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Abstract. The "curse of dimensions" is a term that describes the many
difficulties that arise in machine learning tasks as the number of fea-
tures in the dataset increases. One way to solve this problem is to reduce
the number of features to be provided to the model during the learn-
ing phase. This reduction in the number of dimensions can be done in
two ways, either by merging dimensions together or by selecting a sub-
set of dimensions. There are many methods to select the dimensions to
be kept. One technique is to use a genetic algorithm to find a subset of
dimensions that will maximize the accuracy of the classifier. A genetic
algorithm specially created for this purpose is called genetic algorithm
with aggressive mutation. This very efficient algorithm has several par-
ticularities compared to classical genetic algorithms. The main one is
that its population is composed of a small number of individuals that
are aggressively mutated. Our contribution consists in a modification of
the algorithm. Indeed we propose a different version of the algorithm in
which the number of mutated individuals is reduced in favor of a larger
population. We have compared our method to the original one on 17
datasets, which allowed us to conclude that our method provides better
results than the original algorithm while reducing the computation time.

Keywords: Features selection · Machine Learning · Genetic Algorithm
· Metaheuristic

1 Introduction

In our post-digital transition world, more and more data is accumulated every
year in companies. Much of this data is of poor quality [1]. Improving data
⋆ Supported by Synaltic : www.synaltic.fr
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quality is therefore becoming a task of great importance [2]. There are many
methods to improve data quality. A large number of methods are based on the
extraction of metadata on data: this field is called data profiling [3]. Our research
in this area led us to study the features extracted by the Sherlock algorithm (an
automatic semantic data type detection algorithm) [4]. We have reused similar
features for several other data profiling tasks [5,6]. However, one obstacle to the
industrial use of these methods is the large number of features extracted. Indeed,
the time cost of extracting each feature increases with the volume of data. We are
therefore confronted with the need to reduce the number of features extracted
in order to be able to process larger volumes of data.
This is how we got interested in the possibilities of dimensional reduction. There
are two main types of approaches, those which seek to merge the features together
to create a smaller number of features (like ACP [7] or Autoencoder [8]). The best
subset is the one that will give the best accuracy for a given classifier. And the
methods that will try to select the best subset of the present features. Since the
first possibility still requires the extraction of the initial set of characteristics, we
turned to the second. This area is the field of feature selection [9]. This topic can
be divided into two branches. The first one gathers the methods named "filters"
which do not use a classifier to select the features, examples of algorithms of
this type are : Correlation-based Feature Selection [10], Information Gain, Re-
liefF [11]. The advantage of these methods is that they are very fast.
The second grouping includes approaches using a classifier for feature selection.
This field of research is itself subdivided into two types of methods, the methods
called "Wrapper" and the methods called "Embedded". In Embedded methods
the choice of features is done by evaluating the features at each iteration during
the learning phase. These methods are not usable with all learning algorithms.
An example of this type of algorithm is LASSO [12]. In wrapper methods the
selection of features takes place after the classifier has been trained. Algorithms
of this type for example: random selection, Recursive feature Elimination [13]
,genetic algorithms [14]. We have chosen to focus on genetic algorithms because
although their computational cost is high, they can obtain excellent results with
any classifier.

2 Related Work

2.1 Genetic algorithm

Genetic algorithms are bioinspired population-based metaheuristic algorithms
popularized by J. Holland in the 1970s [16]. The goal of these algorithms is to
minimize or maximize an objective function called fitness function. The param-
eters of this function are encoded in the form of a chromosome. Traditionally
this encoding is done in a binary way, so a chromosome is a list of genes that
can only take the values 0 and 1. The functioning of these algorithms is based
on two basic operations. The first is the mutation which consists in altering a
chromosome by randomly changing some of its genes. And the second one is the
crossing which consists in mixing two chromosomes in order to create two new
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ones. The classic method to do this is to break the two parent chromosomes
into 1 point and then swap the pieces of chromosomes from the two parents to
form two children. There are however several other methods to do this more
efficiently [16].
Genetic algorithms generally have 5 parameters: the population size, the number
of iterations, the chromosome size, the mutation probability and the crossover
probability. The overall operation of the algorithm is as follows: a population
(group of chromosomes) is randomly generated. Each individual generated in
this way is evaluated using the fitness function. Depending on the results of this
evaluation and the probability of crossover a daughter population is generated
by crossing the initial population. Then a part of the daughter population is mu-
tated according to the selected mutation probability. The daughter population
is then evaluated using the fitness function. Finally a selection step takes place
among the individuals of both populations (according to the fitness score) and
a population of the same size as the initial population is kept. The algorithm
then repeats this process of crossover, mutation, evaluation, selection until the
number of iterations (generations) is reached. The chromosomes of the best in-
dividual of the last generation encode a good solution to the problem we are
trying to solve.
For the feature selection problem, the encoding is done in the following way:
if a dataset contains 10 features, the chromosomes will be of size 10, a 1 will
represent a feature that can be used during the training of the classifier, a 0 an
absent feature. The fitness function is the accuracy of the classifier. This method
presents two problems. First, it is not possible to choose the number of features
that we want to keep. Secondly, genetic algorithms tend to get trapped in local
optimums. In the case of feature selection the algorithms tend to keep a number
of features slightly less than half of the total number of features. This number
can be reduced by modifying the fitness function to penalize the use of too many
features. But this only reduces the number of selected features by 20% [17].

2.2 Genetic algorithm with aggressive mutation GAAM

The Genetic Algorithm with Aggressive Mutations (GAAM) is an algorithm
that has been specifically designed for feature selection [18]. This algorithm has
several major differences from classical genetic algorithms. First of all, the en-
coding of genes does not use a binary system but integers. If a dataset contains
N features, the encoding uses N integers, each number representing 1 feature.
In addition, the value 0 represents the absence of characteristics. Then the algo-
rithm allows to choose the maximum number of features that we want to keep,
this number corresponds to the size of the chromosome. For example if a dataset
has 10 features and we want to keep a maximum of 5, examples of chromosomes
would be: [2 7 9 10 8], [3 2 2 10 5] [0 7 8 9 5]. If a gene is present several times
as in [3 2 2 10 5] the duplicates are eliminated and replaced by 0.
Then the mutation system is different from that of traditional algorithms, in-
deed each individual will allow to create a number of mutants equal to its size.
Each mutant is a copy of the initial chromosome where only 1 gene has been
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mutated (by random draw between 0 and the size of the chromosome), for the
first mutant individual it is the first gene that is mutated, for the second the
second gene and so on. For example if we have gene [2 3 4] the mutants will
be for example [4 3 4], [2 0 4] and [2 3 2]. The crossover is a classical 1 point
crossover, each individual is crossed in order to generate a daughter population
of size equal to the size of the initial population. Thus the algorithm does not
require a mutation probability and crossover probability parameter.
The last difference between the GAAM algorithm and the classical genetic al-
gorithms lies in the order in which the operations are performed. Indeed, the
randomly generated initial population is not evaluated at the beginning of the
algorithm, it is simply used to generate the daughter population and the mutant
population. So if we start with N individuals with chromosomes of size T we
obtain N individuals in the daughter population and N*T individuals in the mu-
tated population. We have thus 2*N + N*T individuals to evaluate at the end
of the first generation. We keep then the N best individuals. GAAM is described
in the algorithm 1.

Algorithm 1 : GAAM, G represents the number of generations, N the number
of individuals, T the size of the chromosomes, L the size of the dataset.

INPUT : G:int, N:int, T:int ,L:int
g = 0
Step 1 : Build N individuals with T genes randomly picked in {0,1,2..L} in order to
produce the initial population Ip
Step 2 : Aggressive mutation : Create Mp the mutate population
for j=1 to N do

for x=1 to T do
pick a random value m in {0,1,2..L}
Assign to D a copy of Ip(j)
D(x)=m
add D to Mp

end for
end for
Step 3 : Crossover : Apply a classical holland crossover on each individuals
Step 4 : Create Tp=Ip+Mp+Cp the total population evaluate each individual with
the fitness function and rank them according to their fitness.
Step 5 : Drop the N+N*T individuals with the lowest fitness from Tp and replace
Ip by the remaining,g+=1 If g = G return Ip(0) else back to step 2

3 Modified genetic algorithm with aggressive mutation
mGAAM

The GAAM algorithm is very efficient but the aggressive mutation principle
forces to use only a small number of initial individuals in order not to have too
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many individuals to evaluate after the mutation step. This low number of initial
individuals will lead to a low genetic diversity within the population, which may
cause the algorithm to remain trapped in a local optimum. We wanted to evaluate
the impact of the initial population size on the results of the algorithm. We have
therefore defined a version of GAAM, named mGAAM where the size of the
initial population can be modified compared to a classical version of the GAAM
algorithm. Thus our algorithm takes as parameters the size of a population
and the number of iterations of a classical version of GAAM. Our goal is to keep
approximately the same number of individuals in the population as the version of
GAAM defined with these parameters while proposing a lower or higher number
of individuals in the initial population while keeping the same number of crossed
individuals as in the initial version. Thus the parameter that will be adjusted
is the number of mutant chromosomes generated by a chromosome during the
mutation step. If we use a larger population than the original version, for example
20 instead of 10, the number of mutated individuals will be reduced in order to
obtain on average the same number of individuals per iteration as the original
version of the algorithm.
Our method changes the steps 2 and 3 of the GAAM algorithm. For step 3, we
keep only a number of crossed individuals equal to mGAAM_pop_seize. This
number corresponds to the size of the population to which we compare ourselves.
We cross all the individuals then we draw the desired number. Algorithm 2
replaces the mutation step of the original version. It is enough to add to the
original version a parameter GAAM_pop_size which describes the size of the
population to which one wishes to compare. Moreover the N corresponds to
mGAAM_pop_size in algorithm 2. When the population size is smaller than the
target population size, each gene is mutated several times. The overall mutation
process depends on probabilities so the number of individuals generated at each
generation is not fixed. However, the average size of the population at each
iteration (before the selection step) corresponds to the size of the one of the
classical GAAM algorithm (for the parameters we have chosen). In order to
maintain this correspondence the mutation rate to be used must be calculated
each time the experimental parameters change, this is done using the algorithm 3.

4 Comparisons between Gaam and mGaam

Our experimental setup is a Google Colab [23] instance with a Xeon 2.30GHz
4-core and 25GB Ram. The classifier used is a naive Bayesian classifier [19], we
chose this classifier because it has the advantage of being extremely fast to train.
The evaluation of the results is done using the average of the accuracy calculated
on 3 cross validation.
The 17 used datasets are present and described in the UCI machine learning
repository [20]. We used the versions of these datasets freely available on Open
ML [21,22].The datasets used are described in Table 1. The datasets contain
mostly numerical data, the categorical data are encoded.
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Algorithm 2 : Mutation mGAAM pop the population, L the number of
features in the dataset, mGAAM_pop_size : is the desired population size,
GAAM_pop_size is the size of the population being compared to, T is the size
of the chromosome
INPUT : pop:list, L:int, mgaam_pop_size:int, gaam_pop_size:int, T:int

INIT : tm ← Calc_tm_standard(mgaam_pop_size, gaam_pop_size,T)
offspring ← []

for j=1 to size(pop) do
tmp_offspring ← []
tmp_tm = copy(tm)
while tmp_tm>0 do

for i=1 to T do
ind gets copy(pop[j])
rho← random_uniform(0, 1)
if rho < tmp_tm then

new_val ← random value between 0 and L
ind[i]← new_val
add ind to tmp_offspring

tmp_tm ← tmp_tm - 1
offspring ← offspring + tmp_offspring

return offspring

Algorithm 3 : Calc_tm_standard mgaam_pop_size : is the desired popu-
lation size, GAAM_pop_size is the size of the population being compared to,
T is the size of the chromosome
INPUT : mGAAM_pop_size:int, GAAM_pop_size:int, T:int

tm ← gaam_pop_size∗(T+1)−mgaam_pop_size)

T∗mgaam_pop_size

return tm
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Each result presented is calculated from the results of 50 simulations. The mu-
tation rates for mGaam are automatically calculated to keep the number of
individuals equal (at each generation) to what would be used by the original
Gaam algorithm with 10 individuals (N), and 100 iterations (G). We have cho-
sen to use these parameters because they are always used in the original articles
concerning GAAM [18,17]. The number of individuals to be evaluated and the
number of characteristics must remain low in order to avoid an explosion of the
number of individuals to evaluate at each iteration.

Table 1. Description of the datasets used

Name Features No. of classes Examples Source
Leaf [24] 15 30 340 openml.org/d/1482

Thoracic-surgery 16 2 470 openml.org/d/4329
Credit-g [27] 20 2 1000 openml.org/d/31

Climate-model [28] 20 2 540 openml.org/d/40994
Dermatology 34 6 358 openml.org/d/35
Ionosphere 34 2 351 openml.org/d/59
Audit [25] 36 2 1552 openml.org/d/42931
SPECTF 44 2 349 openml.org/d/1600
Hill-valley 100 2 1212 openml.org/d/1479

Spectrometer 101 48 531 openml.org/d/313
Musk 167 2 6598 openml.org/d/1116

Semeion 256 10 1593 openml.org/d/1501
Madelon 500 2 2600 openml.org/d/1485
Har [29] 561 6 10299 openml.org/d/1478
Isolet 617 26 7797 openml.org/d/300

Parkinson-speech-uci [26] 753 2 756 openml.org/d/42176
Micro-mass 1300 10 360 openml.org/d/1514

5 Results

The results of our experiments are shown in table 3 and 4. First of all the column
corresponding exactly to the original algorithm is the one where the population
size is 10. By observing the results we notice that in the majority of the datasets
the results are better when the population size is higher than 10, very often a
size of 60 with a low mutation rate gives better results. This is explained by the
fact that using a larger starting population allows to obtain on average better
individuals at the end of the first iteration. These better initial individuals then
allow to obtain mostly better final results at the end of the 100 generations. This
effect can be seen in the figure 1 which represents the average accuracy results
at each iteration for the Credit g dataset. We can also see in the figure 1 that it
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is useless to increase the population indefinitely, the population of size 90 having
no advantage over the population of size 60.

We can then see that progressively when the number of features increases
in the datasets, the best solutions are found for smaller population sizes. This
is explained by the fact that our method tries to have the same number of
individuals at each iteration as the initial algorithm. This constraint implies
that at each generation when the population is greater than 10 we evaluate
less new individuals than the initial GAAM algorithm. Indeed with the initial
algorithm and the parameters of the experiment at each iteration (except the
first one) 10 individuals from crossing and 100 individuals from mutations are
evaluated. Whereas with the method we used in the experiment if the population
is 30 there are on average only 90 new individuals evaluated in each generation.
This has the effect of making the algorithm faster but also reduces the speed of
convergence. But when the number of features becomes important the algorithm
does not have time to converge completely because the problem becomes more
difficult. This effect can be visualised in figure 2 on the Micro-mass dataset. We
can thus explain the decrease in performance of the largest populations when
the number of features increases.

Fig. 1. Average accuracy for Leaf for several population sizes
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Fig. 2. Average accuracy for Micro-Mass for several population sizes

This problem can be alleviated by replacing the algorithm 3 with algorithm 4.
The modification in the method of calculation allows to obtain a larger number
of individuals evaluated at each iteration (equivalent to what we have with the
classical GAAM algorithm). The change of calculation method increases the
mutation rate in mGAAM (when the initial population is greater than the size
of the population of the GAAM algorithm which is used as a comparison point)
to compensate for the deficit of individuals evaluated at each iteration because
of the non-evaluation of individuals of the previous generation during a new
generation. We have tested (with the same parameters as before) the algorithm 4
on the micro-mass Dataset, the results are presented in the table 2. There is a
clear improvement in the results for large populations. However, the drawback
of this modification is the absence of gain in computation time compared to the
original algorithm.

Algorithm 4 : Calc_tm_imp mgaam_pop_size : is the desired population
size, gaam_pop_size is the size of the population being compared to, T is the
size of the chromosome, G the number of generations
INPUT : mgaam_pop_size:int, gaam_pop_size:int, T:int,G:int
tm ← gaam_pop_size−mgaam_pop_size

G∗T∗mgaam_pop_size
+

gaam_pop_size

mgaam_pop_size

return tm
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Table 2. Results on Micro-mass using algorithm 4 to generate the mutation rate

Dataset/Population size 10 20 30 40 60

Micro-mass
mean 88.588 88.861 89.216 89.155 89.155

median 88.472 88.888 89.444 89.027 89.444
max 88.588 91.944 92.222 91.666 92.222

Table 3. Results of the mGaam algorithm on several datasets defined against a version
of gaam using 10 individuals, 10 and 100 iteration size chromosomes, calculated from
the results of 50 simulations, part a.

Data/Pop 2 4 6 8 10 20 30 40 60

Leaf
m 73.227 73.220 73.250 73.392 73.333 73.534 73.504 73.510 73.552

Mdn 73.552 73.552 73.552 73.552 73.552 73.552 73.552 73.552 73.552
max 73.552 73.552 73.552 73.552 73.552 73.552 73.552 73.552 73.552

Thora
m 79.590 84.246 83.233 84.766 84.953 85.119 85.217 85.238 85.285

Mdn 84.254 84.257 85.106 85.106 85.106 85.319 85.319 85.319 85.319
max 85.319 85.319 85.319 85.319 85.319 85.319 85.319 85.319 85.319

Credit
m 75.053 75.383 75.291 75.399 75.461 75.505 75.563 75.555 75.623

Mdn 75.250 75.599 75.599 75.599 75.599 75.599 75.599 75.599 75.599
max 75.899 75.899 75.899 75.899 75.899 75.899 75.899 75.899 75.899

Clima
m 92.107 92.107 92.344 92.388 92.437 92.640 92.725 92.748 92.862

Mdn 91.851 92.037 92.407 92.407 92.592 92.777 92.962 92.962 92.962
max 92.962 92.962 92.962 92.962 92.962 92.962 92.962 92.962 92.962

Derma
m 96.155 96.704 96.899 96.866 96.844 96.990 97.118 97.083 97.207

Mdn 96.659 96.935 96.935 96.935 96.935 96.935 96.935 96.935 97.207
max 98.046 98.046 98.046 98.046 98.046 98.046 98.046 98.046 98.046

Ionos
m 87.054 88.501 88.632 88.689 88.552 88.957 88.991 89.065 89.105

Mdn 88.319 88.603 88.888 88.888 88.603 88.888 88.888 89.173 89.173
max 89.458 89.458 89.458 89.458 89.458 89.458 89.458 89.458 89.458

Audit
m 87.722 88.307 87.951 88.858 89.664 89.745 89.784 89.802 89.808

Mdn 89.432 89.559 89.496 89.559 89.689 89.818 89.883 89.883 89.819
max 90.142 90.142 90.142 90.142 90.142 90.142 90.142 90.142 90.142

SPEC
m 81.810 81.896 81.942 82.164 82.131 82.406 82.463 82.423 82.531

Mdn 81.951 81.951 81.951 82.234 82.228 82.517 82.520 82.520 82.520
max 83.092 83.092 83.092 83.092 83.092 83.092 83.092 83.092 83.092

Hill
m 52.306 52.369 52.391 52.422 52.420 52.447 52.516 52.514 52.534

Mdn 52.310 52.392 52.392 52.392 52.392 52.433 52.557 52.557 52.557
max 52.640 52.640 52.640 52.640 52.640 52.640 52.640 52.640 52.640

Spect
m 57.212 57.370 57.578 57.401 57.589 57.883 57.902 58.131 58.037

Mdn 57.250 57.438 57.532 57.438 57.721 58.003 58.003 58.192 58.003
max 58.568 58.945 58.945 58.945 58.945 58.568 58.945 58.945 58.945

Musk
m 95.060 95.233 95.124 95.267 95.294 95.251 95.290 95.338 95.284

Mdn 95.141 95.217 95.240 95.285 95.308 95.240 95.346 95.369 95.270
max 95.452 95.452 95.452 95.452 95.452 95.452 95.452 95.452 95.452
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Table 4. Results of the mGaam algorithm on several datasets defined against a version
of gaam using 10 individuals, 10 and 100 iteration size chromosomes, calculated from
the results of 50 simulations, part b.

Data/Pop 2 4 6 8 10 20 30 40 60

Musk
m 95.060 95.233 95.124 95.267 95.294 95.251 95.290 95.338 95.284

Mdn 95.141 95.217 95.240 95.285 95.308 95.240 95.346 95.369 95.270
max 95.452 95.452 95.452 95.452 95.452 95.452 95.452 95.452 95.452

Seme
m 66.367 66.178 66.204 66.817 66.726 66.514 66.661 66.572 65.546

Mdn 66.823 66.478 66.603 66.917 66.980 66.698 66.917 66.792 65.599
max 68.926 68.424 68.361 68.738 68.424 68.926 68.424 68.361 68.047

Made
m 63.856 63.833 63.895 64.039 63.963 64.353 64.131 63.941 64.078

Mdn 63.653 63.730 63.692 63.884 63.961 64.212 63.961 63.827 63.923
max 65.038 65.577 65.347 65.808 65.731 65.615 65.577 65.308 65.346

Har
m 90.949 90.966 90.957 90.842 90.937 90.853 90.761 90.742 90.411

Mdn 90.994 90.989 91.018 90.965 91.013 90.940 90.756 90.804 90.435
max 91.270 91.261 91.280 91.270 91.261 91.261 91.212 91.203 91.096

Isol
m 74.846 74.979 4.971 74.805 75.089 74.722 74.339 74.296 73.241

Mdn 74.746 75.073 5.099 74.996 75.022 74.868 74.586 74.284 73.252
max 76.221 76.195 6.016 75.990 76.208 75.798 75.926 75.824 75.221

Parkin
m 85.169 85.185 85.433 85.489 85.544 85.642 85.820 85.899 85.396

Mdn 85.251 85.052 85.582 85.317 85.449 85.582 85.780 85.978 85.317
max 87.301 87.566 87.169 86.904 87.566 87.037 87.301 87.962 87.169

Micro
m 89.111 89.183 88.588 88.649 88.588 88.550 88.838 88.544 87.755

Mdn 89.166 89.444 88.611 88.888 88.472 88.611 88.611 88.611 87.777
max 91.944 92.222 91.944 91.944 91.111 91.666 91.666 91.388 90.833

6 Conclusion

In this paper we have presented a modification of the GAAM algorithm. The
main modification is to decrease the number of mutations that each individual
undergoes while using a larger population. It appears from the experiments that
we have performed that our algorithm has two advantages over the original
algorithm. First, the features selected by our algorithm lead to better accuracy
results. Secondly, using a larger population reduces the computation time, by
decreasing the total number of individuals to be re-evaluated at each iteration.
In the case of datasets containing a large number of features, we have introduced
a second possibility to calculate the mutation rate. This one does not have the
advantage of a time saving but allows to maintain better results than the original
algorithm at equal computation cost. Future studies should be conducted to
combine our method with the techniques implemented in fGAAM [31] to speed
up the algorithm. Moreover, we could be interested in combining our new method
with seeding techniques of the initial population [30] to try to improve the results.
Finally it would also be interesting to compare the method with other advanced
feature selection techniques [32,33].
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