si, and Fe. Red small circles indicate oxygen atoms.
MO6 polyhedra for M1, M2, M3, and M4 sites are shown by
transparent blocks with different colors. The unit cell and the
orientation of the structure are outlined.
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■ DISCUSSION
The striking similarity of crystal structures of Fe7O9

22 and
(Mg,Fe)5Si2O9 can be explained by the M2+ + Si4+ = 2Fe3+

coupled substitution. The ionic radii of the sixfold coordinated
cations are 0.72 and 0.40 Å for Mg2+ and Si4+, respectively, and
their mean value of 0.56 Å is comparable with 0.645 (high-
spin) or 0.55 Å (low-spin) of Fe3+.41 Mg2+, Fe2+, and Si4+

occupy M1−M4 sites of the (Mg,Fe)5Si2O9 structure in a less
ordered manner compared to Si-free Fe7O9. This is likely
because the crystal structure of (Mg,Fe)5Si2O9 is based solely
on octahedra with similar size (Figure 2). In contrast, known
high-pressure polymorphs of magnesium silicates contain
distinguishable sites for Si4+ and M2+. For example, the
respective coordination numbers are 4 and 6 for SiO4 and MO6
in ringwoodite and 6 and 8 for SiO6 and MO8 in bridgmanite.
Cations in the newly found iron-magnesium silicate (elgor-
esyite) are in coordination geometries of SiO6 + MO6, which
are in between SiO4 + MO6 for ringwoodite and SiO6 + MgO8
for bridgmanite. This suggests that (Mg,Fe)5Si2O9 is an
intermediate phase at pressures characteristic for the existence
of ringwoodite and bridgmanite. Nevertheless, since the
stability is not well known yet, we cannot rule out the
possibility that (Mg,Fe)5Si2O9 is a metastable phase. It should
be studied further by experiments and theory.
By analogy with the (FeO)m(Fe2O3)n series, magnesium

silicates may also form homologous series with a chemistry of
(MgO)m + n(SiO2)n or Mgm + nSinOm + 3n via the Mg2+ + Si4+ =
2Fe3+ substitution (Figure 3). We can easily propose solid
solutions like Fe4O5-Mg3SiO5, Fe5O6-Mg4SiO6, Fe9O11-
Mg7Si2O11, Fe5O7-Mg3Si2O7, and so on. Indeed, it was
shown that a high-pressure polymorph of Fe2O3 (ζ-phase)
exhibits a perovskite-type crystal structure very similar to that
of MgSiO3 bridgmanite.23 This is likely a result of Mg2+ + Si4+

= 2Fe3+ substitution in Fe2O3-MgSiO3 at high pressure.

Bridgmanite and Fe2O3 (ζ-phase) are stable above 24 and 50
GPa, respectively. Moreover, Fe2O3 with the CaIrO3-type
crystal structure (η-phase) and MgSiO3 post-perovskite also
possess the same structural type (orthorhombic space group
Cmcm).3,23,42 Post-perovskite magnesium silicate and Fe2O3
(η-phase) are stable above 120 and 60 GPa, respectively. Mg-
sites in bridgmanite and the post-perovskite phase correspond
to the Fe3+O6 trigonal prism sites in the crystal structure of ζ-
and η-Fe2O3.

23 Small tilts and distortions of polyhedra in the
high-pressure homologous iron oxides may lead to an increase
in the coordination number from FeO6 trigonal prism sites to
MO8 sites in iron-magnesium silicates. Indeed, the distortion
factor is significantly larger in (Mg,Fe)5Si2O9 compared to
Fe7O9 (see Methods and Results). It is reported that NaMnF3,
an analog of MgSiO3 perovskite, decomposes into Na3Mn2F7 +
MnF2 at 10 GPa and 1273 K instead of undergoing a phase
transition to post-perovskite,43 while the crystal structure of
Na3Mn2F7 has not yet been determined. This suggests that
Mg3Si2O7 may be stable at certain high-pressure and high-
temperature conditions. Mg3SiO5 with the Cm space group was
reported to be unstable at high pressure based on theoretical
calculations to seek candidates for post-post-perovskite phase
transitions.44 Instead, Mg3SiO5 is possibly stable with a similar
crystal structure to Fe4O5 with the Cmcm space group.19

Previous studies reported that the Fe5O6 phase was coexisting
with silicate phases (ringwoodite or wadsleyite) without
containing any silicon up to 1873 K.45,46 However, the
experimental temperature was significantly lower than the
liquidus temperature at which likely (Mg, Fe)5Si2O9 was
formed. As a foundation for further discussion, it is required to
study the stability of the phases at higher temperature
conditions in systems such as Fe4O5-Mg3SiO5, Fe5O6-
Mg4SiO6, Fe7O9-Mg5Si2O9, and so on.
Since Mg5Si2O9 is more enriched in MgO than Mg2SiO4,

new magnesium silicate is unlikely to play a significant role in
the bulk part of Earth’s mantle, whose chemistry is between
Mg2SiO4 and MgSiO3. Nevertheless, elgoresyite could play an
important role in the dynamics of rocky planetary interiors
with higher (Mg,Fe)O content than Earth’s mantle.
The observed shock-induced melt vein likely experienced

high-pressure conditions around ∼23 GPa since it contains
ringwoodite. Assuming that the surrounding silicate glass was
derived from melt, temperatures may have exceeded ∼2000 K
according to the eutectic melting temperature.9 Coexisting
MgSiO3-rich glass suggests that the new phase is potentially a
liquidus phase of silicate melt at high pressure. Mg2SiO4 in the
host rock could have been incongruently melted to form the
MgSiO3-rich melt and the new iron-magnesium silicate during
shock events. The presence of only Fe2+ in the new magnesium
silicate may be partly a consequence of melting, since Fe3+ is
more incompatible.47 Accordingly, elgoresyite could be first
crystallized from deep magmas, such as in a magma ocean,
redox-induced melt, or dehydration-induced melt.47−50 The
magma ocean would be enriched in (MgO + FeO) relative to
chondrite at later stages of freezing because of the
crystallization of bridgmanite-rich material.9 Elgoresyite could
therefore be crystallized from a magma ocean at a specific
depth and time. The newly discovered phase and the possible
homologous series of magnesium silicates could significantly
affect chemical evolution of the magma ocean, since the
density of the liquidus phase controls the fate of crystallized
solids during freezing of the magma ocean.10,48

Figure 3. High-pressure phase diagram of Mg-Fe-Si oxides. Tentative
subsolidus phase diagram in the (Mg2+ + Fe2+)O-SiO2-Fe

3+O1.5
ternary system showing potential homologous series of
(FeO)m(Fe2O3)n-(MgO)m + n(SiO2)n. Filled symbols are already
confirmed phases including Mg5Si2O9 by this study (red). Open
symbols are possible magnesium silicate series with the chemistry of
(MgO)m + n(SiO2)n. Lines are tie lines for the phases with the same
crystal structure. Solid lines are already confirmed pairs, and broken
lines are not reported yet. The green star and blue triangle correspond
to pyrolite and Martian mantle composition, respectively.
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Redox-induced melting of carbonaceous material may
generate a melt deeper than 250 km.49 While phase
relationships are more complicated in the carbon-bearing
system, carbonaceous magma is relatively enriched in (MgO +
FeO)/SiO2,

49 and accordingly, elgoresyite may be captured by
a diamond ascending by upwelling carbonaceous magma in the
mantle. Indeed, the pair MgO + Mg2SiO4 was found in
diamond inclusions from Kankan, Juina, and Panda.17 It may
represent relics of the new magnesium silicate Mg5Si2O9.
Although the chemistry of the Martian mantle is still

unclear,51 it is interesting to speculate on the possible presence
of elgoresyite in the red planet. On the one hand, the Mars
mantle has been estimated to contain more (MgO + FeO)
compared to Earth,52 has lower pressures and temperatures,
and thus elgoresyite, (Mg,Fe)5Si2O9, might be present. On the
other hand, according to ref 53 and the references therein, the
weight fraction of FeO in the Martian mantle is higher than
that in Earth’s mantle peridotite, while the (Mg + Fe)/Si molar
ratio is 1.3554 rather lower than that in Earth’s mantle
peridotite55 and pyrolite56 (Figure 3), indicating that the
formation of elgoresyite in the Martian mantle is unlikely.
While phase relationships of magnesium silicates have been

repeatedly studied by experiments around liquidus temper-
atures, phases are usually determined by chemical analysis
using an electron microscope and an electron microprobe.
Since chemical compositions of the new iron-magnesium
silicate are similar to ringwoodite, liquidus phases can be easily
misidentified. The stability of magnesium silicates should be
studied using methods that provide finer detail.
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