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ABSTRACT

Context. Neutron stars are surrounded by ultra-relativistic particles efficiently accelerated by ultra-strong electromagnetic fields.
These particles copiously emit high-energy photons through curvature, synchrotron and inverse Compton radiation. To date, however,
no numerical simulations have been able to handle such extreme regimes of very high Lorentz factors and magnetic field strengths
close to or even above the quantum critical limit of 4.4 × 109 T.
Aims. It is the purpose of this paper to study particle acceleration and radiation reaction damping in a rotating magnetic dipole with
realistic field strengths of 105 T–1010 T typical of millisecond and young pulsars and of magnetars.
Methods. To this end, we implemented an exact analytical particle pusher including radiation reaction in the reduced Landau–Lifshitz
approximation where the electromagnetic field is assumed constant in time and uniform in space during one time step integration. The
position update is performed using a velocity Verlet method. We extensively tested our algorithm against time independent background
electromagnetic fields like the electric drift in cross electric and magnetic fields and the magnetic drift and mirror motion in a dipole.
Finally, we apply it to realistic neutron star environments.
Results. We investigated particle acceleration and the impact of radiation reaction for electrons, protons, and iron nuclei inserted
around millisecond pulsars, young pulsars, and magnetars, in comparison to situations without radiation reaction. We found that the
maximum Lorentz factor depends on the particle species, but only weakly on the neutron star type. Electrons reach energies up to
γe ≈ 108−109, whereas protons reach energies up to γp ≈ 105−106 and iron up to γ ≈ 104−105. While protons and iron are not affected
by radiation reaction, electrons are drastically decelerated, reducing their maximum Lorentz factor by four orders of magnitude. We
also found that the radiation reaction limit trajectories agree quite well with the reduced Landau–Lifshitz approximation in almost all
cases.
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1. Introduction

Neutron stars are known to harbour ultra-strong magnetic fields
close to or even above the quantum critical limit of Bc ≈ 4.4 ×
109 T. The subclass of magnetars usually sustains field strengths
well above this value of Bc. These stars are therefore able to
accelerate leptons and hadrons to extremely relativistic regimes
of very high Lorentz factors γ ≈ 109. In such an extreme envi-
ronment, the radiation reaction is expected to drastically per-
turb their trajectory compared to the pure Lorentz force motion.
High-energy and very high-energy photons are produced and
sometimes detected on Earth by Cerenkov telescopes.

To date, however, a quantitatively accurate study of these
acceleration and radiation reaction mechanisms has failed due
to the inability of current numerical algorithms to handle
such strong fields. The problem is circumvented by artifi-
cially decreasing the magnetic field strength and other relevant
physical parameters like the Lorentz factor, and meanwhile
increasing the associated Larmor radius. Unfortunately, the
high non-linearity of the problem renders any extrapolation to
realistic fields risky. The only satisfactory results must come
from faithful simulations employing appropriate lengths and
timescales observed around neutron stars.

The combination of strong fields and large Lorentz fac-
tors leads naturally to strong radiation reaction damping of the

charged particle motion. These trajectories have been computed
in the past for test particles, for instance by Finkbeiner et al.
(1989) in the pulsar vacuum field. Finkbeiner et al. (1990) dis-
cussed the validity of the Lorentz–Dirac equation and the
Landau–Lifshitz approximation used in such computations.
Herold et al. (1985) integrated the equation of motion with the
radiation reaction in the ultra-relativistic regime, and showed
the difference between radiative damping and no damping for
an aligned rotator. They also gave an estimate of the maximum
Lorentz factor.

Exact analytical solutions of the Landau–Lifshitz equation
have been found for the arbitrary plane waves reported by Piazza
(2008) and Hadad et al. (2010). For constant and uniform elec-
tromagnetic fields, solutions have been known since the work
of Heintzmann & Schrüfer (1973). These are special solutions
found by removing the temporal and spatial derivatives from
the Landau–Lifshitz approximation. This simplified version is
sometimes called the reduced Landau–Lifshitz equation (LLR).
We use this approximation to advance in time the position and
velocity of charged particles.

Pushers based on exact analytical solutions have been imple-
mented by several authors. For instance Laue & Thielheim
(1986) evolved particles in an orthogonal magnetic dipole,
whereas Ferrari & Trussoni (1974) investigated particle motion
in a dipole field, neglecting the displacement current. Recently
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Pétri (2020) developed an algorithm to evolve particles in a
strong electromagnetic field. Tomczak & Pétri (2020) applied it
to a magnetic dipole associated with strongly magnetised rotat-
ing neutron stars. Gordon et al. (2017b,a) showed how to imple-
ment a fully covariant particle pusher and gave some hints that
the radiation reaction should be included. Later Gordon & Hafizi
(2021) developed a special unitary pusher for extreme fields
achieving computation costs comparable to those for the Boris
algorithm (Boris 1970).

In the ultra-relativistic regime, the radiation reaction almost
exactly balances the electric field acceleration leading to a parti-
cle velocity only depending on the local electromagnetic field
configuration. As shown by Mestel et al. (1985), the Lorentz
factor can then be deduced from the trajectory curvature.
Kelner et al. (2015) carefully studied the synchro-curvature radi-
ation of ultra-relativistic particles evolving in a strongly curved
electromagnetic field. The pitch angle plays a central role in con-
trolling the synchrotron versus curvature regime.

Several different but not equivalent approaches have been
designed to include the radiation reaction in a particle pusher for
ultra-strong electromagnetic fields. Vranic et al. (2016) offers
a comprehensive study of the most widely used techniques to
implement the radiation reaction force in standard Lorentz force
pushers. However, the numerical algorithms that explicitly solve
the Landau–Lifshitz equation have some issues in satisfying
conservation laws for long runs. Nevertheless, time-symmetric
implicit methods seem to give better results (Elkina et al.
2014). Interestingly, exact analytical solutions of the reduced
Landau–Lifshitz equation were found several decades ago by
Heintzmann & Schrüfer (1973) for a constant electromagnetic
field. These expressions are used by Li et al. (2021) for imple-
mentation in a particle-in-cell (PIC) code following a projec-
tion onto an electric and a magnetic subspace (Boghosian 1987).
Pétri (2021) also applied this exact solution to the acceleration
of particles in a low-frequency strong amplitude electromagnetic
plane wave such as that launched by a strongly magnetised rotat-
ing neutron star.

In this paper we study particle acceleration in a realistic
neutron star environment, using the exact scaling between the
neutron star spin and the cyclotron frequency. In Sect. 2 we
recall the equation of motion as derived by Landau–Lifshitz and
its exact analytical solution, the appropriate normalisation, and
the algorithm. Section 3 presents extensive tests of our algo-
rithm in static fields showing its second order in time conver-
gence. Section 4 describes an astrophysical application to neu-
tron star electrodynamics and the upper limit of particle acceler-
ation efficiency. Section 5 compares the radiation reaction limit
regime to the exact motion. Finally, conclusions are drawn in
Sect. 6.

2. Equation of motion

The self-force produced by an accelerated charge is usu-
ally described by the Lorentz-Abraham-Dirac (LAD) equation
(Abraham 1902, 1904; Lorentz 1916; Dirac 1938). Unfortu-
nately, this self-force leads to runaway solutions because the
associated equation of motion is of third order in time. Sev-
eral remedies have been found to remove these unaccept-
able solutions (see e.g., Rohrlich 2007 for discussions). One
approach often quoted in the literature is the Landau–Lifshitz
formulation, a perturbative expansion of the LAD equation
(Landau & Lifchitz 1989). In the remainder of this paper we
adopt this point of view.

2.1. Landau–Lifshitz approximation

In order to eliminate the LAD flaw, Landau & Lifchitz (1989)
derived an approximation valid in most configurations found in
astrophysical applications. This new equation of motion is free
of runaway instabilities and is largely employed in the plasma
community. Their formulation leads to the equation of motion

dui

dτ
=

q
m

F ik uk +
q τm

m
gi, (1a)

gi = ∂`F ik uk u` +
q
m

(
F ik Fk` u` + (F`m um) (F`k uk)

ui

c2

)
, (1b)

where q and m are the particle charge and rest mass, ui its four-
velocity, τ its proper time, F ik the electromagnetic or Faraday
tensor, c the speed of light, and τm the light crossing time across
the particle classical radius rm (within a factor unity)

τm =
q2

6 π ε0 m c3 . (2)

It is advantageous to express it in terms of the electron classical
radius re crossing time amounting to

τe =
2
3

re

c
= 6.26 × 10−24 s. (3)

The typical timescale for the radiation reaction is therefore

τm =
2
3

rm

c
=

(
q2/e2

m/me

)
τe. (4)

For instance, for protons this time is three orders of magnitude
less than for leptons:

τp =
me

mp
τe = 3.41 × 10−27 s. (5)

Interestingly, exact analytical solutions have been computed for
Eq. (1) in some special configurations of electromagnetic fields,
time dependent or time independent. We succinctly recall the
useful results required for the present work.

2.2. Exact analytical solutions

An exact solution for LLR is based on the eigensystem expan-
sion of the electromagnetic tensor F i

k. Earlier results were given
by Heintzmann & Schrüfer (1973). Here we follow the notation
of Li et al. (2021). Starting from the Lorentz force written as

du
dτ

= G u, (6)

where the electromagnetic tensor F has been replaced by G =
q F/m to absorb the charge over mass ratio, we decompose the
four-velocity u into a magnetic and an electric part, denoted
respectively as uB and uE , such that u = uE + uB. The real eigen-
values of Gi

k are ±λE , whereas the imaginary eigenvalues are
±i λB, because λE and λB are real and positive numbers, with
dimensions similar to pulsation thus in 1/s. Then each vector uE
and uB remains in an eigensubspace satisfying

G uE = ± λE uE , (7a)
G uB = ± i λB uB. (7b)
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The vector components uE and uB are obtained by defining the
projection operators onto the subspaces E and B by (Boghosian
1987)

P =
λ2

B I + G2

λ2
E + λ2

B

, (8a)

Q =
λ2

E I −G2

λ2
E + λ2

B

, (8b)

where I is the identity matrix. These operators are well defined
only if λ2

E + λ2
B , 0. If both electromagnetic invariants vanish,

we retrieve a null-like field, which requires a different treatment,
as given for instance by Pétri (2021). In the non null-like field
we get

uE = P u, (9a)
uB = Q u. (9b)

The equation of motion decouples into two parts given by

d2uE

dτ2 = +λ2
E uE , (10a)

d2uB

dτ2 = −λ2
B uB. (10b)

The exact analytical solutions with initial conditions u0
E = P u0

and u0
B = Q u0 are

uE(τ) = u0
E cosh(λE τ) + G u0

E
sinh(λE τ)

λE
, (11a)

uB(τ) = u0
B cos(λB τ) + G u0

B
sin(λB τ)

λB
. (11b)

Adding the radiation reaction in the LLR limit leads to the exact
expression

uE(τ)
c

=
u0

E cosh(λE τ) + G u0
E sinh(λE τ)/λE√

|u0
E |

2 + |u0
B|

2 e−2α τ
, (12a)

uB(τ)
c

=
u0

B cos(λB τ) + G u0
B sin(λB τ)/λB√

|u0
B|

2 + |u0
E |

2 e2α τ
, (12b)

with α = τm (λ2
E +λ2

B). These expressions are similar to the origi-
nal formulas found by Heintzmann & Schrüfer (1973). The radi-
ation reaction effect becomes perceptible after a time τ ≈ 1/α.
The component uE is associated with the accelerating motion
induced by the electric field, whereas the uB component is related
to the gyro-motion in the magnetic field. When α vanishes, the
radiation reaction effect disappears. The denominators in uE and
uB reduce to unity and the solutions to the Lorentz force four-
velocity components are recovered.

2.3. Normalisation

The relevant physical parameters determining the particle tra-
jectory is decided through normalisation procedures that imply
the following useful quantities in order to write the equation of
motion without dimensions. These primary fundamental vari-
ables are the speed of light c, a typical frequency ω involved in
the problem, the particle electric charge q, and the particle rest
mass m.

From these quantities we derive a typical timescale and
length scale as well as electromagnetic field strengths such that

the length scale L0 = c/ω, the timescale T0 = 1/ω, the magnetic
field strength B0 = mω/q, and the electric field strength E0 =
c B0. Normalised quantities will be overlaid with a tilde symbol.

The two important parameters defining the family of solu-
tions are the field strength parameters aB and aE and the radiation
reaction efficiency ωτm according to the following definitions:

aB =
B
B0

=
ωB

ω
, (13a)

aE =
E
E0

=
ωE

ω
, (13b)

b = ωτm. (13c)

Introducing the weighted and normalised electromagnetic field
tensor by F̃ ik = q F ik/mω and a normalised time τ̃ = ωτ, the
Landau-Lifshitz Eq. (1) is rewritten without dimensions as

dũi

dτ̃
= F̃ ik ũk + b g̃i, (14a)

g̃i = ∂̃`F̃ ik ũk ũ` +
(
F̃ ik F̃k` ũ` + (F̃`m ũm) (F̃`k ũk) ũi

)
. (14b)

The normalised and reduced Landau–Lifshitz equation reads

dũi

dτ̃
= F̃ ik ũk + b

(
F̃ ik F̃k` ũ` + (F̃`m ũm) (F̃`k ũk) ũi

)
. (15)

The particle four-velocity depends only on the strength parame-
ters aB and aE and on the radiation reaction strength parameter b.
Therefore, it is unnecessary to compute trajectories for different
particles possessing the same numbers aB, aE , b. The only dif-
ferences are reflected in the physical timescale and space scales
involved.

Generally speaking, we admit that the radiation reaction is
negligible whenever the timescale of damping, given by 1/α,
becomes larger than the characteristic timescale of our system,
which is 1/ω. Expressed in quantities without dimension, we get
τm ω (a2

E +a2
B) = b (a2

E +a2
B) � 1. Therefore, the relevant param-

eter to quantify radiation reaction is not b, but the combination
of b and the strength parameters aB and aE . Specific examples
are given in the test Sect. 3.

2.4. Algorithm

For the remainder of this paper we use a Cartesian coordinate
system (x, y, z) and the corresponding Cartesian orthonormal
basis (ex, ey, ez).

The velocity vector is integrated analytically following the
previous discussion. Unfortunately, there is no simple analytical
expression for the position vector, although some formulas can
be found involving hypergeometric 2F1 functions with complex
arguments (see Sect. 3 for an example in a constant magnetic
field). The update in particle position is therefore performed by
the velocity-Verlet algorithm:

un+1/2 = L(∆τ/2,un, E(xn), B(xn)), (16a)

xn+1 = xn + un+1/2 ∆τ, (16b)

un+1 = L(∆τ/2,un+1/2, E(xn+1), B(xn+1)). (16c)

The superscript n refers to the proper time τn = n ∆τ, and the
same for the half-integer superscript τn+1/2 = (n + 1/2) ∆τ. We
found this method more robust than the full analytical update in
velocity and position. For particles trapped in a dipole magnetic
field, undergoing bouncing motion with banana orbits typical of
magnetic confinement devices for thermonuclear fusion reactors
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or in the Earth’s magnetosphere known as the Van Allen belt,
the stability and convergence properties of the velocity-Verlet
algorithm is superior.

Before using our code to compute particle acceleration and
radiation in the ultra-strong electromagnetic field of a dipole
rotating in a vacuum, we test it against the exact analytical solu-
tions in simple geometric configurations, but with very high
Lorentz factors and/or very high fields. The results will also be
compared to the radiation reaction limit regime, which is much
less time consuming from a computational point of view, but also
less accurate in some configurations (Sect. 5).

2.5. Radiation reaction limit

In ultra-strong electromagnetic fields, such as those present
around neutron stars, radiation reaction plays an important role.
In the asymptotic limit of ultra-relativistic motions, assuming
that the radiation damping exactly balances the electric field
acceleration, there is a simple analytical expression for the par-
ticle velocity depending only on the local values of the fields
(Mestel et al. 1985). This velocity is decomposed into an elec-
tric drift motion, interpreted as the velocity required to switch to
a frame where the electric and magnetic fields are aligned, and a
motion along this common direction in this new frame. Denoting
the velocity vector for positive charges as u+ and that for negative
charges as u−, we find

u± =
E ∧ B ± (E0 E/c + c B0 B)

E2
0/c

2 + B2
, (17)

which corresponds to particles moving exactly at the speed of
light. Here E0 and B0 are the strength of the electric and mag-
netic field in the frame where they are aligned. They are obtained
from the electromagnetic invariants I1 = E2−c2 B2 = E2

0−c2 B2
0

and I2 = c E · B = c E0 B0. Imposing E0 ≥ 0 we find

E2
0 =

1
2

(I1 +

√
I2

1 + 4I2
2), (18a)

c B0 = sign(I2)
√

E2
0 − I1. (18b)

We compare the simulation results obtained from this simple
prescription with the exact integration of the equation of motion
according to LLR.

Applying this radiation reaction limit to neutron star mag-
netospheres, the velocity in Eq. (17) can be slightly simplified
because of the presence of a plasma, the parallel electric field
component (with respect to the magnetic field direction) being
efficiently screened. In such a configuration, |I2| � |I1| and
I1 < 0. The velocity then reduces to

u± ≈
E ∧ B

B2 ± sign(E · B)

√
c2 B2 − E2

B2 B. (19)

The first term corresponds to the electric drift speed, whereas the
second term is associated with the motion along the magnetic
field lines, the particle gyro-motion being absent in this picture.
We note that the velocity component along the magnetic field
reverses sign when crossing a point where E · B changes sign.
These regions are able to trap particles depending on their charge
and on the (E · B) configuration in the neighbourhood of this
surface (Finkbeiner et al. 1989).

Several limiting cases are also useful to discuss. First, if the
electric field vanishes, E0 = 0, the radiated power also vanishes,
and the particle moves along the field lines with u± = ±c B/B.

Second, if the electric field is orthogonal to the magnetic field,
E · B = 0 and E < c B, the particle motion is decomposed into
an electric drift and a motion along B such that

u± =
E ∧ B

B2 ±

√
c2 B2 − E2

B2 B. (20)

This expression holds well within the light-cylinder of a force-
free magnetosphere.

3. Tests

We checked our algorithm against simple electromagnetic field
configurations containing only an electric field, a magnetic field,
or a cross electromagnetic field. Although the exact solutions
are simple expressions, from a numerical point of view it is of
paramount importance to ensure that the code is able to handle
very high strength parameters and Lorentz factors such as those
found in neutron star magnetospheres, that is about aB ≈ 1020

and γ ≈ 1010. Our main purpose in this section is to check that
the results are not affected by round-off errors.

3.1. Constant electric field

In a constant electric field, a charged particle is permanently
accelerated in the direction of the electric field while it loses
energy. Specialising the general solution (12) to a pure electric
field aligned with the z-axis such that E = E ez, we obtain

ut

c
= γ(τ) =

γ0 c cosh(ωE τ) + u0
z sinh(ωE τ)√

γ2
0 c2 − u2

‖
− u2

⊥ e−2α τ
, (21a)

ux

c
=

u0
x√

(γ2
0 c2 − u2

‖
) e2α τ − u2

⊥

, (21b)

uy

c
=

u0
y√

(γ2
0 c2 − u2

‖
) e2α τ − u2

⊥

, (21c)

uz

c
=

u0
z cosh(ωE τ) + γ0 c sinh(ωE τ)√

γ2
0 c2 − u2

‖
− u2

⊥ e−2α τ
, (21d)

with u‖ = u0
z the initial four-velocity component along E, u⊥

the initial four-velocity component perpendicular to E, and α =
τm ω

2
E.

For a particle starting at rest, u‖ = u⊥ = 0 and γ0 = 1, the
four-velocity simplifies drastically to

ui = c (cosh(ωE τ), 0, 0, sinh(ωE τ)) . (22)

This four-velocity does not depend on the radiation reaction
intensity. It accelerates as if it only experiences the Lorentz
force. This peculiar situation is well known, and is discussed at
length by Fulton & Rohrlich (1960) for a charge and its related
classical radiation in a uniformly accelerating field.

The four-position is given by introducing the two complex
functions with the help of the hypergeometric functions 2F1
(Olver 2010) such that

J1(τ) =
e(α+ωE ) τ

α + ωE
2F1

(
1
2
, 1 +

1
2 b

;
3
2

+
1

2 b
;
γ2 e2α τ

γ2 − 1

)
, (23a)

J2(τ) =
e(α−ωE ) τ

α − ωE
2F1

(
1
2
, 1 −

1
2 b

;
3
2
−

1
2 b

;
γ2 e2α τ

γ2 − 1

)
. (23b)
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Then the time and position are given by

t = −
γ
√
γ2 (

e2ατ − 1
)

+ 1
2
(
γ2 − 1

) (J2(τ) + J1(τ)) + C0, (24a)

x/c = 0, (24b)

y/c =
1
α

arctan


√
γ2 (

e2α τ − 1
)

+ 1
γ2 − 1

 + C2, (24c)

z/c =
γ
√
γ2 (

e2ατ − 1
)

+ 1
2
(
γ2 − 1

) (J2(τ) − J1(τ)) + C3, (24d)

with C0,C2,C3 complex constants of integration to satisfy the
initial conditions.

Returning to Eq. (21), the typical electric acceleration
timescale is τacc ∼ 1/ωE . On the other hand, the radiation damp-
ing timescale is τrad ∼ 1/α. The ratio of the two timescales is
therefore τacc/τrad ∼ τm ωE = b. As expected, for small damping
parameters b � 1, the acceleration time is much shorter than the
radiative damping and the particle is accelerated as if it would
not radiate, until the time τrad ∼ τacc/b � τacc. We note that this
rough estimate needs to be corrected by taking into account the
initial Lorentz factor, as discussed below.

To perform the simulations we use the characteristic fre-
quency ωE as normalisation, which leads to a normalised proper
time τ̃ = ωE τ. Therefore, the only relevant parameter apart from
the initial conditions is b = τm ωE and α τ = b τ̃. Particles start-
ing at rest or possessing an initial velocity directed along the
electric field do not suffer from the radiative force. Consequently,
as a typical example, particles start with an initial velocity per-
pendicular to the electric field, meaning u‖ = 0 and u⊥ , 0. We
chose different initial Lorentz factors in the set log γ0 = {0, 4, 8}.
The damping factor is given by log b = {0,−5,−10,−15}. As
output of the simulations, we plot the Lorentz factor increasing
according to Eq. (21a) and shown in Fig. 1. For a particle starting
at rest, whatever the damping parameter b, the solution is always
equal to Eq. (22) with an acceleration arising around the time
ωE τ ∼ 1. This configuration is particular and is not impacted by
the radiation reaction. More interesting are the particles starting
with a substantial kick velocity and high Lorentz factors γ0 � 1.
The time derivative of the Lorentz factor is always negative for
γ0 > 1 because

dγ(τ)
dτ

= −α γ0 (γ2
0 − 1) < 0, (25)

meaning that the particle first decelerates due to the radiative
friction. At large times, when α τ � 1 andωE τ � 1, the Lorentz
factor behaves as γ(τ) ≈ cosh(ωE τ), losing its information about
the initial state. It resembles the motion of a particle starting at
rest, independently of γ0. This occurs because the perpendicular
motion is strongly damped, lim

τ→+∞
u⊥ → 0, and only the parallel

velocity u‖ survives at large times with lim
τ→+∞

u‖ → c sinh(ωE τ).
In between, the normalised time remains small and the Lorentz
factor can be approximated by

γ(τ) ≈
γ0 cosh(ωE τ)√

1 + 2 γ2
0 α τ

. (26)

Therefore, before the acceleration phase starts, there is a decel-
eration step arising at time ωE τ ∼ 1/2 γ2

0 b. These values agree
with the curves in Fig. 1. If γ2

0 b . 1, the radiation reaction force
has no time to set in and the motion tends to a purely accelerated

regime given by Eq. (22). This is the case with γ0 = 104 and
b = 10−10 (orange dots) or γ0 = 108 and b = 10−15, which is just
on the edge of this condition, showing a weak deceleration right
before the electric boost (blue dots). The perpendicular momen-
tum decrease is not necessarily significant before the accelera-
tion; it is controlled by b and γ0 because at time ωE τ ≈ 1 it
braked to a momentum

u⊥(τ) ≈
u0
⊥√

1 + 2 γ2
0 b
. (27)

Thus, the radiation reaction again impacts the motion if γ2
0 b & 1.

Consequently, it is the combination γ2
0 b that controls the damp-

ing efficiency, not b alone found from the simple arguments
above.

Because the four-position of the particle is computed numer-
ically and not analytically according to Eq. (24), it is important
to estimate the convergence rate of our scheme. To this end,
Fig. 2 shows the error in the y and z positions and time t with
decreasing proper time step ∆τ for log γ0 = 4 and log b = −5
(in blue, orange, green, and red, respectively). The second-order
expectations are depicted by the green line. We conclude that
the decrease in the relative error follows a second order in time
scheme, as expected from the velocity-Verlet algorithm shown
in Sect. 2.

3.2. Constant magnetic field

A charged particle orbiting in a constant magnetic field loses
energy and decays until it rests. The rate of decay is controlled
by the magnetic field strength only. The exact solution for the
four-velocity in a magnetic field directed along the z-axis with
B = B ez is given by

ut

c
= γ(τ) =

γ0 c√
γ2

0 c2 − u2
‖
− u2

⊥ e−2α τ
, (28a)

ux

c
=

u0
x cos(ωB τ) + u0

y sin(ωB τ)√
(γ2

0 c2 − u2
‖
) e2α τ − u2

⊥

, (28b)

uy

c
=

u0
y cos(ωB τ) − u0

x sin(ωB τ)√
(γ2

0 c2 − u2
‖
) e2α τ − u2

⊥

, (28c)

uz

c
=

u0
z√

γ2
0 c2 − u2

‖
− u2

⊥ e−2α τ
, (28d)

with u‖ = u0
z the initial four-velocity component along B, u⊥

the initial four-velocity component perpendicular to B, and α =
τm ω

2
B. Apart from the change in the gyro-frequency, the mag-

netic field strength impacts only the timescale for the decay via
the exponential terms of arguments 2α τ.

To perform simulations we use the characteristic frequency
ωB as normalisation with τ̃ = ωB τ. Therefore, the only relevant
parameters, apart from the initial conditions, are b = τm ωB and
α τ = b τ̃. The length scale is therefore given in units of the non-
relativistic Larmor radius

rB =
c
ωB

. (29)

Integrating the four-velocity vector, an exact analytical
expression for the four-position is computed with the help of the
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Fig. 1. Increase in the Lorentz factor due to radiation reaction for dif-
ferent initial Lorentz factors log γ0 = {0, 4, 8} and different damping
factors log b = {0,−5,−10,−15}. The vertical lines show the time when
the damping sets in before the electric acceleration phase starts. The
coloured points show the simulation results and the black solid lines
correspond to the exact analytical solutions.

Fig. 2. Relative error of the position y, z and time t shown in the legend.
The error decreases with second order in ∆τ as given by the green line
∆τ2 for log γ0 = 4 and log b = −5. The t and z errors overlap and are
indistinguishable.

hypergeometric functions 2F1. Introducing the complex func-
tions

H1(τ) = e+iωB τ
2F1

(
1
2
,+

i
2 b

; 1 +
i

2 b
;
γ2 e−2α τ

γ2 − 1

)
, (30a)

H2(τ) = e−iωB τ
2F1

(
1
2
,−

i
2 b

; 1 −
i

2 b
;
γ2 e−2α τ

γ2 − 1

)
. (30b)

the solution reads

t =
1
α

tanh−1

 γ eα τ√
γ2 (

e2α τ − 1
)

+ 1

 + C0, (31a)

x/rB =
H1(τ) + H2(τ)

2 i
+ C1, (31b)

y/rB =
H1(τ) − H2(τ)

2
+ C2, (31c)

z/rB = 0, (31d)

where the Ci with i ∈ [0 . . . 2] are complex constants of integra-
tion to satisfy the initial conditions.

Fig. 3. Particle orbit in a uniform and constant magnetic field and sub-
ject to radiation reaction. The initial Lorentz factor is log γ0 = 4. The
inset shows the strong damped motion in green and even stronger damp-
ing in red where the spiralling is not seen.

Fig. 4. Decrease in the Lorentz factor due to radiation reaction in a
uniform and constant magnetic field associated with the orbits shown in
Fig. 3. The coloured points show the simulation results and the black
solid lines correspond to the exact analytical solutions.

The particle trajectory follows a spiral, as shown in Fig. 3.
The particle comes to rest after a typical time ωB τ∞ � 1/b.

The corresponding Lorentz factor decreases according to
Eq. (28a) and is shown in Fig. 4. The time when damping sets in
is given approximately by 2α γ2

0 τ ≈ 1. These times are shown
as coloured vertical lines in Fig. 4. If the particle moves along
the field line, it experiences no damping and keeps a uniform
motion.

A comparison between the analytical trajectory (red solid
line) and the numerical integration (blue dots) is shown in Fig. 5.
A more quantitative agreement is proven in Fig. 6 where the rela-
tive error decreases with respect to the proper time step ∆τ. Here
the method is also second order in time, as expected.
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Fig. 5. Comparison between the analytical solution, Eq. (31) (red solid
line) and the numerical simulation (blue dots) for log γ0 = 4 and log b =
−5.

Fig. 6. Relative error of the position x and y as shown (see inset for
legend). The error decreases with second order in ∆τ, as given by the
violet line ∆τ2 for log γ0 = 4 and log b = {−5,−10}.

3.3. Cross electric and magnetic field

The cross electric and magnetic field configuration is a stringent
test for an ultra-relativistic particle pusher. If the electric field
strength is less than the magnetic field strength E < c B, then
an appropriate Lorentz transform brings the problem to a frame
where the electric field vanishes. We therefore return to the situ-
ation described in the last section with a constant and uniform
magnetic field. For sufficiently long time the only remaining
motion is the electric drift at speed uE = E ∧ B/B2. Therefore,
the velocity is βE = vE/c = E/cB and the corresponding final
Lorentz factor γ∞ = (1 − β2

E)−1/2.
We performed simulations with E/cB = 0.999 and initial

Lorentz factors log γ0 = {0, 4, 8}. The final Lorentz factor is
γ∞ ≈ 22.3. Figure 7 shows the Lorentz factor (coloured dots)

Fig. 7. Decrease in the Lorentz factor due to radiation reaction in a
cross electric and magnetic field. The coloured points show the simula-
tion results and the black solid lines correspond to the exact analytical
solutions.

Fig. 8. Orbit in the electric drift frame (x′, y′) for log γ0 = 4 and log b =
−5 for different proper time steps log(ωB ∆τ) = {−1,−2}.

compared to the analytical expression (solid black lines). The
agreement is excellent and demonstrates the high efficiency of
our algorithm to capture ultra-relativistic motion with high pre-
cision.

The quantitative agreement is checked by transforming the
trajectory to the electric drift frame denoted by the coordi-
nates (x′, y′). In this frame the orbital radius is decreasing, as
shown in Fig. 8 for log γ0 = 4 and log b = −5, using different
proper time steps such as log(ωB ∆τ) = {−1,−2}. The analyti-
cal solution found from the appropriate parameters in Eq. (31) is
overlapped in red solid lines.

Figure 9 shows the relative error in the x′ and y′ position
depending on the proper time step ∆τ. The scheme converges to
second order in proper time step.
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Fig. 9. Relative error of the particle position associated with the electric
drift motion shown in Fig. 8.

3.4. Parallel electric and magnetic field

Another interesting configuration not reducible to any of the pre-
vious configurations are the parallel electric and magnetic fields.
In this case the second electromagnetic invariant does not vanish
I2 , 0. Consequently, there is no frame where either the electric
or magnetic field vanishes. The electric and magnetic velocity
components uE and uB decouple into an acceleration along the
common direction and a gyration in the same direction. Assum-
ing this direction to be ez, the four-velocity reads

ut

c
= γ(τ) =

γ0 c cosh(ωE τ) + u0
z sinh(ωE τ)√

γ2
0 c2 − u2

‖
− u2

⊥ e−2α τ
, (32a)

ux

c
=

u0
x cos(ωB τ) + u0

y sin(ωB τ)√
(γ2

0 c2 − u2
‖
) e2α τ − u2

⊥

, (32b)

uy

c
=

u0
y cos(ωB τ) − u0

x sin(ωB τ)√
(γ2

0 c2 − u2
‖
) e2α τ − u2

⊥

, (32c)

uz

c
=

u0
z cosh(ωE τ) + γ0 c sinh(ωE τ)√

γ2
0 c2 − u2

‖
− u2

⊥ e−2α τ
. (32d)

We recognise the special cases of a pure electric field for ut, uz

and a pure magnetic field for ux, uy, the only difference being the
value of α = τm (λ2

E + λ2
B), including non-vanishing electric and

magnetic contributions.
After a transition time, the gyro-motion is significantly

damped and the electric acceleration directs the velocity along
its direction. The initial conditions are washed out and the parti-
cle moves as in a constant electric field with an almost constant
acceleration leading to a hyperbolic motion, well known in spe-
cial relativity kinematics. We estimate the duration of this tran-
sient stage. Either the particle is drastically accelerated before
the gyration is damped or instead the orbit shrinks significantly
before the electric field sensibly accelerates the particle. The sit-
uation depends on ordering of the eigenvalues λE and λB.

Figure 10 shows the analytic evolution of the Lorentz fac-
tor for a particle starting with only a perpendicular velocity
component such that log γ0 = 8. The damping factor is set to
log b = {0,−5,−10,−15} and the electric field strength E0 is var-
ied relative to B0 such that log(E0/c B0) = {−2, 0, 2} (solid lines,
dashed lines, and dotted lines, respectively). For a weak electric

Fig. 10. Analytic evolution of the Lorentz factor with initial condi-
tion log γ0 = 8, different damping factors log b = {0,−5,−10,−15},
and different electric field strengths E0 relative to B0 such that
log(E0/c B0) = {−2, 0, 2} in solid lines, dashed lines, and dotted lines,
respectively.

Fig. 11. Evolution of the Lorentz factor for a parallel electromagnetic
field configuration with initial Lorentz factors log γ0 = {0, 4, 8}, an elec-
tric field strength log(E0/c B0) = −2, and log b = {0,−5,−10,−15}. The
black solid lines correspond to the exact analytical solutions.

field E0 � c B0 the particle trajectory follows a spiral motion
similar to the previous case of a pure magnetic field until it
almost rests. At later times the electric field starts to accelerate it
quickly to ultra-relativistic speeds on a timescale 1/ωE � 1/ωB.
The particle performs many orbits before being deflected along
the parallel direction (ez). Increasing E0 decreases this timescale
and the particle follows the common E and B direction before
performing many gyrations. In the opposite limit of a strong
electric field E0 � c B0 electric acceleration quickly sets in.
Figure 11 shows some results of numerical simulations with
a weak electric field log(E0/c B0) = −2, pertinent for almost
force-free neutron star magnetospheres, and initial Lorentz fac-
tors log γ0 = {0, 4, 8} and log b = {0,−5,−10,−15}.

Whenever there is a magnetic field aligned electric field com-
ponent, at late times particles are always accelerated along the
common direction. The timescale required is estimated by reck-
oning the proper time at which the parallel four-velocity com-
ponent becomes comparable to the perpendicular four-velocity
component for an initial velocity perpendicular to the magnetic
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Fig. 12. Alignment of the velocity vector with the radiation reaction
limit direction given by θ = 0◦ for different strengths of the parallel
electric field component E‖ compared to the perpendicular component
E⊥ for E⊥/cB = 0.1 (dashed lines) and E⊥/cB = 0.999 (solid lines).
The damping parameter is log b = −5 and the initial Lorentz factor
log γ0 = 4.

field line. This represents the worst case, useful for comparison
to the radiation reaction limit regime.

3.5. Almost cross field

In a plasma-filled magnetosphere, the electric field is efficiently
screened meaning that the parallel component of the electric
field is negligible with respect to its perpendicular component,
E‖ � E⊥. As an application towards this configuration, we com-
puted the motion of a particle in an almost cross electric and
magnetic field with log(E‖ � E⊥) = {−1,−2,−3,−4} and dif-
ferent ratios E⊥/c B = {0.1, 0.999}. The particle starts with an
initial velocity in a plane perpendicular to B and Lorentz fac-
tor log γ0 = 4 in a field with log b = −5. Figure 12 shows the
evolution to alignment of the velocity vector with the radiation
reaction limit direction for a weak parallel electric field com-
ponent (see the legend). We note that the angle θ should not be
interpreted as the angle between the velocity vector and the mag-
netic field direction because the velocity in Eq. (17) is not along
B. We observe that the time required for alignment is insensitive
to the ratio E⊥/c B, but depends strongly on the ratio E‖/E⊥. As
expected, a weak parallel component tends to align the trajec-
tory more slowly compared to a strong parallel component. If
this alignment occurs on a length scale smaller than the mag-
netic field curvature radius, the radiation reaction limit could be
used without significant loss of accuracy.

3.6. Dipole magnetic field

As a step towards realistic configurations, we also investigate
particle motion in a static magnetic dipole. Unfortunately, no
simple exact analytical expressions are available for checking
the algorithm; therefore, no quantitative accurate convergance
test can be performed. First, we study the magnetic drift in the
equatorial plane of a dipole field. Next, we look at trapped parti-
cles due to the mirror effect.

3.6.1. Magnetic drift

The magnetic drift motion in the equatorial plane of a dipole field
is an interesting example to test our algorithm. The characteristic

Fig. 13. Decrease in the Lorentz factor due to radiation reaction when
drifting in a dipole magnetic field with initial Lorentz factor log γ0 = 4
and different damping constants.

Fig. 14. Particle trajectory in the equatorial plane of a dipole magnetic
field and associated with Fig. 13. The inset shows the strong damped
motion in green and even stronger damping in red where the spiralling
is not seen.

frequency is again ωB and the particle initial Lorentz factor is
γ0 = 104. The damping parameter is log b = {0,−5,−10,−15}.

Figure 13 shows the time evolution of the Lorentz factor that
tends asymptotically to unity meaning the particle will rest. The
particle returns to rest after a typical time controlled by b and
shown as coloured vertical lines.

Figure 14 highlights the corresponding particle trajectory
in the equatorial plane. For the weakest damping, the motion
remains circular for the guiding centre. For the strongest damp-
ing, in green and red, the particle suffers from drastic radiative
friction and tends to rest on a very short timescale compared to
the drifting motion and orbital motion.
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Fig. 15. Decrease in the Lorentz factor of particles subject to the mirror
effect.

3.6.2. Magnetic mirror

Due to the mirror effect, particles remain trapped in the dipole
magnetic field of a star, as they do around the Earth in the Van
Allen belt. However, when some dissipation occurs, for instance
through the radiation reaction for high damping parameters, the
particles quickly crash onto the surface of the magnetic object.

Figure 15 shows the evolution of the Lorentz factor for par-
ticles moving in the magnetic dipole field. For weak damping
parameters log(τm ωB) . −10, the radiation reaction remains
negligible and the particle motion is almost adiabatic with the
three characteristic periodic motions: gyration around the mag-
netic field, bouncing between the north and south magnetic pole,
and precession in the azimuthal direction (blue and orange lines
in Fig. 16). For log(τm ωB) = −5, the cyclotron motion is rapidly
damped and the particle falls onto the star (green trajectory).
For log(τm ωB) = 0, the damping is even faster and the parti-
cle crashes onto the stellar surface, following a trajectory similar
to the previous case (red solid line in Fig. 16).

4. Application to neutron stars

After checking and testing our new algorithm, we are ready to
apply it to realistic extreme cases of rotating magnetised neu-
tron stars. The neutron star radius is fixed to R∗ = 12 km. The
accurate configuration of the electromagnetic field is taken from
a rotating magnetic dipole in a vacuum and given by Deutsch
(1955).

4.1. Relevant parameters without dimension

As a typical frequency we choose the stellar angular fre-
quency ω = Ω∗ and consider three populations of neutron stars:
young pulsars with period P∗ = 1 s and surface magnetic field
strengths B∗ = 108 T; millisecond pulsars with period P∗ = 5 ms
and B∗ = 105 T; and magnetars with period P∗ = 10 s and
B∗ = 1010 T. These quantities and their associated normalised
strengths and damping parameters aB, aE , and b for electrons,
protons, and iron are summarised in Table 1. The normalisation
frequency is arbitrary, but from a microscopic point of view the
most relevant frequencies are related to the electromagnetic ten-
sor eigenfrequencies. Therefore, the low value of b should not
be misinterpreted as a weak feedback of the radiation reaction.
It is an artefact of the chosen typical frequency associated with

Fig. 16. Particle trajectories in the dipole magnetic field and associated
with Fig. 15. For small damping parameters (orange and blue lines)
the particle is trapped for a long time in the dipole, whereas for larger
damping it quickly crashes onto the stellar surface.

the stellar rotation, which is many orders of magnitude smaller
than the cyclotron frequency.

We distinguish three kind of particles: a first group crash-
ing onto the stellar surface, a second group of trapped par-
ticles, and a third group of escaping particles, all acceler-
ated to high energies. Particles are considered trapped when
they still have not crashed onto the surface or have not yet
escaped the light cylinder. Particles are placed regularly within
the light cylinder, starting at rest or with an initial velocity
vector oriented along the magnetic field line, directed towards
the star or towards infinity, with a Lorentz factor equal to
γ0 = 103 or starting at rest. The neutron star obliquity is set
to χ = {0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦}. We found that the
final results are not very sensitive to the initial Lorentz factor
because charges are immediately accelerated in the direction of
the electric field and therefore lose memory about their initial
state. Our simulation results are thus summarised for particles
starting at rest only. We simulated a total number of 48 parti-
cles for each neutron star type and each obliquity, spread around
three radii r0: at the surface R∗; approximately half-way between
the surface and the light-cylinder (a geometric average); and
at the light cylinder, thus r0 = {R∗,

√
R∗ rL, rL}. For compari-

son, we performed simulations with and without the radiation
reaction.

4.2. Orders of magnitude

Before presenting the accurate numerical simulations of particle
trajectories and their radiation reaction in the vicinity of neu-
tron stars, we recall the orders of magnitude of the maximum
Lorentz factors expected when charges are accelerated in the
electric potential produced by a rotating magnetised perfectly
conducting star. The most optimistic view adopts the full poten-
tial drop between the pole and the equator as an estimate of the
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Table 1. Typical period and surface magnetic field strength of millisecond pulsars, young pulsars, and magnetars.

Neutron star P∗ (s) log B∗ (T) log aB log aE − log b

Millisecond 0.005 5 13.1 / 9.9 / 9.5 11.8 / 8.6 / 8.2 20.1 / 23.4 / 22.5
Young 1 8 18.4 / 15.2 / 14.8 14.8 / 11.6 / 11.2 22.4 / 25.7 / 24.8
Magnetar 10 10 21.4 / 18.2 / 17.8 16.8 / 13.6 / 13.2 23.4 / 26.7 / 25.8

Notes. The relevant parameters without dimension are given by the strength parameters for the magnetic field aB and for the electric field aE and
the damping parameter b for electrons / protons / iron nuclei.

Table 2. Maximum Lorentz factor orders of magnitude from conserva-
tive arguments about neutron star magnetospheres.

Neutron star log γfull
max / log γpc

max
Electron Proton Iron

Millisecond 10.5 / 9.3 7.3 / 6.0 7.0 / 5.7
Young 11.2 / 7.7 8.0 / 4.4 7.7 / 4.1
Magnetar 12.2 / 7.7 9.0 / 4.4 8.7 / 4.1

Notes. Values for full potential drops are given to the left of the slash
( / ) and for polar cap potential drops to the right in logarithmic scale.

accelerating field, and thus

γfull
max ≈

q Ω∗ B∗ R2
∗

m c2 =
R∗
rL

R∗
rB
, (33)

where rB = c/ωB is the non-relativistic Larmor radius. If the
accelerating potential is only available across the polar caps
as expected from nearly force-free magnetosphere models, the
maximum energy corresponds to

γ
pc
max ≈

q Ω2
∗ B∗ R3

∗

m c3 =

(
R∗
rL

)2 R∗
rB
≈

R∗
rL
γfull

max, (34)

which is a factor R∗/rL smaller than for the former case. Table 2
summarises the maximum Lorentz factors for electrons, protons,
and iron around millisecond pulsars, young pulsars, and magne-
tars. The values reported in this table for γfull

max are at best upper
limits for the vacuum case. Only an accurate numerical integra-
tion of the equation of motion gives robust results, as we now
show.

4.3. Escaping particles

Particles reaching distances larger than 10 rL are thought to be
leaving the neutron star magnetosphere. The run halts when the
particle reaches larger distances. Figure 17 shows the histogram
of Lorentz factors for electrons, protons, and iron nuclei, irre-
spective of the magnetic field inclination angle χ. The left col-
umn corresponds to a motion with radiation reaction, and the
right column to motion without radiation reaction. First, elec-
trons are the most effectively accelerated particles reaching final
Lorentz factors up to γf ∼ 109 in the LLR approximation for mil-
lisecond pulsars. This is, however, two orders of magnitude less
than without the radiation reaction where γf ∼ 1011. Second, as
expected, protons and iron nuclei acquire much less energy, only
about γf ∼ 106 for millisecond pulsars, whether LLR is used or
not. For young pulsars, electrons also reach γf ∼ 109 in the LLR
regime instead of γf ∼ 1011 for the pure Lorentz force. Protons
and iron nuclei are much less subject to the radiation reaction,
showing no impact on the maximum Lorentz factor remaining

at γf ∼ 104−104.5. For magnetars, the radiation reaction remains
negligible irrespective of the nature of each species. Electrons
reach energies up to γf ∼ 107.5, whereas protons and iron nuclei
γf ∼ 103−103.5. Therefore, the radiation reaction does not sig-
nificantly perturb the trajectories of particles with lower charge
over mass ratios q/m. Contrary to electrons, protons, and iron do
not suffer from radiation friction.

4.4. Crashed particles

Closer to the star most species quickly crash onto the surface
in a time much shorter than the neutron star spin period. Parti-
cles crashing onto the neutron star surface are easily recognised
by the fact that their final position lies inside the star. Com-
pared to escaping particles, the situation is now reversed; mag-
netars offer the highest energetic particles heating the surface
and millisecond pulsars the lowest energetic particles (see left
column of Fig. 18). This is accounted for by the lower surface
magnetic field of millisecond pulsars, being three to five orders
of magnitude lower than young pulsars or magnetars, respec-
tively. Neglecting the radiation reaction, electrons are able to
reach Lorentz factors up to γf ∼ 1011 for magnetars, but only
γf ∼ 108.5 for millisecond pulsars. The radiation reaction impact
is strongest for magnetars. However, protons and iron are not
perturbed by the radiation reaction except sensibly for magne-
tars. Nevertheless, we observe that with the radiation reaction
protons remain the most energetic particles with final Lorentz
factors of about γf ∼ 107.5−108.5 irrespective of the neutron star
nature, millisecond, young, or magnetar. For electrons the sit-
uation is drastically different. They radiate copiously, decreas-
ing the Lorentz factor by three orders of magnitude compared to
the no radiation reaction case in the magnetar environment. The
decrease is less pronounced for young or millisecond pulsars,
but still perceptible.

4.5. Trapped particles

By default we assume that trapped particles are those not crash-
ing onto the neutron star and not escaping to large distances
outside the light cylinder within the simulation time span corre-
sponding to several neutron star periods. Figure 19 summarises
the distribution of Lorentz factors for electrons, protons, and iron
in the LLR approximation and without radiation reaction. Pro-
tons and iron are still insensitive to the radiation reaction except
for magnetars. Electrons are much more sensitive to the radi-
ation reaction, decreasing their Lorentz factor by four orders
of magnitude for millisecond pulsars, young pulsars, and mag-
netars. Millisecond pulsars produce trapped protons and iron
with energies about γf ∼ 107, whereas young pulsars and mag-
netars one decade more up to γf ∼ 108, whether the radi-
ation reaction is included or not. Electrons are trapped with
similar Lorentz factors, although slightly less for millisecond
pulsars.
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Fig. 17. Histogram of escaped particles for millisecond pulsars (top), for young pulsars (middle) and for magnetars (bottom). Electron Lorentz
factors are shown in green, protons in red, and iron nuclei in blue. The left column includes the radiation reaction (RR); the right panel does not.

4.6. Maximum Lorentz factor

For escaping particles in the wave zone, the gain in energy is lim-
ited by the spherical nature of the electromagnetic field, meaning
decreasing in strength with distance as 1/r. For a null electro-
magnetic field Pétri (2021) showed that this severely limits the
maximum Lorentz factor to values of

γmax ≈ 2 (aBL/π)2/3, (35)

where aBL is the strength parameter measured at the light
cylinder. The radiation reaction also remains negligible in this
wave zone. Table 3 summarises the relevant parameters at the
light cylinder for the three kinds of neutrons stars. Generally
speaking, we found no particles with Lorentz factors exceed-
ing γf ≈ 109.1 in the LLR regime. Because the electromag-
netic vacuum used in our simulations corresponds to the one
producing the strongest parallel electric field (with respect to
the magnetic field), no particle should be created and moving
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Fig. 18. Same as Fig. 17, but for crashed particles.

with Lorentz factor higher than 109.1 within the magnetosphere.
Equation (35) is satisfied for non-null electromagnetic waves
like those launched by a rotating magnetic dipole. Instead, we
found a simple linear relation between the strength parameter
aBL and the Lorentz factor such that

γmax ≈ aBL . (36)

This increase in the acceleration efficiency is imputed to the
presence of a still strong radial component of the electric
field, which was absent in the study of Pétri (2021). The

simulations performed in this section only followed a small
number of particles, due to the stringent computation time
required to accurately evolve the particle velocity and posi-
tion. Describing the plasma feedback onto the electromagnetic
field would require a much larger number of particles cou-
pled to the evolution of the electromagnetic field via Maxwell
equations, leading to a PIC code. To date, although PIC codes
exist and have been adapted to simulate neutron star magneto-
spheres, none has yet been able to handle the parameter space
explored in the present work. Therefore, let us contrast our
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Fig. 19. Same as Fig. 17, but for trapped particles.

results in the light of the existing kinetic descriptions of the
magnetosphere.

4.7. Comparison to previous works

Several investigations of particle acceleration and radiation reac-
tion around neutron stars have been attempted in the literature.
However, due to severe numerical limitations, studies employ-
ing realistic field strengths for the neutron star are very rare.

We mention, however, the pioneering work of Finkbeiner et al.
(1989) and Finkbeiner et al. (1990), who employed a single test
particle approach with the radiation reaction and found accel-
eration around the neutron star up to Lorentz factors of about
γf . 109 for the Crab parameters. In a similar manner, at
very large distances, in the wind zone, Michel & Li (1999)
studied particle acceleration without the radiation reaction and
found asymptotic values of γf . 109. The flaw in these stud-
ies is that particles evolve in a prescribed external field without
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Table 3. Maximum Lorentz factors γmax for the three kinds of particles: electrons / protons / iron nuclei.

Neutron star log aBL log γmax
Crashed Trapped Escaped

Millisecond 9.3 / 6.0 / 5.7 7.1 / 7.1 / 6.8 6.5 / 7.1 / 6.8 9.1 / 6.0 /5.6
Young 7.6 / 4.4 / 4.1 6.0 / 7.8 / 7.5 7.8 / 7.8 / 7.5 8.0 / 4.1 / 3.7
Magnetar 7.6 / 4.4 / 4.1 6.4 / 8.1 / 7.7 8.2 / 8.1 / 7.7 7.1 / 3.2 / 2.9

Notes. The value of the strength parameter at the light cylinder is also given.

possible feedback due to the plasma around the neutron star.
A fully kinetic description of the plasma and field started only
recently using PIC schemes; earlier simulations did not take into
account the radiation reaction. Unfortunately, the flaw in this
approach is the use of unrealistically low field strengths. We
mention some of these works here.

Cerutti et al. (2015) studied acceleration for an axisymmet-
ric magnetosphere without the radiation reaction. They obtained
a maximum energy for leptons γf . 103 related linearly to
the magnetisation parameter in the plasma. Later, Cerutti et al.
(2016) included the radiation reaction force and obtained maxi-
mum energies tat were one order of magnitude lower with γf .
102. Dissipation in the striped wind due to magnetic reconnec-
tion led Cerutti et al. (2020) to the same conclusion. Other PIC
simulations performed by Kalapotharakos et al. (2018) using
similar algorithms with radiation reaction found similar results
with γf . 103 for pairs. Nevertheless, these authors extrapo-
lated to realistic energies by using rescaling techniques for field
strengths, timescales, and space scales. How effectively and con-
sistently this rescaling operates is not clear as the problem is
highly non-linear in a significant radiation reaction regime. Gen-
eral relativity does not significantly change these conclusions, as
shown by Philippov & Spitkovsky (2018), who included frame-
dragging effects and found γf . 500 by extending their special
relativistic results in Philippov et al. (2015).

When focusing on the near field of a dipole,
Ferrari & Trussoni (1974) found an asymptotic Lorentz
factor for electrons of about 108 and slightly larger for protons
(almost 109), but for faster rotations in a field of an oblique
rotating dipole with strengths of 5 × 106 T. When the radiation
reaction remains irrelevant, their results agree with those of
Kulsrud (1972), demonstrating a linear growth with the field
strength parameter. Laue & Thielheim (1986) investigates the
special case of an orthogonal rotator with radiation reaction,
and for typical neutron star parameters they found a maximum
energy for electrons of about 109 and for protons of about 106.

Hadron acceleration has been much less discussed in this
context, but it is equally important to understanding the origin of
ultra-high-energy cosmic rays. To this end, Guépin et al. (2020)
investigated proton and pair acceleration in an aligned neutron
star magnetosphere with the radiation reaction. They drastically
reduced the neutron star radius and the proton to electron mass
ratio for computational purposes, and found the highest energies
for pairs of about γf . 700 and for protons of about γf . 40.
These state-of-the art results emphasise the difficulty in mov-
ing towards a realistic and self-consistent description of neu-
tron star magnetospheres. The main bottleneck is the particle
pusher, which requires us to temporally resolve the gyro-motion.
This drawback is circumvented by employing an approxima-
tion called the radiation reaction limit, summarised in Sect. 2. It
is therefore important to assess quantitatively the accuracy and
efficiency of this alternative approach, which we do in the next
section.

5. Comparison with the radiation reaction limit

The results obtained in the previous section rely on the numerical
integration of the LLR equation accounting for realistic parame-
ters introducing a huge gap between the gyro-frequency and the
neutron star rotation period. The question arises then of how to
improve our algorithm or to speed up the computation by several
decades. To this end, in this section we compare the LLR results
to the radiation reaction limit regime to assert the usefulness of
the latter.

Integrating the exact LLR equations requires resolving the
gyro-frequency, which is very stringent and impossible to use for
a large sample of particles, which is required to perform kinetic
simulations such as those done in the PIC or Vlasov codes. We
therefore checked the accuracy of the much faster radiation reac-
tion limit approximation where the particle velocity is expressed
in terms of the local electromagnetic field (Eq. (17)). To this
end, we computed trajectories for electrons and protons in the
field of a millisecond pulsar for different magnetic moment incli-
nation angles and different initial particle positions. Because
by construction the speed in Eq. (17) is equal to the speed of
light v± = c, in the LLR approach particles are kicked with high
initial Lorentz factors γ0 = 103 and a velocity parallel to u± in
order to have comparable initial conditions for both sets of runs.

Figure 20 shows a sample of electron trajectories and demon-
strates the reasonable results obtained by this asymptotic regime
for a millisecond pulsar. However, the precision depends on the
particle initial position. For motions starting at the surface (upper
row in Fig. 20) some trajectories are well reproduced by the radi-
ation reaction limit regime. The accuracy is less good for the
brown and green paths, although the general trend is conserved.
When starting at larger distances from the surface, for example
at
√

R∗ rL (middle row of Fig. 20), we observe better agreement
between the two regimes. The best results are obtained for parti-
cles well away from the surface, starting at r = rL (bottom row
of Fig. 20). All trajectories computed in the radiation reaction
limit regime overlap with the LLR integration.

A comparison of trajectories for protons is shown in Fig. 21.
Here the agreement is satisfactory within the light cylinder, close
to the surface (top row) and at intermediate distances (middle
row). For protons starting at the light cylinder radius r = rL
the results are more contrasted; some trajectories are well repro-
duced (in blue, yellow, and orange), and some are false (the
brown and green motions) and expected to crash on the surface,
but escaping in the radiation reaction limit regime. Iron shows
trajectories that are very similar to protons because of the nearly
identical mass to charge ratio q/m; the figures are therefore not
shown in this almost identical case.

The radiation reaction limit regime is less accurate than the
exact LLR integration scheme, but this is partially compen-
sated for by the drastic decrease in computational time, lowered
by several orders of magnitude in this approximation. Expres-
sion (17) could certainly be improved by carefully investigating
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Fig. 20. Sample of trajectories for electrons obtained with LLR in the
field of a millisecond pulsar (solid lines) and in the radiation reaction
limit (dotted symbols). The trajectories are projected along the xy plane
in the left panel and on the xz plane in the right panel. Particles are
launched from the stellar surface in the top row, at a distance

√
R∗ rL in

the middle row, and at a distance r = rL in the bottom row.

these problematic cases, but we do not pursue this aim in this
work. We demonstrated however that the velocity in Eq. (17)
offers a valuable compromise between a time-consuming full
integration of the equation of motion in LLR and an artificial
and unrealistic down-scaling of the major physical parameters
that make a neutron star a neutron star.

A convergence analysis of the radiation reaction limit inte-
gration scheme is shown in Fig. 22 for the relative error. We
simulated a sample of 12 particles starting at different locations
within the magnetosphere, and compared their last position to a
reference solution. As no exact analytical solutions are known,
we use as the reference numerical solution the one with the
smallest time step. The integration scheme oscillates between the
first and second order in time depending on the initial position of
the particle, shown by the number r0/rL in the legend. For refer-
ence the ∆t2 behaviour is shown as blue filled circles. In the pre-
vious simulations we fixed the time step to ∆t ≈ 10−4, and thus
we expect a precision better than three digits in all cases. The
discrepancy between the Landau–Lifshitz and radiation reaction
regimes can therefore not be explained by a discretisation effect.
We also checked that the initial condition of the velocity does not

Fig. 21. Same as Fig. 20, but for protons.

Fig. 22. Convergence of the radiation reaction limit regime showing the
method of integration to be between the first and second order in time,
depending on the initial position of the particle given by the number
r0/rL in the legend. The ∆t2 decrease in shown as blue filled circles.

impact the trajectory in Landau–Lifshitz. The explanation must
be searched for in the deficiency of the radiation reaction regime
to satisfactorily account for all possible trajectories. This regime
assumes a radiative friction force opposite to the three-velocity
vector. However, the 3D version of the LLR equation also
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Fig. 23. Comparison between the radiation reaction limit (dotted sym-
bols), the LLR (thick solid lines), and the approximated LLR motion
(thin dashed lines).

contains components along E ∧ B and along E and B when the
linear term in velocity is retained. The main discrepancy arises
from neglecting this linear term. In order to prove this argument,
we designed a simplified version of the Landau–Lifshitz equa-
tion by only retaining in the new analytical solution the part of
the radiation reaction force directed along the velocity (which is
valid for ultra-relativistic speeds). The expressions for the four-
velocity then become

uE = λB
u0

E cosh(λE τ) + F̃ u0
E sinh(λE τ)/λE√

(λ2
E + λ2

B) |u0
E |

2 + (λ2
B − (λ2

E + λ2
B) |u0

E |
2) e−2 λ2

B τ0 τ

,

(37a)

uB = λE
u0

B cos(λB τ) + F̃ u0
B sin(λB τ)/λB√

(λ2
E + λ2

B) |u0
B|

2 + (λ2
E − (λ2

E + λ2
B) |u0

B|
2) e2 λ2

E τ0 τ

,

(37b)

replacing Eq. (12). The results are shown in Fig. 23 for the
exact Landau–Lifshitz equation in solid lines, the approximated
Landau–Lifshitz equation in dashed lines, and the radiation reac-
tion regime in dots. We observe some significant differences,

notably in the middle right panel. We note however that the radi-
ation reaction regime gives accurate results at low computational
time expense for the majority of cases.

6. Conclusions

Strongly magnetised rotating neutron stars are powerful and effi-
cient particle accelerators able to accelerate leptons and hadrons
to Lorentz factors as high as 109 for the former and slightly less
for the latter. This upper limit remains largely independent of
the nature of neutron star, millisecond pulsar, young pulsar, or
magnetar. We achieved these results by implementing realistic
parameters in our particle pusher based on the exact solution
of the LLR approximation of the equation of motion. Through
extensive numerical tests, we show that our scheme is second
order in proper time.

The simulation results are accurate and robust, but at the
expense of high computational cost because of the need to
resolve the gyro-motion, which is many decades smaller than
the neutron star spin period. The radiation reaction limit regime
offers a good compromise between accuracy and computational
cost, but the simplistic expression used is unable to reproduce all
trajectories satisfactorily. Nevertheless, it could be conceivable
to improve this expression by taking into account a finite Lorentz
factor and special electromagnetic field configuration when the
radiation reaction is negligible due to a weak accelerating elec-
tric field. Nevertheless this extension is left for future work.

A straightforward implementation of the above pusher into a
PIC code or Vlasov codes is prevented by the fact that LLR uses
the proper time as integration parameter. However, its conver-
sion into an inertial observer time is feasible, as shown by Pétri
(2020). The next logical step would then be to shift from the test
particle motion to a fully kinetic plasma simulation where the
particle charge and current densities retroact to the electromag-
netic field via Maxwell equations.
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