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Optimal Reach Estimation and Metric Learning

We study the estimation of the reach, an ubiquitous regularity parameter in manifold estimation and geometric data analysis. Given an i.i.d. sample over an unknown d-dimensional C k -smooth submanifold of R D , we provide optimal nonasymptotic bounds for the estimation of its reach. We build upon a formulation of the reach in terms of maximal curvature on one hand, and geodesic metric distortion on the other hand. The derived rates are adaptive, with rates depending on whether the reach of M arises from curvature or from a bottleneck structure. In the process, we derive optimal geodesic metric estimation bounds.

Introduction 1.Geometric Inference

Topological data analysis and geometric methods now constitute a standard toolbox in statistics and machine learning [START_REF] Wasserman | Topological data analysis[END_REF][START_REF] Chazal | An introduction to topological data analysis: Fundamental and practical aspects for data scientists[END_REF]. In this family of methods, data X n := {X 1 , . . . , X n } are usually seen as point clouds in high dimension, for which complex structural correlations give rise to an underlying structure that is neither full-dimensional, nor even linear. Dealing with non-linearity is very well understood through the prism of non-parametric regression. However, in absence of distinguished "covariate" and "response" variables (i.e. coordinates), regression does not make sense anymore. Hence, one needs to adopt a more global and coordinate-free approach: data are naturally viewed as lying on a submanifold M ⊂ R D of dimension d D, where d corresponds to its true number of degrees of freedom.

This approach opens the way to the estimation of numerous geometric and topological quantities to describe data. Central to it is the manifold itself [START_REF] Genovese | Minimax manifold estimation[END_REF][START_REF] Genovese | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF][START_REF] Kim | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF][START_REF] Fefferman | Fitting a manifold of large reach to noisy data[END_REF][START_REF] Divol | Minimax adaptive estimation in manifold inference[END_REF][START_REF] Aizenbud | Non-Parametric Estimation of Manifolds from Noisy Data[END_REF][START_REF] Puchkin | Structure-adaptive manifold estimation[END_REF], where error is most commonly measured in Hausdorff distance. Among many others, let us also mention the homology [START_REF] Balakrishnan | Minimax rates for homology inference[END_REF], persistent homology [START_REF] Chazal | Convergence rates for persistence diagram estimation in topological data analysis[END_REF], differential quantities [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF], intrinsic metric [START_REF] Arias-Castro | Minimax Estimation of Distances on a Surface and Minimax Manifold Learning in the Isometric-to-Convex Setting[END_REF] and regularity [START_REF] Aamari | Estimating the reach of a manifold[END_REF].

Reach and Regularity

Similarly to functional estimation, the theoretical study of nonparametric geometric problems naturally comes with regularity conditions. By far, the most ubiquitous regularity and scale parameter in this context is the reach. First introduced by H. Federer's seminal paper [START_REF] Federer | Curvature measures[END_REF] on geometric measure theory, the reach rch(K) ∈ R + of a set K ⊂ R D measures how far K is from being convex [START_REF] Attali | Vietorisrips complexes also provide topologically correct reconstructions of sampled shapes[END_REF]. It hence provides a typical scale at which it shares most of the properties of a convex set. These properties include -among others -uniqueness of the projection map, contractibility of balls, and explicit formulas for the volume of thickenings (see [START_REF] Federer | Curvature measures[END_REF]). When K = M is a submanifold, the reach also assesses quantitatively how it deviates from its tangent spaces. Therefore, the reach also provides an upper bound on curvature (that is, a bound in C 2 ) and a minimal scale of possible quasi self-intersections [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF].

For all these reasons, the reach practically appears in all geometric inference methods as a natural scale parameter, which either drives a bandwidth used in a localization method [START_REF] Genovese | Minimax manifold estimation[END_REF][START_REF] Aamari | Estimating the reach of a manifold[END_REF], a minimal regularity scale in a minimax study [START_REF] Kim | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF], or a signal part in a signal-to-noise ratio [START_REF] Genovese | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF][START_REF] Fefferman | Fitting a manifold of large reach to noisy data[END_REF][START_REF] Aizenbud | Non-Parametric Estimation of Manifolds from Noisy Data[END_REF]. See [START_REF] Aamari | Estimating the reach of a manifold[END_REF] for more examples of its use. On the estimation side, the reach has already been studied under several angles.

-The formulation of rch(M ) in terms of deviation to tangent spaces from [START_REF] Federer | Curvature measures[END_REF]Theorem 4.18] has been put to use through a plugin in [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF]. The authors derived non-matching upper and lower bounds for the estimation of rch(M ) over C 3 submanifolds. In addition to being suboptimal, the method of [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF] requires the knowledge of tangent spaces, and is very sensitive to uncertainty on them (see [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF]Section 6]).

-Extending the minimax study of [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF], [START_REF] Berenfeld | Estimating the reach of a manifold via its convexity defect function[END_REF] took advantage of the so-called convexity defect function introduced by [START_REF] Attali | Vietorisrips complexes also provide topologically correct reconstructions of sampled shapes[END_REF] to propose another plugin strategy, with rates obtained over more general C k -smooth manifold classes. Despite still deriving non-matching upper and lower bounds, [START_REF] Berenfeld | Estimating the reach of a manifold via its convexity defect function[END_REF] managed to exhibit two different estimation rates, depending on whether the reach testifies of a high curvature zone (the so-called local case, with slow rates) or of a narrow bottleneck structure (global case, with faster rates). In this work, the derived rates are only suboptimal when the reach is achieved by curvature.

-More recently, [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF]Theorem 1] gave a new formulation of the reach in terms of geodesic distortion. Informally, they showed that rch(K) is the largest radius r 0 for which the geodesic distance d K is smaller than the geodesic distance d S(r) on a Euclidean ball of radius r. Based on this purely metric statement, [START_REF] Cholaquidis | Universally consistent estimation of the reach[END_REF] proposed to plug-in a nearest-neighbor graph distance of the data in this formulation. This method provides a consistent estimator under very weak assumptions. Unfortunately, it fails to take advantage of high order regularity, when the reach is achieved by curvature (again).

With this analysis of possible estimation flaws in mind, this article proposes a two-step method. In short, we decouple the estimation of the local and global reaches [START_REF] Aamari | Estimating the reach of a manifold[END_REF], and estimate them separately via max-curvature estimation and geodesic distance estimation respectively.

Metric Learning

In the data analysis area, metric learning refers to the problem of finding a distance d over the space of observations X n ×X n that is relevant for a given task at stake [START_REF] Yang | Distance metric learning: A comprehensive survey[END_REF][START_REF] Suárez | A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges[END_REF]. For instance, in a supervised framework where one is provided with tuples of allegedly similar or dissimilar observations, the goal is to find a distance that is small on the similar tuples and large on the dissimilar ones. There is a wide range of existing methods in the literature, ranging from parametric (LSI [START_REF] Xing | Distance metric learning with application to clustering with side-information[END_REF], MCML [START_REF] Globerson | Metric learning by collapsing classes[END_REF], LDML [START_REF] Guillaumin | Is that you? metric learning approaches for face identification[END_REF] among others) to nonparametric (DMLMJ [START_REF] Nguyen | Supervised distance metric learning through maximization of the jeffrey divergence[END_REF], kernel methods [START_REF] Kwok | Learning with idealized kernels[END_REF][START_REF] Chatpatanasiri | A new kernelization framework for mahalanobis distance learning algorithms[END_REF], to cite a few).

In an unsupervised setting, metric learning aims at finding a metric that takes into account the underlying geometry of the data. That is, it amounts to estimating of shortest path (or geodesic) distance. Often, this is done via a dimension reduction technique: any low-dimensional embedding of the data gives rise to a new distance over the data in the embedded space. Existing algorithms include PCA, t-SNE [START_REF] Hinton | Stochastic neighbor embedding[END_REF], MDS [START_REF] Cox | Multidimensional scaling[END_REF], Isomap [START_REF] Tenenbaum | A global geometric framework for nonlinear dimensionality reduction[END_REF], or MVU [START_REF] Arias-Castro | On the convergence of maximum variance unfolding[END_REF]. See [START_REF] Suárez | A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges[END_REF] for a thorough overview of the field. where d j v N p stands for the jth differential of N p at v, and • op for the Euclidean operator norm over tensors.

As explained in [2, Section 2.2], radii 1/(4L 2 ) in local parametrizations have only been chosen for convenience. For k = 2, the existence of parametrizations Ψ p is always guaranteed as soon as rch min > 0 and L 2 2/ rch min (see [2, Lemma 1]). Definition 2.2. We let P k rch min ,L (f min , f max ) denote the set of Borel probability distributions P on R D satisfying:

-Its support M := Support(P ) belongs to C k rch min ,L ; -It has a density f with respect to the volume measure on M , such that f min f (x) f max for all x ∈ M.

On the estimation side, the uniform smoothness of the parametrizations in Definition 2.1 allows for estimation of the manifold via local polynomial fitting around sample points in the models P k rch min ,L (f min , f max ). Recall that the Hausdorff distance between two compact subsets K, K ⊂ R D is defined by

d H (K, K ) := max sup x∈K d(x, K ), sup x ∈K d(x , K) , (1) 
where for all u ∈ R D , d(u, K) := min

x∈K x -u (2) 
stands for the distance function to K. The estimation rates over the model P k rch min ,L (f min , f max ) have been studied in [START_REF] Aamari | Estimating the reach of a manifold[END_REF]. A key result that we will use is the following.

Theorem 2.3 ([2, Theorem 6]

). There exists an estimator M such that for n large enough, sup P ∈P k rch min ,L (f min ,fmax)

E P n [d H ( M , M )] C d,k,rch min ,L,f min ,fmax log n n k/d
, where in the supremum, M stands for Support(P ).

This rate is minimax optimal up to log n factors [2, Theorem 7]. It can be achieved by a local polynomial patch estimator M (see [START_REF] Arias-Castro | On the convergence of maximum variance unfolding[END_REF] below) that we will use as a preliminary step towards reach estimation. Let us also mention here that these fitted local polynomials also allow for estimation of differential quantities of M , such as tangent spaces and curvature at sample points, with (minimax) convergence rates of order O(n -(k-1)/d ) and O(n -(k-2)/d ) respectively (see [START_REF] Aamari | Estimating the reach of a manifold[END_REF]Theorems 2 to 5]). This fact will be of key importance in Section 3.3, where estimating the maximal curvature of M will allow to estimate the so-called "local reach".

3 Reach and Related Quantities

Characterizations and Relaxations of the Reach

Let K be a compact subset of R D . Following the original definition of [START_REF] Federer | Curvature measures[END_REF], the reach of K, denoted by rch(K), may be thought of as the largest radius of a neighborhood of K onto which the projection map π K onto K is well-defined. More formally, define the medial axis of K by

Med(K) := u ∈ R D | ∃x 1 = x 2 ∈ K u -x 1 = u -x 2 = d(u, K) .
The reach of K is then defined as the smallest distance between K and Med(K).

Definition 3.1. For all closed K ⊂ R D , the reach of K is defined by rch(K) := min x∈K d(x, Med(K)) = inf u∈Med(K) d(u, K).
Note that in full generality, the medial axis might not be a closed set, so that the infimum in Definition 3.1 may not be attained (for instance in the case where K is one-dimensional with a sharp edge). From a topological viewpoint, a key property of sets with positive reach is that the projection onto K induces continuous retractions from the offset K r := u ∈ R D | d(u, K) r onto K, whenever r < rch(K) [START_REF] Federer | Curvature measures[END_REF]Theorem 4.8]. This property is at the core of topologically consistent reconstruction procedures such as that of [START_REF] Boissonnat | Manifold reconstruction using tangential Delaunay complexes[END_REF].

Sets with positive reach can also been thought of as generalizations of convex sets, characterized by the smoothness of their distance function. Indeed, based on the remark that

x → d(x, K) is C 1 on R D \K whenever K is convex, [23] define r-proximally-smooth sets as the sets K such that d(•, K) is C 1 over u ∈ R D | 0 < d(u, K) < r .
Interestingly, for subsets of R D , r-proximally smooth sets are exactly sets with reach rch(K) r [START_REF] Poliquin | Local differentiability of distance functions[END_REF], so that the reach may be alternatively defined in terms of gradients of the distance function. To this aim, following [START_REF] Chazal | The "λ-medial axis[END_REF], a generalized gradient function can be defined over R D \ K. For all x ∈ R D \ K, we write

∇d(x, K) := x -c K (x) d(x, K) , (3) 
where c K (x) is the center of the smallest enclosing ball of the set π K ({x}) of nearest neighbors of x on K. Since c K (x) = π K (x) whenever x / ∈ Med(K), the medial axis can actually be characterized as

Med(K) = x ∈ R D \ K | ∇d(x, K) < 1 ,
and the reach as

rch(K) = sup {r > 0 | 0 < d(x, K) < r ⇒ ∇d(x, K) = 1} .
This characterization of the reach allows for a straightforward relaxation. Namely, for a parameter µ ∈ [0, 1], the seminal paper [START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF] introduces the so-called µ-medial axis as being

Med µ (K) := x ∈ R D \ K | ∇d(x, K) µ ,
and the µ-reach as

rch µ (K) := inf u∈Medµ(K) d(u, K). (4) 
It is clear that for all µ < 1, rch(K) rch µ (K), with rch(K) corresponding to the limit rch 1 -(K). Furthermore, this relaxation of the reach still yields enough regularity guarantees that the offsets K r = u ∈ R D | d(u, K) r are isotopic for all r ∈ (0, rch µ (K)) [START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF]Lemma 2.1]. Hence, the condition that rch µ (K) > 0 conveys enough regularity properties for many topological estimators to work [START_REF] Chazal | Geometric inference for probability measures[END_REF]. Through this lens, the largest radius that ensures the topological stability of the offsets is the 0-reach, also called weak-feature size,

wfs(K) := inf u∈Med 0 (K) d(u, K), (5) 
that is the distance from K to the set of critical points of d(•, K). As detailed in the following section, the weak-feature size plays a special role in the case where K is a manifold. Here come a few elementary properties of the weak feature size that we will use later on.

Proposition 3.2. Let K ⊂ R D be compact. (i) If K is a closed submanifold of R D , then wfs(K) < +∞; (ii) If wfs(K) < +∞, then for all µ ∈ [0, 1), rch(K) rch µ (K) wfs(K) D 2(D + 1) diam(K).
A proof is given in Section A.1. Proposition 3.2 thus ensures that wfs(M ) is uniformly bounded over the classes C k rch min ,L introduced in Section 2. Since wfs(K) and rch µ (K) both measure a typical scale for topological stability, estimating them from sample could be of practical interest for topological inference. Unfortunately, the following negative result shows that this estimation problem is intractable, even over a well-behaved model of closed C k -submanifolds such as P k rch min ,L (f min , f max ). 

E P ⊗n [| r µ -rch µ (M )|] cd,k rch min > 0,
where r µ ranges among all the possible estimators based on n samples.

An intuition behind Theorem 3.3 is that for all µ < 1, the µ-medial axis is an unstable structure. For certain manifolds M 0 ∈ C k rch min ,L , one can find arbitrarily small perturbations of M 0 whose µmedial axes remain at a fixed Hausdorff distance from Med µ (M 0 ). See the proof of Theorem 3.3 in Section A.2 for a precise statement of this intuition.

Despite the fact that rch(K) = rch 1 -(K), this negative result indicates that we cannot leverage µ-reach estimation to obtain quantitative bounds for reach estimation. We shall hence turn towards other reach-related quantities. In fact, the particular case where K = M is a manifold offers us several other characterizations of the reach, which suggest other estimation strategies.

Reach of Submanifolds

In what follows, M stands for a d-dimensional closed submanifold of R D . Note that [26, Remarks 4.20 and 4.21] and [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF] assert that a closed submanifold with positive reach is at least of regularity C 1,1 , so that geodesics and tangent spaces are always defined in the usual differential sense. For the manifold case, the intuition of rch(M ) as a generalized convexity parameter is further backed by [START_REF] Federer | Curvature measures[END_REF]Theorem 4.8]. Indeed, the inequality

x -π C (x), π C (x) -c 0 valid for all c ∈ C and x ∈ R D whenever C is convex, translates to x -π M (x), π M (x) -y -π M (x) - y 2 x -π M (x) /(2 rch(M )) being valid for all y ∈ R D and x ∈ R D such that d(x, M ) < rch(M ).
This leads to the following characterization of the reach, in the manifold case. Theorem 3.4 ([26,Theorem 4.18]). For a submanifold M ⊂ R D without boundary,

rch(M ) = inf p =q∈M p -q 2 2d(q -p, T p M ) ,
where T p M denotes the tangent space of M at p.

This result provides a natural plugin estimator, proposed by [START_REF] Aamari | Estimating the reach of a manifold[END_REF], which consists in replacing M and T p M by suitable estimators of them. A key result from [START_REF] Aamari | Estimating the reach of a manifold[END_REF] is a description of how the infimum in Theorem 3.4 is achieved, possibly asymptotically. This result conveys the following intuition in the manifold case: the infimum in the right-hand side of Theorem 3.4 may be attained:

(Local case) Asymptotically, for pairs of points (p, q) converging to a maximal curvature point in some direction, so that rch(M ) = R (M ).

(Global case) For a pair of points (p, q) belonging to parallel areas of M , forming a bottleneck zone, so that rch(M ) = wfs(M ).

This local/global dichotomy of the reach may also be retrieved in the recent characterization given by [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF] in terms of metric distortion.

Theorem 3.6 ([12, Theorem 1]). Let K ⊂ R D be a closed subset. Then

rch(K) = sup r > 0 | ∀p, q ∈ K, p -q < 2r ⇒ d K (p, q) 2r arcsin p -q 2r ,
where d K : K × K → R+ stands for the shortest-path (or geodesic) distance on K.

Recall that, for all p, q ∈ K, the distance d K (p, q) is the infimum of the length of all the continuous path in K between p and q. As will be detailed in Section 4, the above result allows to characterize the reach in terms of metric distortion with respect to metrics on spheres of radii r. In the same spirit as Theorem 3.5, when K = M is a submanifold, the configurations of (p, q, r) in the supremum of Theorem 3.6 are limited by the same two local and global layouts:

(Local case) When p and q tend to a maximal curvature point in some direction, the geodesic distance d K behaves like that of a sphere of radius R (M ) at this point in this direction.

(Global case) When p and q are in parallel areas, their geodesic distance must be larger than the spherical distance of radius p -q /2.

Plug-in Methods for Reach Estimation

The characterizations of the reach given in Section 3.2 all lead to their associate plug-in estimators:

-Studying a C 3 model similar to P 3 rch min ,L (f min , f max ), [START_REF] Aamari | Estimating the reach of a manifold[END_REF] took advantage of the characterization with tangent spaces (Theorem 3.4) to conceive a reach estimator that converges at rate O(n -2/(3d-1) ) in the local case (rch(M ) = R (M )), and O(n -1/d ) in the global case (rch(M ) = wfs(M )).

-Based on the metric distortion characterization of Theorem 3.6, [START_REF] Cholaquidis | Universally consistent estimation of the reach[END_REF] propose a reach estimator that is consistent whenever M has positive reach.

In light of Theorem 3.5, differences of convergence rates between the local and global case are to be expected. To quantify this intuition, [START_REF] Berenfeld | Estimating the reach of a manifold via its convexity defect function[END_REF] introduces subclasses of the model P k rch min ,L (f min , f max ), parametrized by the gap between R (M ) and wfs(M ). They obtain the following lower bounds. Theorem 3.7 ([10, Theorem 7.1] and [2, Proposition 2.9]). Let α ∈ R, k 2, and write

P k rch min ,L,α (f min , f max ) := P ∈ P k rch min ,L (f min , f max ) | R (M ) wfs(M ) + α ,
where M denotes Support(P ). Then, for all rch min > 0 there exists small enough f min and large enough f max , L such that

inf rch sup P ∈P k rch min ,L,α (f min ,fmax) E| rch -rch(M )| c rch min ,d,k 1 n (k-2)/d , if α 0, inf rch sup P ∈P k rch min ,L,α (f min ,fmax) E| rch -rch(M )| c rch min ,d,k,α 1 n k/d , if α > 0.
These bounds indicate that estimating the reach is at least as hard as estimating the curvature in the local case (rch(M ) = R (M )), and at least as hard as estimating the manifold in the global case (rch(M ) = wfs(M )). We will prove in Section 6 that these rates are in fact minimax optimal up to log n factors. This means that reducing reach estimation to curvature and manifold estimation is a good way to go, as it leads to optimal rates. To do so, following the idea behind Theorem 3.5, estimating R (M ) -or some notion of local reach -and wfs(M ) -or some notion of global reach -separately seems a sensible approach.

Local Reach Estimation

For (max-)curvature estimation, the strategy that we adopt follows from the polynomial patches estimator proposed in [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF]. Given a localization bandwidth h > 0, and a parameter t > 0, for all i ∈ {1, . . . , n}, we let πi : R D → R D be an orthogonal projector of rank d and T(j) i : R D ⊗j → R D be symmetric tensors solutions of the least squares problem min π

max 2 j k-1 T (j) 1 j-1 t P (i) n-1   x -π(x) - k-1 j=2 T (j) (π(x) ⊗j ) 2 1 B(0,h) (x)   , (6) 
where

P (i) n-1 := 1 n-1
p =i δ Xp-X i denotes the empirical measure centered at point X i . Following [3, Section 3], if h is taken to be of order Θ (log n/n) 1/d , that t is chosen such that t k h 1, and that Ti := Im(π i ) denotes the image of πi -which is a d-dimensional vector space by construction -, then the local patches

Ψ i : B Ti (0, 7h/8) -→ R D v -→ X i + v + k-1 j=2 T(j) i (v ⊗j ) (7) 
are local O(h k ) approximations of M whenever n is large enough. Furthermore, for v ∈ B Ti (0, h/4),

we can estimate the curvature tensor at π M ( Ψ i (v)) via the second derivative of Ψ i at v, expressed in local coordinates around Ψ i (v) given by a basis of Im(d v Ψ i ). To summarize, for all v ∈ B Ti (0, h/4), [START_REF] Arias-Castro | On the convergence of maximum variance unfolding[END_REF] provides a d-dimensional space Ti,v := Im(d v Ψ i ), as well as a symmetric bilinear map

T(2) i,v : Ti,v × Ti,v → T ⊥ i,v , that is provably close to II π M ( Ψ i (v))
. The precise definition of T(2) i,v is given in Section A.3. A minimal curvature radius (i.e. maximal curvature) estimator may then be computed as the minimal curvature radius of all the polynomial patches around sample points, that is

R := min 1 i n min v∈ B Ti (0,h/4) T (2) i,v -1 op . (8) 
Provided M is uniformly well approximated by n i=1 Ψ i ( B Ti (0, h/4)), the convergence rate of R towards R (M ) will follow from uniform curvature bounds, similar to the pointwise ones from [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF]Theorem 4]. We are able to prove the following. . Then for n large enough, with probability larger than 1 -2n -k/d , we have

R -R (M ) C d,k,L,rch min R 2 (M ) f max f min h k-2 .
We refer to Section A.3 for a proof of this result. In particular, the estimator R achieves the rate of the lower bound from Theorem 3.7 in the case where rch(M ) = R (M ) (i.e. α 0), up to log n factors.

Global Reach Estimation

To complete the construction of an estimator of rch(M ), building an estimator of wfs(M ) could be a possibility. However, Theorem 3.3 shows that building an estimator of the weak feature size with a uniform convergence rates over P k rch min ,L (f min , f max ) is hopeless. Nonetheless, it is important to note that a uniform estimation rate of wfs(M ) over P k is not necessary to obtain uniform convergence rate for rch(M ). Indeed, an estimator wfs of wfs(M ) that exhibits an optimal uniform convergence rate whenever wfs(M ) R (M ), and that is provably larger than R (M ) otherwise, is enough to build an optimal reach estimator when combined with R . This is the case, for instance, of the weak feature size estimator of [START_REF] Berenfeld | Estimating the reach of a manifold via its convexity defect function[END_REF] based on the so-called convexity defect function.

Based on this remark, we adopt a more general strategy, by seeking for an intermediate geometric scale θ(M ) (or feature size) such that for all M ∈ C k rch min ,L , rch(M ) θ(M ) wfs(M ).

In such a case, Theorem 3.5 extends trivially, with wfs(M ) replaced by θ(M ).

Proposition 3.9. Assume that θ :

C 2 rch min → R + is such that rch(M ) θ(M ) wfs(M ) for all M ∈ C 2 rch min . Then, rch(M ) = θ(M ) ∧ R (M ).
Given such an intermediate scale parameter of interest θ(M ), and assuming that a consistent estimator θ of θ(M ) is available, one can naturally consider the plugin rch := R ∧ θ. For free, Proposition 3.9 yields that θ(M

)1 R (M )>rch(M ) = rch(M )1 R (M )>rch(M ) , so that | rch(M ) -rch| | R -R (M )|1 R (M ) rch(M ) + | θ -θ(M )|1 R (M )>rch(M ) , (9) 
as soon as

|R (M ) -R | + |θ(M ) -θ| |R (M ) -θ(M )|.
In addition, such a quantity would provide a local scale that is of interest for further topological inference, as exposed in Section 3.1.

According to Theorem 3.3, taking θ(M ) to be related to the medial axis characterization of the reach -such as the µ-reach, or the λ-reach defined in [START_REF] Chazal | The "λ-medial axis[END_REF]) -is likely to lead to an unsolvable statistical problem, because of the inherent instability of the medial axis. Hence, we rather build upon the metric distortion characterization of the reach given by Theorem 3.6, and provide a better-behaved intermediate scale θ(M ): the spherical distortion radius.

Spherical Distortion Radius

Motivation and Definition

Based on Theorem 3.6, we now build a geometrically stable feature size that measures the maximum radius (or scale) at which the geodesic distance can be compared to the corresponding spherical distance. To be more precise, for x, y ∈ R D and r > 0, we define the spherical distance d S(r) (x, y) -or great-circle distance -as the distance between x and y when seen as both lying on a sphere of radius r. That is,

d S(r) (x, y) := 2r arcsin x-y 2r if x -y 2r, +∞ otherwise Note that the map r → d S(r) (x, y) is decreasing on [ x -y /2, ∞) and that d S(r) (x, y) = 1 2 π x -y for r = x -y 2 and d S(r) (x, y) ---→ r→∞ x -y .
Then, Theorem 3.6 can be rewritten as

rch(K) = sup r > 0 | ∀x, y ∈ K, x -y < 2r ⇒ d K (x, y) d S(r) (x, y) .
It should be noted that d S(r) is not formally a distance on K (unless K is a subset of a sphere of radius r), but this is of little importance in what follows.

Based on the same idea that motivates the introduction of the µ-reach, we intend to discard curvature effects to obtain some notion of global reach. In the metric characterization of the reach from Theorem 3.6, this can be done by the supremum restricting to points that are not too close. Definition 4.1. Let K be a compact subset of R D , d a distance on K and δ > 0. The spherical distortion radius of the metric space (K, d) at scale δ is defined by

sdr δ (K, d) := sup r > 0 ∀x, y ∈ K, δ x -y < 2r ⇒ d(x, y) d S(r) (x, y) .
In words, the spherical distortion radius at scale δ > 0 is the largest radius r for which the distance d is bounded above by the spherical distance at radius r, when restricted to points that are at least δ-apart for the Euclidean distance.

K x y d S(r1) (x, y) d S(r0) (x, y) d K (x, y)
Figure 1: A curve K in the plane. In blue is the shortest path between two points x and y, whose length is d K (x, y). In green (resp. grey) is the circle portion of radius r 0 (resp. r 1 ) going through x and y. The layout is chosen so that r 0 r 1 and d S(r 1 ) (x, y)

d K (x, y) d S(r 0 ) (x, y).
By construction, sdr δ (K, d) δ/2 for all δ > 0. Furthermore, whenever δ is strictly greater than diam K, then no pairs of points in x, y ∈ K satisfies x -y δ so that sdr δ (K) = +∞. On the other hand, if δ = 0, then the spherical distortion radius of (K, d K ), coincides with the reach of K (Theorem 3.6). In fact, Proposition 4.2 below confirms that the spherical distortion radius interpolates between the reach and the weak feature size. Example 4.3. As a toy example, let us study the spherical distortion radius of the wedge shape

K α = L 1 ∪ L 2
where L 1 and L 2 are two half-line originated from a common point z ∈ R D (see Figure 2). We let α ∈ (0, π) be the angle between these two lines. In this context, we have rch(K α ) = 0, and it is easy to see that wfs(K α ) = ∞. Furthermore, the usual interpolations between the reach and the weak feature size exhibit a very degenerate behavior in the presence of an angular configuration such as this one, with for instance

rch µ (K α ) = 0 if µ sin(α/2), ∞ if µ < sin(α/2).
On the contrary, we show hereafter that the spherical distortion radius interpolates non-trivially between rch(K α ) and wfs(K α ) in this case, giving rise to a new family of relevant characteristic scales even for non-smooth subsets K α .

To see this, take x ∈ L 1 and y ∈ L 2 , and denote by a := x -z and b := y -z . The intrinsic distance d Kα (x, y) is given by a + b while x -y 2 = a 2 + b 2 -2ab cos(α). Now the solution of the minimization problem

min a 2 + b 2 -2ab cos(α) | a + b = d Kα (x, y)
is given by a = b = d Kα (x, y)/2 and equals d 2 Kα (x, y) sin 2 (α/2). The spherical distortion radius of K α at scale δ is thus the largest r such that

δ sin(α/2) 2r arcsin δ 2r . ( 10 
)
Since the right-hand side above ranges between δ and δπ/2, we distinguish two cases:

-If sin(α/2) < 2/π, then no r can fulfill [START_REF] Berenfeld | Estimating the reach of a manifold via its convexity defect function[END_REF]. Hence, sdr

δ (K α , d Kα ) = δ/2.
-Otherwise sin(α/2) 2/π, in which case the largest r is given by the equality ϕ(2r/δ) = 1/ sin(α/2), where ϕ(u)

:= u arcsin(1/u) is a bijection between [1, ∞) and (1, π/2].
All in all, it holds

sdr δ (K α , d Kα ) = δ/2 if α < α * (δ/2)ϕ -1 (1/ sin(α/2)) if α α * where α * = 2 arcsin(2/π) < π/2. Note that compared to rch µ (K α ), there is no discontinuity in sdr δ (K α , d Kα ) as α varies. x z y Med µ (K α ) α d S(r) (x, y) d Kα (x, y) K α r (a) sdr δ (K α , d Kα ) δ/2 0 α * α π (b) Figure 2: (a) Diagram of K α = L 1 ∪ L 2
with an angle α between the two half-lines. The shortest path between x and y is drawn in blue. In dashed the µ-medial axis for µ > sin(α/2), showing in particular that rch µ (K α ) = 0 in this case. (b) Plot of the function α → sdr δ (K α , d Kα ), which operates a smooth interpolation between δ/2 and ∞.

Example 4.3 above carries the intuition that the spherical distortion radius seems somehow stable with respect to Hausdorff perturbations, contrary to the µ-reach. We quantify this intuition in the following section.

Stability Properties

In this section, we will be comparing different metric spaces on subsets of R D . Let K and K be two subsets of R D , endowed with distances d and d respectively. We intend to prove that sdr δ (K, d) and sdr δ (K , d ) are close whenever (K, d) and (K , d ) are close, and that (K, d) has good properties. The notion of proximity between K and K will be measured in Hausdorff distance (see [START_REF] Aamari | Minimax Boundary Estimation and Estimation with Boundary[END_REF]). It remains to define a notion of proximity between d and d , which is called the mutual distortion. 

D δ (d |d) := sup x ,y ∈K x -y δ d (x , y ) d(π K ({x }), π K ({y }))
.

where π K is the (possibly multivalued) closest-point projection onto K for the ambient Euclidean distance, and where

d(π K ( x ), π K ( y )) := inf d(x, y) | x ∈ π K ( x ), y ∈ π K ( y ) .
We adopt the convention D δ (d |d) = 0 if δ > diam(K ). The mutual distortion of d and d is then defined as

D δ (d, d ) := max D δ (d |d), D δ (d|d ) .
The mutual distortion defined above allows to compare distances on different spaces, while taking into account their respective embeddings in R D . A small distortion D δ (d, d ) means that, if a, b ∈ K and x, y ∈ K are two couples of points that are δ-separated and such that x and a, and y and b are respectively close to each other, then d(a, b) and d (x, y) should be close as well. This definition of mutual distortion between metric subspaces of R D is related to the existing notion metric distortion of an embedding. See for instance [START_REF] Bourgain | On lipschitz embedding of finite metric spaces in hilbert space[END_REF] or more recently [START_REF] Chennuru Vankadara | Measures of distortion for machine learning[END_REF] which deals with distortion measures in a statistical framework. It is nonetheless significantly different, in particular because the usual notion of distortion is invariant through re-scaling of either d or d . In our framework, invariance with respect to scaling is an undesirable property, since we want to estimate the reach, which is itself a scale factor (or feature size). where L = D δ (d, d ). In particular, a mutual distortion that is close to 1 means that (K, d) is quasi-isometric to (K, d ), at scale δ.

If the two subspaces K and K are too far apart, then it makes no sense to compare two distances d and d defined on them, and one could expect the mutual distortion to explode. This is will typically the case when d H (K, K ) δ.

It is clear from the definition that using the notion of relative metric distortion defined above, the spherical distortion radius of K may be expressed as

sdr δ (K, d) = sup r > 0 D δ (d|d S(r) ) 1 .
This point supports the idea that the relative metric distortion we defined is a suitable notion of proximity to assess stability of the spherical distortion radius, as exposed by the following proposition. Then, for all δ δ 0 , letting Υ := (δν) ∨ ε and r 1 := sdr δ+2ε (K , d ), if ξ(r 1 )Υ < r 1 , then 

sdr δ (K, d) sdr δ+2ε (K , d ) + ξ(r 1 )Υ. A proof of
sdr δ-2ε (K, d) -ξ 0 Υ sdr δ (K , d ) sdr δ+2ε (K, d) + ξ 0 Υ with ξ 0 := ξ(2 sdr δ 1 (K, d)) and Υ := (νδ) ∨ ε, provided that ξ 0 Υ 2 sdr δ 1 (K, d).
Corollary 4.7 is proven in Appendix B.2. It ensures that the spherical distortion radius enjoys an interleaving property. That is the SDR of (K, d) at scale δ may be framed by the SDR of an approximation (K , d ) at scales δ ± ε. This interleaving property is a common thread with the µ-reach (see, e.g., [START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF]Theorem 3.4]) and the λ-reach ([19, Theorem 3]), that is not enough to ensure consistent estimation. In fact, for the two aforementioned quantities, consistency may be proved with the additional assumption of µ → rch µ (K) (resp. λ → λ-reach) are continuous at the targeted µ (resp. λ).

As opposed to the µ-reach the λ-reach, the SDR is also stable with respect to its the scale parameter δ. Next, we prove that δ → sdr δ (K, d) is continuous over a fixed range (0, ∆ * ) under mild structural assumptions on (K, d). These assumptions will be easily checked in the model C k rch min ,L , hence ensuring consistency of the subsequent reach estimator. Assumption A1. We say that K ⊂ R D is spreadable if there exist ∆ 0 > 0, ε 0 > 0, and C 0 > 0 such that for all x, y ∈ K such that x -y ∆ 0 and all ε ε 0 , there exists a point a ∈ K such that either -a -y ε and x -a x -y + C 0 ε, or -a -x ε and y -a x -y + C 0 ε.

Assumption A1 requires that every point y of K may be locally pushed away from any (close enough) point x ∈ K. In particular, this means that K is nowhere discrete. In the manifold case, this pushing may be carried out using the exponential map (see Proposition 6.2). Assumption A2. We say that (K, d) is sub-Euclidean if there exist C 1 > 0 and ∆ 1 > 0 such that for all x, y ∈ K such that x -y ∆ 1 , we have d(x, y) C 1 x -y . Assumption A2 requires that the distance locally compares with the ambient Euclidean distance. This essentially means that the identity map (K, d) → (K, • ) is locally Lipschitz. Such an assumption is automatically fulfilled whenever K has positive reach and d = d K (see [START_REF] Federer | Curvature measures[END_REF]), with explicit constants in the manifold case (see Proposition 6.2) Whenever these two conditions are met, the spherical distortion radius of (K, d) can be proved to be locally Lipschitz in δ.

Theorem 4.8. Assume that the metric space (K, d) fulfills Assumptions A1 and A2. Then δ → sdr δ (K, d) is locally Lipschitz on (0, ∆ * ) where

∆ * := min {∆ 0 , ∆ 1 , sup {δ 0 | sdr δ (K, d) < ∞}} . More precisely, for all 0 < δ 0 < δ 1 < ∆ * , the map δ → sdr δ (K, d) is L 0 -Lipschitz on [δ 0 , δ 1 ] with L 0 := 192r 3 1 C 0 δ 3 0 C 1 + π r 1 δ 0 ,
where r 1 := sdr δ 1 (K, d).

A proof of Theorem 4.8 can be found in Appendix B.2. Not only does it ensure that the spherical distortion radius at scale δ is continuous with respect to δ, that is enough to guarantee consistency, but it also allows to control its variation via an explicit local Lipschitz constant. Combined with Corollary 4.7, this allows to convert a bound between (K, d) and (K , d ) in terms of Hausdorff distance and metric distortion into a bound on the SDR's at scale δ. Theorem 4.9. Let (K, d) fulfill Assumptions A1 and A2, and let (K , d ) be such that d H (K, K ) ε and D δ 0 (d, d ) 1 + ν for some δ 0 < ∆ * . Then, for all δ 1 ∈ (δ 0 , ∆ * ) and δ ∈ (δ 0 + 2ε, δ 1 -2ε), provided that ξ 0 Υ 2 sdr δ 1 (K, d), we have

sdr δ (K, d) -sdr δ (K , d ) ζ 0 Υ,
with Υ = (δν) ∨ and ζ 0 = ξ 0 + 2L 0 , where ξ 0 is defined in Corollary 4.7, L 0 is defined in Theorem 4.8.

We refer to Appendix B.2 for a proof of this result and to Figure 3 for a diagram of the scales at play. Note that the constant ζ 0 only depends on δ 0 and features of (K, d), that the assumptions are required on (K, d) only, and that the constraint on ε depends only on (K, d) as well.

δ 0 δ 0 + ε δ 1 -ε δ 1 ∆ * δ δ sdr δ (K, d) sdr δ (K , d ) ≤ ζ 0 Υ
Figure 3: Plot of δ → sdr δ for (K, d) and (K , d ) in the context of Theorem 4.9. On the interval (δ 0 + ε, δ 1 -ε), the two functions do not differ of more than ζ 0 Υ. Even though (K , d ) might not be well-behaved, the regularity of δ → sdr δ (K, d) (Theorem 4.8) is sufficient to insure stability.

The estimation of K is a now well-understood in the manifold case (see [START_REF] Aamari | Estimating the reach of a manifold[END_REF]). To obtain guarantees on the estimation of sdr δ (K, d K ), it hence remains to investigate the estimation of d K . This is the aim of the following section.

Optimal Metric Learning

Unsupervised Distance Metric Learning

As explained in the introduction, various learning tasks lead to the problem of estimation the shortest-pat distance d K , via an estimator d on a sample of K ⊂ R D . Though, there is no canonical choice of loss for measuring the proximity of d to d K . One could consider for instance the empirical sup-loss

n ( d|d K ) := sup x =y∈Xn 1 - d(x, y) d K (x, y) ,
or the global sup-loss

∞ ( d|d K ) := sup x =y∈K 1 - d(x, y) d K (x, y) .
It might seem counter-intuitive to ask an estimator d of d K : K × K → R + to be defined on the whole set K × K, while the this domain is unknown. It actually is easy to extend any metric estimator to the whole space R D × R D . Indeed, given such a metric estimation procedure d n : X n × X n → R + that outputs a distance d n [X n ](x, y) between any pair of points of X n , we can define d n (x, y) := d n+2 [X n , x, y](x, y) for all (x, y) ∈ R D × R D . Informally this means that one can treat any given tuple of points (x, y) as actual data points in the estimation process, and that we are only interested in the behavior of the later when x and y are in fact from K.

The losses n and ∞ are naturally multiplicative, in particular because the usual notions of distortions are multiplicative by nature (see Section 4). Indeed, the sup-loss ∞ ( d|d K ) being smaller than ν means that

∀x, y ∈ K, (1 -ν)d K (x, y) d(x, y) (1 + ν)d K (x, y),
which is the usual way to quantify if the intrinsic metric is well-estimated. See for instance [START_REF] Tenenbaum | A global geometric framework for nonlinear dimensionality reduction[END_REF][START_REF] Arias-Castro | Minimax Estimation of Distances on a Surface and Minimax Manifold Learning in the Isometric-to-Convex Setting[END_REF]. When ν is small, it yields that (K, d) is quasi-isometric to (K, d K ).

Remark 5.1. We emphasize the fact that the global sup-loss ∞ and the mutual metric distortion D δ from Definition 4.4 are different in essence. Indeed, while the mutual metric distortion D δ allows to compare different metrics on different subsets of R D , the sup-loss ∞ compares two distances defined on the same subset.

However, the global sup-loss and the mutual distortion metric may be related as follows. Consider K endowed with either d or d K . Denote by D 0

+ (d K , d) := lim δ→0 D δ (d K , d). Then, straight- forward computation entails ∞ ( d|d K ) + 1 D 0 + (d K , d) (1 -∞ ( d|d K )) -1 + .
Hence, the global sup-loss ∞ ( d|d K ) is somehow an additive counterpart to the mutual distortion D 0 + ( d, d K ) in the case where K = K . That is, when the support of the two metrics coincide in Definition 4.4, as already noticed in Remark 4.5.

When K = M is a C 2 submanifold of R D of dimension d with reach bounded below, methods using neighborhood graphs such as Isomap provably estimate d M at rate O(n -2/3d ) [START_REF] Arias-Castro | Unconstrained and curvature-constrained shortestpath distances and their approximation[END_REF]. As we will show in Theorem 5.5, this rate is far from being optimal. To date, the best minimax lower bound in this setting is due to [START_REF] Arias-Castro | Minimax Estimation of Distances on a Surface and Minimax Manifold Learning in the Isometric-to-Convex Setting[END_REF], who obtain a rate of order Ω(n -2/d ) in the particular case of a deterministic design on C 2 submanifolds. Actually, we can extend the result of [START_REF] Arias-Castro | Minimax Estimation of Distances on a Surface and Minimax Manifold Learning in the Isometric-to-Convex Setting[END_REF] to our random design setting, and to general C k submanifolds with k 2. 

E P ⊗n [ ∞ ( d|d M )] cd,k,rch min 1 n k/d
, where the infimum is taken over all measurable estimator d of d M based on n samples.

This theorem is proved in Appendix C.1. As we shall prove shortly in Section 5.2, this lowerbound can be provided with a matching upper-bound up to log n factors (Theorem 5.4), and is thus optimal.

An optimal Approach of Metric Estimation

The existing unsupervised methods for metric learning are known to either have no theoretical guarantees, or to have a sub-optimal rate for estimating the intrinsic metric. As stated before, Isomap reaches a rate of n -2/3d , which is very far from the theoretical lower-bound n -k/d shown in Theorem 5.2. Other methods, such as taking the shortest path distance over a Delaunay triangulation [START_REF] Arias-Castro | Minimax Estimation of Distances on a Surface and Minimax Manifold Learning in the Isometric-to-Convex Setting[END_REF], are shown to attain a precision of n -2/d which is optimal for C 2 -model but not for k 3. We propose here a fairly general approach that can output a family of minimax-optimal metric estimators. It relies on the following bound.

Proposition 5.3. Let K ⊂ R D be a set of positive reach rch(K) > 0, and K ⊂ R D be any set such that d H (K , K) < ε rch(K)/2. Then,

∞ (d (K ) ε |d K ) 2ε rch(K)
,

where we recall that

(K ) ε = u ∈ R D | d(u, K ) ε , so that K ⊂ (K ) ε .
Proposition 5.3 is proved in Appendix C.2. It asserts that estimating geodesic distances of sets of positive reach is never harder than estimating the sets themselves in Hausdorff distance. Beyond the framework of closed manifold developed here, note that for the convex case rch(K) = ∞, d K coincides with the Euclidean metric, so that estimating d K becomes trivial.

A significant consequence of Proposition 5.3 is that we can derive a consistent estimator of the intrinsic distance from any consistent estimator of the support, and with the same rate of convergence. In what follows, we write

d max := 5 d ω d f min rch d-1 min , (11) 
where ω d is the volume of the d-dimensional unit ball. In Lemma C.2, the length d max is proved to be an upper bound on the geodesic diameter of the supports of any distribution in the model P k rch min ,L (f min , f max ).

Theorem 5.4. Let k 2 and let M be an estimator satisfying

sup P ∈P k rch min ,L (f min ,fmax) P ⊗n (d H ( M , M ) ε n ) η n ,
for some positive sequences ε n and η n converging to 0. Then the metric estimator

d(x, y) := d max ∧ d ( Mx,y) εn (x, y) with M x,y := M ∪ {x, y} ,
which is defined for all x, y ∈ R D , satisfies

sup P ∈P k rch min ,L (f min ,fmax) E P ⊗n [ ∞ ( d|d M )] 2 rch min ε n + 1 + d max ε n η n .
Theorem 5.4 is proved in Appendix C.2. A particular advantage of this result is that it does not require the estimator M to have any geometric structure, nor to be regular in any sense. This contrasts sharply with [START_REF] Arias-Castro | Minimax Estimation of Distances on a Surface and Minimax Manifold Learning in the Isometric-to-Convex Setting[END_REF], which extensively uses the structural properties of the intermediate estimator M . Theorem 5.4 is much more versatile, since here, M could just as easily be anything as a point cloud, a metric graph, a triangulation, or a union of polynomial patches. For instance, taking M = {X 1 , . . . , X n } to be the observed data, we can take ε n = C(log n/n) 

E P ⊗n [ ∞ ( d|d M )] C rch min ,d,f min log n n 1/d
, which is faster than the known rate of order O(n -2/3d ) for Isomap (see for instance [5, Eq (1.

2)]). Now, taking M to be a minimax optimal estimator of M for the Hausdorff loss -as that of [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF], for instance -and ε n = C(log n/n) k/d for some large constant C > 0 yields η n ε 2 n (see Lemma A.4), and a metric estimator d that achieves the following rate. 

E P ⊗n [ ∞ ( d|d M )] C rch min ,d,fmax,f min ,L,k log n n k/d .
In virtue of Theorem 5.2, this rate is minimax optimal up to log n factors.

6 Optimal Reach Estimation

Optimal Spherical Distortion Radius Estimation

Interesting as it is in its own right, we now investigate the estimation rates of the spherical distortion radius at scale δ > 0. To obtain a minimax lower bound, we simply note that sdr δ (M, d M ) coincides with rch(M ) whenever rch(M ) = wfs(M ) (Proposition 4.2). Hence, any lower bound for the estimation of rch(M ) on a model over which rch(M ) = wfs(M ) yields a lower bound for the estimation of sdr δ (M, d M ). In application of Theorem 3.7 with α 0, this immediately gives the following lower bound. 

E P ⊗ [| sdr δ -sdr δ (M, d M )|] crch min ,d,k n -k/d .
where the infimum is taken over all measurable estimators sdr δ of sdr δ (M, d M ) based on n samples.

It turns out that this bound is optimal. To exhibit an estimator that achieves this rate, we take advantage of the Hausdorff and metric stability of the spherical distortion radius shown in Theorem 4.9. In order to apply it, we first need to check that Assumptions A1 and A2 are fulfilled for every manifolds in our models C k rch min ,L . Proposition 6.2. Let M ⊂ R D be a submanifold with bounded reach rch(M ) > 0. Then M satisfies Assumptions A1 and A2 with parameters

ε 0 = rch(M )/4, ∆ 0 = rch(M ), C 0 = 3/16, ∆ 1 = rch(M )/2 and C 1 = 2.
Proposition 6.2 is proven in Appendix D. In the vein of Theorem 5.4, and using the stability of the spherical distortion radius with respect to the pair (K, d), we can now build an estimator of sdr δ (M, d M ) in a plug-in fashion over C k submanifolds. Recall that when M is in C k rch min ,L , and δ ∈ (0, 2(D + 1)/D wfs(M )), then according to Propositions 4. 

P ⊗n (d H (M, M ) ε n ) η n
for some positive sequences ε n , η n converging to 0. Then, for any δ ∈ (0, rch min ), the estimator sdr δ := sdr δ ( M , d) ∧ s max , where d is defined in Theorem 5.4, satisfies sup P ∈P k rch min ,L (f min ,fmax)

E P ⊗n | sdr δ -sdr δ (M, d M )| C s 4 max δ 4 ε n + s max η n .
We refer to Appendix D for a proof of this result.

Remark 6.4. In place of d = d M εn , one could actually plug any estimator d of the metric intoTheorem 6.3. In light of the stability result of Theorem 4.9, as long as d satisfies sup

P ∈P k P ⊗n D δ ( d, d M ) 1 + ε n δ η n ,
the conclusion of Theorem 6.3 would still hold. This comes in handy, especially if one wants to input a computationally efficient distance estimator, such as shortest-path distance on a neigbhorhood graph [START_REF] Tenenbaum | A global geometric framework for nonlinear dimensionality reduction[END_REF] or on Delaunay triangulations [START_REF] Arias-Castro | Minimax Estimation of Distances on a Surface and Minimax Manifold Learning in the Isometric-to-Convex Setting[END_REF].

Again, taking M to be a minimax optimal estimator for the Hausdorff loss [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF] outputs an estimator sdr δ of the spherical distortion radius satisfying Theorem 6.5. For all δ ∈ (0, rch min ), with the construction of sdr δ above, we have that for n large enough, sup P ∈P k rch min ,L (f min ,fmax)

E P ⊗n | sdr δ -sdr δ (M, d M )| C rch min ,d,fmax,f min ,L,k 1 δ 4 log n n k/d
, and this rate is optimal in regard of Theorem 6.1.

Note the presence of the factor 1/δ 4 in the bound, which makes the rate diverge as δ → 0. This blowup is to be expected for the following reason. As δ goes to 0, the spherical distortion radius goes to the reach rch(M ) (Proposition 4.2). Since the estimation of rch(M ) cannot be faster than n -(k-2)/d (Theorem 3.7), the estimation rate of sdr δ (M, d M ) must deteriorate in some way as δ → 0.

Optimal Reach Estimation

In light of Proposition 3.9 and (9), it only remains to combine the maximal curvature estimator and the spherical distortion radius estimator to obtain an estimator of the reach. Naely, we let M be the minimax-Hausdorff estimator of Lemma A.4. According to the very same Lemma A.4, there exists c rch min ,d,fmax,f min ,L,k > 0 such that denoting by

ε n := c rch min ,d,fmax,f min ,L,k log n n k/d , (12) 
there holds sup

P ∈P k rch min ,L (f min ,fmax) P ⊗n (d H ( M , M ) ε n ) ε 2 n . (13) 
We also let d be the estimator of the intrinsic distance of Theorem 5.4 from M and ε n . We let sdr δ := sdr δ ( M , d) ∧ s max for some δ ∈ (0, rch min ) as in Theorem 6.3. Finally, we write rch := R ∧ sdr δ .

The following Theorem 6.6 is a straightforward consequence of Theorems 3.8 and 6.3, inserted in the plugin strategy of Proposition 3.9 and (9).

Theorem 6.6. The estimator rch described above with δ = rch min /2 satisfies sup P ∈P k rch min ,L (f min ,fmax)

E P ⊗n | rch -rch(M )| C rch min ,d,fmax,f min ,L,k log n n (k-2)/d
, and, for all α > 0, sup P ∈P k rch min ,L,α (f min ,fmax)

E P ⊗n | rch -rch(M )| C rch min ,d,fmax,f min ,L,k,α log n n k/d .
As a conclusion, Theorems 3.7 and 6.6 assert that rch is minimax optimal, and that its rate of convergence adapts to whether rch(M ) is attained by curvature (yielding the slower rate O(n -(k-2)/d )) or by a bottleneck (yielding the faster rate rate O(n -k/d )).

The computation of rch depends explicitly on the parameters of the models at two levels. First, in tuning the value of ε n as in [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF]. Second, in choosing δ ∈ (0, rch min ). These two dependencies may be circumvented by picking

ε n = log n log n n k/d
, and δ n = 1/ log n. Then, for n large enough, both (13) and δ n ∈ (0, rch min ) will be fulfilled. The price to pay for this way-around to calibration of constants limits to multiplicative log n factors in the upper-bound of Theorem 6.6.

Conclusion and Further Prospects

We developed a general strategy for estimating the reach of a manifold M . It relies on two independent plugins, accountable for the estimation of the minimal curvature radius R (M ) and any another set-defined feature size θ(M ) that lie between the reach and the weak feature size. We then introduced and studied the spherical distortion radius, the estimation of which reduces to geodesic distance estimation, itself reducing to set estimation in Hausdorff distance. All the derived results are minimax optimal, as testified by associated matching lower bounds up to log n factors. Geometrically, one should note that this overall method relies heavily on the local/global dichotomy of the reach for closed submanifolds [START_REF] Aamari | Estimating the reach of a manifold[END_REF]. Hence, it still remains unclear how to extend it to manifolds with boundary, even though their curvature and spherical distortion radius are likely to be estimated in a similar way [START_REF] Aamari | Minimax Boundary Estimation and Estimation with Boundary[END_REF].

On the statistical side, a major extension of the results would consist in allowing for additive noise. Recent works obtained Hausdorff estimation rates for the support [START_REF] Fefferman | Fitting a manifold of large reach to noisy data[END_REF][START_REF] Aizenbud | Non-Parametric Estimation of Manifolds from Noisy Data[END_REF][START_REF] Puchkin | Structure-adaptive manifold estimation[END_REF] in such a noisy setting, so that the estimation of the spherical distortion radius inherits the same rates straightforwardly. In the same spirit as the iterated local polynomial fitting of [START_REF] Aizenbud | Non-Parametric Estimation of Manifolds from Noisy Data[END_REF], we expect that the same method could likewise lead to maximal curvature estimation.

Finally, since the main goal of this work was of minimax nature, we did not focus on the algorithmic properties of our estimators. As they stand, R and sdr both require to compute a supremum over the union of continuous patches M , which is computationally prohibitive. Actually, one can easily show that taking the same supremum over a discretization of M at scale O n -β/d -i.e. O(n β ) points in total -yields estimation rates of order O n -(β∧(k-2))/d for R (M ), and O n -(β∧k)/d for sdr δ (M, d M ). This suggests a possible estimation-computation tradeoff which one could take advantage of. Yet, this is not a fully satisfactory solution, as sdr δ still requires to compute costly geodesic distances on a high-dimensional set. More globally, the quest for computationally efficient -yet optimal -geometric estimators in high dimensions is still in its infancy.

A Proofs of Section 3 A.1 Comparing Reaches, Weak Feature Size and Diameter

This Section is devoted to the Proof of Proposition 3.2, which goes as follows.

Proof of Proposition 3.2. For (i), recall that no closed compact submanifold can be contractible [START_REF] Hatcher | Algebraic Topology[END_REF]Theorem 3.26]. Furthermore, [START_REF] Federer | Curvature measures[END_REF]Theorem 4.8] and [16, Lemma 2.1] combined together yield that K r is isotopic to K for all r < wfs(K). On the other hand whenever r > Rad(K) where Rad(K) is the radius of the smallest ball enclosing K, K r is star-shaped with respect to any point of the non-empty intersection ∩ x∈M B(x, r). We conclude that wfs(K) Rad(K), Since Rad(K) < ∞ because K is compact, we obtain wfs(K) < ∞.

For (ii), the first two inequalities come from the definition of rch µ (K) (see ( 4)). The rightmost comes Jung's Theorem [27, Theorem 2.10.41], which asserts that Rad(K) D 2(D+1) diam(K), and the fact that wfs(K) Rad(K) whenever wfs(K) is finite (same argument as for (i)).

A.2 Minimax Lower Bound for µ-Reach Estimation

This Section is devoted to the proof of Theorem 3.3. It builds upon the possible discontinuities of the map M → Med µ (M ) in Hausdorff distance. The exhibition of such a discontinuity can be done in dimension d = 1 and D = 2, and can then be generalized to arbitrary 1 d < D by using symmetry and rotation arguments.

The building block of the construction is the following arc of curve. For all α ∈ (0, π/4], write

R α := 1/ sin(α). Let also C α : [0, 1] → R + be defined as C α (t) := R α -R 2 α -t 2
, which graph is an arc of circle of radius R α and aperture α (see Figure 4). To be able to glue up smoothly α-turns like C α with straight lines, we smooth it as follows.

Lemma A.1. There exists G α : [0, 1] → R + infinitely differentiable such that:

1. G ( ) α (0) = 0 for all 0; 2. G α (1) = C α (1), G α (1) = C α (1) and G ( )
α (1) = 0 for all 2;

3. G ( ) α ∞ C /R α for all 1;
4. G α (t) < C α (t) for all t ∈ (0, 1);

5. G α is convex.
See Figure 4 for a diagram of such a G α . Let us first comment on the requirements on G α . Items 1 and 2 say that G α is a C k interpolation between the two tangent lines of two points of C α who are α-apart in term of polar coordinate. Item 3 says that the graph of G α , once rescaled by 1/R α , will be bounded in C k -norm for all k. Items 4 and 5 ensure well-behavior of the medial axes of our future construct (see Figure 5).

Proof of Lemma A.1. The following construction applies to general convex functions, although we restrict it to G α for simplicity. Consider the piecewise linear map A α given by the tangent lines of C α at t = 0 and t = 1. That is, define A α (t) for all t ∈ R by As C α is strictly convex, A α < C α on R \ {0, 1}. We also denote by t * α the (unique) point of non-differentiability of A α , that is

A α (t) := max C α (0) + C α (0)t, C α (1) + (t -1)C α (1) = max 0, C α (1) + (t -1)C α (1) . α R α C α G α 1 0 A α t * α
t * α := 1 - C α (1) C α (1) = R α tan(α/2).
Note by now that for all α ∈ (0, π/4), andc 0 is chosen so that R K = 1. Finally, consider the convolution

1/2 t * α 2 - √ 2 6/10. Given h > 0 to be chosen later, write K h (t) := h -1 K(t/h), where K(t) := c 0 exp(-1/(1 -t 2 ))1 |t|<1 is a non-negative C ∞ kernel,
G α (t) := R K h (x)A α (t -x) dx.
By smoothness of K h and non-negativity of both K h and A α , G α = K h * A α is infinitely differentiable and non-negative. Also, since A α is convex and K h non-negative, G α is convex (Item 5 To check that G α < C α on (0, 1), fix t ∈ (0, 1).

If t / ∈ [t * α -h, t * α + h], G α (t) = A α (t) < C α (t) by construction. If t ∈ [t * α -h, t * α + h], we have G α (t) G α (t * α + h) = hC α (1). But on the other hand, C α (t) C α (t * * -h) > C α (1/4
). Hence, we do have G α (t) < C α (t) as soon as h 1/100, since C α (1/4)/C α (1) > 1/100 for all α ∈ (0, π/4). This yields Item 4.

Finally, letting h = h 0 = 1/100, we obtain for all 1 and t ∈ [0, 1],

|G ( ) α (t)| = K ( ) h * C α (t) K ( ) h ∞ C α ∞ C C α (1) C /R α ,
which yields Item 3 and concludes the proof.

Given R > 0, we now let G α,R be the curve obtained by dilating homogeneously the graph of G α by a scale factor R/R α . We extend the construction of these smooth α-turns for α ∈ (π/4, π]: for this, we glue two G α/2,R or four G α/4,R to define G α,R .

Proposition A.2. Assume that for all j ∈ {2, . . . , k}, L j C d,k / rch j-1 min for C d,k > 0 large enough. Then for all µ ∈ [0, 1) and ε > 0 small enough, there exist M, M ∈ C k rch min ,L such that:

-| rch µ (M ) -rch µ (M )| c d,k rch min ; -c d,k rch d min vol d (M ) ∧ vol d (M ) vol d (M ) ∨ vol d (M ) C d,k rch d min ; -vol d (M M ) C d,k rch d min ε . Proof of Proposition A.2.
For small enough (and arbitrarily small) ε > 0, we let α ∈ [0, π] be such that sin (α + ε)/2 2 = 1 -µ 2 . Such an α always exists since µ 2 < 1. Given ∆, R 0 , R 1 > 0 to be chosen later, we glue smooth turns from Lemma A.1 with straight lines to create a C k closed curve in R 2 , as shown in Figure 5. Then, we obtain a C k closed d-dimensional submanifold M α of R d+1 , with a symmetry of revolution with respect to the horizontal axis of Figure 5.

G α/2,R 0 G α/2,R 0 G π/2,R 1 G π/2,R 1 G α,R 0 M α Med(M α ) Med µ (M α ) ∆ G α/2,R 0 G α/2,R 0 G π/2,R 1 G π/2,R 1 G α,R 0 R0 R0 ∆ Figure 5: Construction of M α in the proof of Proposition A.2.
By construction, if ∆ 8R 0 , then M α has local parametrizations on top of its tangent spaces (see Definition 2.1) with L j C d,k /(∆ ∧ R 0 ∧ R 1 ) j-1 for all j 2, and has volume vol

d (M α ) C d,k (∆ ∨ R 0 ∨ R 1 ) d and vol d (M α ) c d,k (∆ ∧ R 0 ∧ R 1 ) d .
We now examine the structure of the medial axis and the reach of M α . If u ∈ Med(M α ) is a point on the medial axis, rotational symmetry yields that two of its projections points must lie either:

-In a plane containing its horizontal axis of symmetry (i.e. Figure 5). As a result, its distance to M α cannot be smaller than the smallest reach of each of its parts

G π/2,R 1 , G α/2,R 0 and G α,R 0 , so that d(u, M α ) c d,k R 0 ∧ R 1 .
-In a d-plane orthogonal to the horizontal axis. By rotational invariance, this forces u to be on this axis of symmetry. As a result, d(u,

M α ) ∆/2 -3R 0 c d,k ∆ since ∆ 8R 0 .
In all, we get rch

(M α ) c d,k (∆ ∧ R 0 ∧ R 1 ).
We now examine the µ-reach of M α . By definition, if u ∈ Med µ (M α ) has two nearest neighbors x, y ∈ M α , the angle between (u -x) and (u -y) must be at most 2 arcsin( 1 -µ 2 ). As a result, a single branch of M α between the two arcs of G α/2,R 0 cannot not generate any point of the µmedial axis, since α has been chosen so that α < 2 arcsin( 1 -µ 2 ). Hence, for ∆, R 1 large enough compared to R 0 , we have rch

µ (M α ) c d,k (∆ ∧ R 1 ).
Finally, we build M α from M α by bumping the curve near G α,R 0 as shown in Figure 6 (while still preserving the radial symmetry as before). The manifold M α satisfies the same regularity conditions at M α . Furthermore, M α and M α only differ on a set of volume vol With this extra bump, we create a point u 0 ∈ Med(M α ) that has two nearest neighbors x 0 , y 0 ∈ M α at distance R 0 , with angle between (u 0 -x 0 ) and (u 0 -y 0 ) equal to α = α + ε, which satisfies sin(α /2) 2 = 1 -µ 2 . As a result, u 0 ∈ Med µ (M α ), so that rch µ (M α ) u 0 -y 0 = R 0 . In particular, we have

d (M α M α ) C d,k (∆ ∨ R 1 ) d-1 (R 0 ε). α ε G ε,R 0 G ε,R 0 G ε,R 0 G ε,R 0 R 0 ≤ 4R 0 ε u 0 G α,R
| rch µ (M α ) -rch µ (M α )| c d,k (∆ ∧ R 1 ) -R 0 .
The proof is hence complete by setting 

M = M α and M = M α , with R 1 = ∆ = R 0 /c d,k and R 0 = rch min /c d,k for small enough c d,k , c d,k > 0.
E P ⊗n [| r µ -rch µ (M )|] 1 2 | rch µ (M ) -rch µ (M )| 1 -TV(P, P )) n c d,k rch min (1 -ε) n .
As this construction is valid for all ε > 0 small enough, we obtain the result by letting ε tend to zero.

A.3 Maximal Curvature Estimation

This section is devoted to the proof of Theorem 3.8. It is based on a careful investigation of the local polynomial fitting procedure described in [START_REF] Aamari | Estimating the reach of a manifold[END_REF]. First, recall that from [2, Lemma 2], if M ∈ C k rch min ,L , for n large enough so that h rch min /4, with probability at least 1 -

2 1 n 2k/d , it holds d H (M, X n ) h/4, d H (M, M ) C d,k,rch min ,L (t * ) k-1   f 2+ d 2k max log n f 3+ d 2k min n   k/d
, where M denotes the union of local polynomial patches

M := n i=1
Ψi B Ti (0, 7h/8) defined by ( 6) and (7), and t * = max y∈M,2 j k T (j), * y

1 j-1 op C k,d,rch min ,L as in Lemma A.3.
Equipped with these two lemmas, we are in position to prove Theorem 3.8.

Proof of Theorem 3.8. Based on Lemma

A.4, for h = C d,k f 2 max log n f 3 min n 1 d
, given i ∈ {1, . . . , n}, we denote by Ψi the polynomial estimator around X i defined by

Ψi (v) := X i + v + k-1 j=2 T(j) i (v ⊗j ), for all v ∈ Ti . Setting M := n i=1
Ψi B Ti (0, 7h/8) ,

we have that with probability larger than 1 -

2 1 n 2k d , d H ( M , M ) C d,k,rch min ,L (t * ) k-1   f 2+ d 2k max log n f 3+ d 2k min n   k d := ε 1 , (15) 
for n large enough, according to Lemma A. [START_REF] Aizenbud | Non-Parametric Estimation of Manifolds from Noisy Data[END_REF]. In what follows we settle on the probability event of Lemma A.4. In particular, denoting by t = max

1 i n max 2 j k-1 T(j) i 1 j-1 op ,
note that [2, Section 5.1.2] ensures that t ∨ t * t 1/(4h), for some fixed t, provided n is large enough.

We let i ∈ {1, . . . , n}, v ∈ B Ti (0, h/4), and intend to approximate II π M ( Ψi (v)) . To do so, we consider the following polynomial expansion centered at v: for u ∈ B Ti (0, h/4),

Ψi (v + u) -Ψi (v) = u + k-1 j=2 j T(j) i v ⊗j-1 ⊗ u + k-1 j=2 k-1 r=j r j T(r) i v ⊗r-j ⊗ u ⊗j . (16) 
First we deduce from ( 16) an estimate for the tangent space at π M (X i + v), as well as a coordinate system. Namely, we let Ĵi,v : Ti -→ Ĵi,v ( Ti )

u -→ u + k-1 j=2 j T(j) i v ⊗j-1 ⊗ u .
Note that since th 1/4, we have

Ĵi,v (u) -u k-1 j=2 j th 4 j-1 u   ∞ j=1 j th 4 j-1 -1   u   1 1 -th 4 2 -1   u u 2 , so that Ĵi,v is full-rank.
In what follows we write Ti,v := Im( Ĵi,v ) and πi,v := π Ti,v . We now may express [START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF] in terms of the coordinate system given by Ti,v :

Ψi (v + u) -Ψi (v) = Ĵi,v (u) + k-1 j=2 T (j) i,v ( Ĵi,v (u) ⊗j ), (17) 
where the symmetric tensor of order j centered at v, T

i,v , is defined by

T (j) i,v (w ⊗j ) := k-1 r=j r j T(r) i v ⊗r-j ⊗ Ĵ-1 i,v (w) ⊗j ,
for w ∈ Ti,v . As well, since th 1 4 , we may write

T (j) i,v op k-1 r=j r j (3/2) j t r-1 h 4 r-j   ∞ r=j r j th 4 r-j   (3/2) j t j-1 1 1 -th 4 j (3/2) j t j-1 (3/2) 2j t j-1 , so that max 2 j k-1 T (j) i,v 1 j-1 op t 3 2 4 t.
In particular, the bilinear form

T (2) i,v : Ti,v × Ti,v → R D may be expressed by T (2) i,v (w ⊗2 ) := k-1 j=2 j 2 T(j) i v ⊗j-2 ⊗ Ĵ-1 i,v (w) ⊗2
for all w ∈ Ti,v . Our second fundamental form estimator at π M ( Ψi (v)) is then defined by

T(2) i,v : = T (2) i,v • πi,v -πi,v • T (2) i,v • πi,v ,
where with a slight abuse of notation, T • π(u) := T π(u) ⊗2 . Note that composition with πi,v is performed to ensure that T(2) i,v ranges into T ⊥ i,v . Our final max-curvature estimator can now be defined as R-1 := max

1 i n max v∈ B Ti (h/4) T (2) 
i,v op

.

First, we intend to show that, for a given v ∈ B Ti (h/4), T

i,v is close to II y 0 , for some y 0 ∈ M . To do so, we let u ∈ B Ti (0, h/4), x := Ψi (v + u), x 0 := Ψi (v), and

P (r:k-1) i,v := k-1 j=r T (j) i,v . Then, we have the decomposition Ĵi,v (u) = πi,v (x -x 0 ) - k-1 j=2 πi,v • T (j) i,v ( Ĵi,v (u) ⊗j ) = πi,v (x -x 0 ) - k-1 j=2 πi,v • T (j) i,v πi,v (x -x 0 ) -πi,v • P (2:k-1) i,v ( Ĵi,v (u)) ⊗j = πi,v (x -x 0 ) + k j=2 T (j), i,v (π i,v (x -x 0 ) ⊗j ) + R (k) i,v (x -x 0 ), with T (2), i,v = -π i,v • T (2)
i,v , higher order tensors satisfying T (j), i,v op

C k t j-1 C k t j-1
, and

remainder term R (k) i,v
C k t k h k+1 . Plugging the above inequalities into (17) yields

x -x 0 = πi,v (x -x 0 ) + T (2) i,v πi,v (x -x 0 ) ⊗2 + k j=3 T (j) i,v (π i,v (x -x 0 ) ⊗j ) + R (k), i,v (x -x 0 ), (18) with T 
(2)

i,v = T (2) i,v -πi,v • T (2) i,v , T (j) i,v op C k t j-1 , and R (k), i,v (x -x 0 ) C k t k h k+1 .
Then, according to Lemma A.4, there exists y 0 ∈ B(X i , 8 7×4 h) ∩ M such that y 0 -x 0 ε 1 , where ε 1 is defined by [START_REF] Chatpatanasiri | A new kernelization framework for mahalanobis distance learning algorithms[END_REF]. We further have

v -πi (y 0 -X i ) ε 1 + Ψi (v) -(X i + v) ε 1 + k-1 j=2 T(j) i (v ⊗j ) ε 1 + h/16 h/8, since th 1 4 , provided that ε 1 h/16 (satisfied for n large enough). Next, if z ∈ B y 0 , h 8 ∩ M , we have πi (z -X i ) -v πi (z -y 0 ) + v -πi (y 0 -X i )
h/4, so that, writing x z := Ψi (π i (z -X i )), it holds z -x z ε 1 and (18) applies. Next, provided C k th < 1/4 and C k t t * (satisfied whenever n is large enough), Lemma A.3 yields that

x z -x 0 -   πi,v (x z -x 0 ) + T (2) i,v (π i,v (x z -x 0 ) ⊗2 ) + k j=3 T (j) i,v (π i,v (x z -x 0 ) ⊗j )   = k j=1 T (j), i,v (π * y (z -y 0 ) ⊗j ) + R (k) y 0 (x z -x 0 ), so that k j=1 T (j), i,v (π * y (z -y 0 ) ⊗j ) = R (k), i,v (x z -x 0 ) -R (k) y 0 (x z -x 0 ) C k,d,rch min ,L ε 1 ,
according to [START_REF] Chazal | Convergence rates for persistence diagram estimation in topological data analysis[END_REF] and Lemma A. 

T (1), i,v op C k,d,rch min ,L ε 1 h -1 ,
and

T (2), i,v op C k,d,rch min ,L ε 1 h -2 .
In turn, following [2, Proof of Theorem 4] entails

T(2) i,v • πi,v -T (2), * y 0 • π * y 0 op C k,d,rch min ,L ε 1 h -2 .
Since II y 0 = T

(2), * y 0 ([2, Lemma 2]), we deduce that max

1 i n max v∈ B Tj (0,h/4) T(2) i,v • πi,v op max y∈M II y op + C k,d,rch min ,L ε 1 h -2 . (19) 
Conversely, since X 1 , . . . , X n is a (h/4)-covering of M onto the probability event described in Lemma A.4, we deduce that for all y ∈ M , there exists i 0 ∈ {1, . . . , n} such that X i 0 -y h/4. In particular, we have

v := πi 0 ,v (y -X i 0 ) ∈ B Ti 0 (0, h/4).
Proceeding as above similarly leads to

T(2) i 0 ,v • πi 0 ,v -II y •π * y op C k,d,rch min ,L ε 1 h -2 , so that max y∈M II y op max 1 i n max v∈ B Ti (0,h/4) T(2) i,v • πi,v op + C k,d,rch min ,L ε 1 h -2 . ( 20 
)
Combining [START_REF] Chazal | The "λ-medial axis[END_REF] and [START_REF] Chazal | An introduction to topological data analysis: Fundamental and practical aspects for data scientists[END_REF] yields that for n large enough,

R -R (M ) R (M ) 2 C k,d,rch min ,L ε 1 h -2 ,
which concludes the proof. so that there exists two points x, y ∈ Γ such that x -y δ. Furthermore, since the interior of B(z, wfs(K)) contains no point of K, there holds d K (x, y) d S(wfs(K)) (x, y) > d S(r) (x, y), for all r > wfs(K), so that indeed sdr δ (K, d K ) wfs(K).

B.2 Stability Properties of the Spherical Distortion Radius

We now move to the proofs of the stability properties of the SDR. As a first step, we will need the following lemma on geodesic distances over spheres. We now can apply Lemma B.1 with A = 2R/δ 0 and λ = 1 to find that d(a, b)

1 1 + ν d (x, y) > 1 1 + ν d S(R) (x, y) 1 1 + ν d S(R+ξ(R)Υ) (a, b) + Υ 1 + Υ/δ 1 + ν d S(R+ξ(R)Υ) (a, b),
where the last inequality uses that d S(R+ξ(R)Υ) (a, b) a -b δ. At the end of the day, since Υ δν, we have d(a, b) > d S(R+ξ(R)Υ) (a, b), so that sdr δ (K, δ) < R + ξ(R)Υ. Taking R to r 1 yields the result.

Proof of Theorem 4.8. We take ε > 0 such that ε < C 0 ε 0 , ε < (δ 1 -δ 0 )/2, and ε < r 0 /L 0 , and take δ ∈ [δ 0 , δ 1 -ε). We write r δ := sdr δ (K, d) and r δ+ε := sdr δ+ε (K, d) for short. Recall that r δ r δ+ε . Now take r r δ+ε -L 0 ε, and two points x, y ∈ K such that δ x -y < 2r (if there are none, then r r δ automatically). If x -y δ + ε, then d(x, y) d S(r) (x, y) because r r δ+ε . If now x -y < δ + ε, since x -y ∆ 0 , we can use Assumption A1 and find a point a ∈ K such that a -y ε/C 0 and x -a x -y + ε δ + ε. Now, since r + L 0 ε r δ+ε , it holds d(x, a) d S(r+L 0 ε) (x, a). Furthermore, notice that

x -a x -y + 1 C 0 ε 1 + r 1 ε C 0 δ 0 r x -y .
Using Assumption A2 and Lemma B.

1 with A = r 1 /(C 0 δ 0 ) and λ = C 1 /C 0 , we find d(x, y) d(x, a) + d(a, y) d S(r+L 0 ε) (x, a) + C 1 C 0 ε d S(r) (x, y),
so that in the end r r δ . Taking r to r δ+ε -L 0 ε yields that r δ+ε r δ + L 0 ε, ending the proof.

Finally, Corollary 4.7 follows as a direct corollary of Proposition 4.6.

Proof of Corollary 4.7. Since ξ 0 ε 2 sdr δ 1 (K, d), the radius sdr δ 1 (K, d) is in particular finite so that, according to Proposition 4.6, sdr δ (K , d ) 2 sdr δ 1 (K, d) and, consequently, ξ 1 Υ sdr δ (K , d ) and ξ 2 Υ sdr δ+2ε (K, d), where ξ 1 = ξ(sdr δ (K , d )) and ξ 2 = ξ(sdr δ+2ε (K, d)). Applying Proposition 4.6 twice -which is possible, since Υ ((δ -2ε)ν) ∨ ε) -, we thus find sdr δ-2ε (K, d) -ξ 1 Υ sdr δ (K , d ) sdr δ+2ε (K, d) + ξ 2 Υ, and we conclude by noticing that both ξ 1 and ξ 2 are less than ξ 0 .

Proof of Theorem 4.9. Using Corollary 4.7 and Theorem 4.8, one find that

sdr δ (K , d ) sdr δ+2ε (K, d) + ξ 0 Υ sdr δ (K, d) + 2L 0 ε + ξ 0 Υ sdr δ (K, d) + ζ 0 Υ,
and likewise for the lower bound.

C Proofs of Section 5 C.1 Minimax Lower Bound for Metric Learning

We now turn towards the proof of Theorem 5.2. It relies on an adaptation of the classical Le Cam's argument [START_REF] Yu | Assouad, fano, and le cam[END_REF] to the asymmetric loss ∞ .

Lemma C.1. Let x, y ∈ R D and let M 0 and M 1 be two submanifolds of R D such that x, y ∈ M 0 ∩M 1 and the uniform distribution P 0 (resp. P 1 ) on M 0 (resp. M 1 ) is in

P k rch min ,L (f min , f max ). Then if d M 0 (x, y) d M 1 (x, y), inf d sup P ∈P k E P ⊗n [ ∞ ( d|d M )] 1 2 × 1 - d M 0 (x, y) d M 1 (x, y) × (1 -TV(P ⊗n 0 , P ⊗n 1 )), (22) 
Proof of Lemma C.1. For brevity, we write R n be the minimax risk appearing in the left-hand side of [START_REF] Cholaquidis | Universally consistent estimation of the reach[END_REF]. First, we write

R n inf d sup P ∈{P 0 ,P 1 } E P ⊗n [ ∞ ( d|d M )] inf d sup P ∈{P 0 ,P 1 } E P ⊗n 1 - d(x, y) d M (x, y) 1 2 inf d E P ⊗n 0 1 - d(x, y) d M 0 (x, y) + E P ⊗n 1 1 - d(x, y) d M 1 (x, y) 1 2 inf d E P ⊗n 0 1 - d(x, y) d M 0 (x, y) + 1 - d(x, y) d M 1 (x, y) × 1 ∧ dP ⊗n 1 dP ⊗n 0 .
But now, using that d M 0 (x, y) d M 1 (x, y), a simple computation shows that the functional

δ → 1 - δ d M 0 (x, y) + 1 - δ d M 1 (x, y) is minimal for δ = d M 0 (x, y) so that R n 1 2 E P ⊗n 0 1 - d M 0 (x, y) d M 1 (x, y) × 1 ∧ dP ⊗n 1 dP ⊗n 0 = 1 2 × 1 - d M 0 (x, y) d M 1 (x, y) × (1 -TV(P ⊗n 0 , P ⊗n 1 )),
which ends the proof.

Proof of Theorem 5.2. Without loss of generality, we set the analysis in R d+1 R d+1 ×{0} D-(d+1) ⊂ R D .

C.1.1 Submanifolds Construction

We let M 0 ⊂ R d+1 be a submanifold of C k 2 rch min ,L/2 such that it contains the cylinder

(s, z) ∈ R 2 × R d-1 | s = R and z 3R .
Such a manifold always exists as soon as R 2 rch min and L j is large enough compared to 1/R j-1 . For instance, one can design M 0 as a hypersurface of revolution obtained based on patches the interpolating curves of Lemma A. [START_REF] Aamari | Minimax Boundary Estimation and Estimation with Boundary[END_REF].

In what follows, we denote any

x ∈ R d+1 = R d × R as x = (w, h) ∈ R d × R.
With this notation, we define, for ε > 0 and c > 0 to be chosen later, Φ ε (x) := x + cε k K(w/ε)e d+1 where e d+1 = (0, . . . , 0, 1) ∈ R d+1 , where K(w) equals exp(-1/(1 -w 2 ) + ) for w < 1 and 0 otherwise.

For ε 1 and c small enough, Φ ε is a diffeomorphism of R d+1 with derivative bounded up to the order k. Using [3, Proposition A.4], we get that M ε := Φ ε (M ), the image of M 0 by Φ ε , belongs to C k rch min ,L provided that c is small enough (depending on R) and ε cR.

Locally around the apex (0, R) ∈ R d+1 , M 0 can be seen as the graph of Ψ 0 (w

) := R 2 -w 2 1 , defined on (-R, R) × B R d-1 (0, 3R), while M ε is the graph of Ψ ε (w) := Ψ 0 (w) + cε k K(w/ε).
Finally, we let Ψε (w) := (w, Ψ ε (w)) and similarly define Ψ0 . We refer to Figure 7 for a diagram of the situation. 

M 0 R R d-1 R R (a) M ε R ε ε k (b)

C.1.2 Shortest-Path Properties

In this section, we seek to derive a lower bound on |1 -d M 0 (x, y)/d Mε (x, y)|, so as to apply Lemma C.1. For this, we will consider well-chosen x, y ∈ M 0 ∩ M ε and derive a lower bound on d Mε (x, y) -d M 0 (x, y).

We let < R, and we pick x := Ψ0 (-e 1 ) and y := Ψ0 ( e 1 ) where e 1 = (1, 0, . . . , 0) ∈ R d . By construction, x and y belong to M 0 . Furthermore, provided that ε, there holds that x = Ψε (-e 1 ) and y = Ψε ( e 1 ) so that x and y are also in M ε . We let γ ε : [-1, 1] → M ε be a shortest path in M ε between x and y, parametrized at constant speed. We denote paths

w ε := a ε e 1 + b ε := π R d ×{0} (γ ε ), where b ε ∈ {0} × R d-1
. We refer to Figure 8 for a diagram of the situation. Several observations are in order.

-Since w ε (±1) = ± e 1 , we have a ε (±1) = ± and b ε (±1) = 0. Also, because γ ε is a minimizing path, a ε is nondecreasing, and b ε ∞ ε (see Figure 8).

-Because γ ε has constant speed on [-1, 1], there holds

γ ε (t) = 1 2 d Mε (x, y) ∈ [A 1 , A 2 ], for all t ∈ [-1, 1], (23) 
with A 1 , A 2 depending on R only, uniformly on small ε. -a ε and b ε are smooth and γ ε = Ψε (w ε ).

γ ε (t) a ε (t) b ε (t) R d-1 R ε x y (a) R d-1 R x y s 1 s 2 (b) 
-Since M ε is symmetric with respect to {0} × R d , so should be the shortest path between x and y. This entails in particular that b ε is even and that a ε is odd;

-As γ ε has constant speed and has a curvature bounded from above (as a shortest path in a bounded-curvature space), the ratio γ ε / γ ε 2 is bounded in sup-norm by a constant depending on R only. Therefore, there exists a constant B > 0 depending on R only such that, uniformly on ε small enough,

max a ε ∞ / , a ε ∞ / 2 , b ε ∞ / , b ε ∞ / 2 B. (24) 
-By symmetry also, γ ε crosses the hyperplane {0} × R d orthogonally. As a consequence γ ε (0), e d+1 = 0, b ε (0) = 0 and

a ε (0) = w ε (0) = γ ε (0) ∈ [A 1 , A 2 ] ,
where A 1 and A 2 were introduced in ( 23).

-Finally, using (24), we deduce that there exists C > 0 depending on R only such that for all

t ∈ [-1, 1],            |a ε (t) -a ε (0)t| C 2 t 2 , |a ε (t) -a ε (0)| C 2 t, |a ε (t)a ε (t) -a ε (0) 2 t| C 3 t 2 , |b ε (t) -b ε (0)| C t. (25) 

C.1.3 Perturbative Expansion of the Geodesic Length

We let γ 0 (t) := Ψ0 (a ε (t)e 1 ). Although not constant-speed, monotonicity of a ε implies that γ 0 is the shortest path in M 0 between x and y, and we get, using ( 24) and [START_REF] Divol | Minimax adaptive estimation in manifold inference[END_REF], that for some constant A 3 depending on R,

1 2 A 1 γ 0 (t) A 3 if A 1 2C , (26) 
which we will assume henceforth. Furthermore, the velocity of γ ε writes where we used the fact that Ψ 0 depends only on its first variable. We write the last term as (∇ 0 + ∇ 1 )e d+1 . Using that each three terms in the preceding development are orthogonal, we obtain

γ ε = d
γ ε 2 = a 2 ε + b ε 2 + (∇ 0 + ∇ 1 ) 2 = a 2 ε + ∇ 2 0 = γ 0 2 + b ε 2 + 2∇ 0 ∇ 1 + ∇ 2 1 :=Qε , (27) 
and it only remains to study the last three terms, denoted by Q ε . First, notice that using [START_REF] Cox | Multidimensional scaling[END_REF], one can find two constants D 0 depending on R such that Q ε -D 0 ε 2 2 . Together with [START_REF] Federer | Curvature measures[END_REF], this yields that Q ε / γ 0 2 -1 for ε small enough (depending on R). Likewise, we can show that Q ε D 1 ( 2 + 2 ε 2 + ε 4 ), for some constant D 1 depending on R. This again yields

Q ε γ 0 2 D 2 if ε D 3 , (28) 
for some constants D 2 and D 3 depending on R only. All in all, we have that

Q ε / γ 0 ∈ [-1, D 2 ].
Using that

√ 1 + z 1 + z if z ∈ [-1, 0], 1 + D 4 z if z ∈ [0, D 2 ], with D 4 = 1 D 2 ( √ 1 + D 2 -1),
we can finally derive from ( 27) and ( 28) the following bound

γ ε = γ 0 1 + Q ε γ 0 2 γ 0 + τ (Q ε )Q ε , (29) 
where τ (z) := 2 A 1

1 z<0 + D 4 A 3 1 z 0 ,
and where we also used [START_REF] Federer | Curvature measures[END_REF] to bound 1/ γ 0 . In particular, integrating (29) over [-1, 1] yields that d Mε (x, y) d M 0 (x, y)

+ 1 -1 τ (Q ε )Q ε .
To obtain a more explicit bound, let us now study Q ε . For this, first rewrite ∇ 0 and ∇ 1 more explicitly as

∇ 0 = - a ε a ε R 2 -a 2 ε and ∇ 1 = -2cε k-2 K(w ε /ε) (1 -w ε /ε 2 ) 2 w ε , w ε .
Hence, noticing that w ε , w ε = a ε a ε + b ε , b ε , one can write 2∇ 0 ∇ 1 as P 0 + P 1 with

P 0 = ε k-2 (a ε a ε ) 2 T ε P 1 = ε k-2 T ε a ε a ε b ε , b ε with T ε := 4cK(w ε /ε) R 2 -a 2 ε (1 -w ε /ε 2 ) 2 .
For A 1 /4C, condition (25) together with a ε (0) A 1 /2 imply that w ε (t) |a ε (t)| ε for all |t| t ε with t ε := 4ε A 1 , so that in particular, T ε (t) = 0 for |t| t ε . Furthermore, notice that, provided that is small before R, T ε is bounded by some constant E > 0 depending on R only. Using again [START_REF] Divol | Minimax adaptive estimation in manifold inference[END_REF], we find that for A 2 1 /8C, there holds (a ε a ε ) 2 (t) 1 2 a ε (0) In particular, we find that

1 -1 |P 1 (t)| dt 5ε k-2 EA 2 1 2 b ε ∞ b ε ∞ tε -tε |t| dt = 5ε k-2 EA 2 1 2 b ε ∞ b ε ∞ t 2 ε 80BE b ε ∞ 2 ε k ,
where we used [START_REF] Cox | Multidimensional scaling[END_REF] in the last inequality. On the other hand, letting t 0 ∈ (-1, 1) be a time at which b ε (t 0 ) = b ε ∞ , notice that

1 -1 b ε 2 = t 0 -1 b ε 2 + 1 t 0 b ε 2 1 1 + t 0 t 0 -1 b ε 2 + 1 1 -t 0 1 t 0 b ε 2 = 1 1 + t 0 + 1 1 -t 0 b ε (t 0 ) 2 2 b ε 2 ∞ .
Integrating [START_REF] Federer | Geometric measure theory[END_REF] and using that ∇ 2 1 0 thus yields

1 -1 τ (Q ε )Q ε 2 b ε ∞ τ 1 b ε ∞ -40τ 2 BE 2 ε k + τ 1 ε k-2 1 -1 (a ε a ε ) 2 T ε . ( 31 
)
where τ 1 is the smallest value of τ , and τ 2 its greatest value. Now we distinguish on the value of b ε (0) :

-If b ε (0) ε/2, then b ε ∞ ε/2 and for ε small enough, we get, noticing that the last term in ( 31) is non-negative,

1 -1 τ (Q ε )Q ε c R ε(ε/2 -ε/4)/ c R ε 2 / .
-Otherwise, if b ε (0) ε/2, then, using [START_REF] Divol | Minimax adaptive estimation in manifold inference[END_REF] Finally, since z → z(z -ν) is minimal on R + at z = ν/2 with minimal value -ν 2 /4, we find the bound

1 -1 τ (Q ε )Q ε c R ε k+1 -c R 3 ε 2k c R ε k+1 ,
provided that ε is small enough before R.

In both cases, we find that 2ε n rch min .

On A c n , we distinguish whether x -y ε n or not. If so, then d(x, y) = x -y d M (x, y). In the other case, d M (x, y)

x -y ε n and d(x, y) d max so that, in any case 

D Proofs of Section 6

We first prove that submanifolds of the model do fulfill Assumption A1 and Assumption A2.

Proof of Proposition 6.2. Assumption A2 is a simple consequence of [START_REF] Niyogi | Finding the homology of submanifolds with high confidence from random samples[END_REF]Proposition 6.3] which yields fulfillment for ∆ 1 = rch(M )/2 and C 1 = 2. For Assumption A1, take x, y ∈ M such that x -y rch(M ) and take ε < rch(M )/4. We consider a = exp y (v), where v = -ε π TyM (x -y) π TyM (x -y) .

Thanks to [START_REF] Federer | Curvature measures[END_REF]Theorem 4.8 (7)], there holds π TyM (x -y) 2 = x -y 2 -d 2 (x -y, T y M )

x -y 2 -x -y 4 4 rch 2 (M ) 3 4

x -y 2 , and v, y -x = ε x -y, π TyM (x -y) π TyM (x -y) = ε π TyM (x -y) 1 2 ε x -y , so that

x -y -v 2

x -y 2 + ε x -y + ε 2

x -y + 1 2 ε 2 , and thus x -y -v x -y + ε/2. But now x -a x -y -v -a -y -v and a -y -v 5ε 2 /4 rch(M ) according to [3, Lemma 1]. All in all, we get that

x -a x -y + 1 2 ε -5 4 rch(K) ε 2

x -y + 3 16 ε, ending the proof.

Theorem 3 . 5 (

 35 [START_REF] Aamari | Estimating the reach of a manifold[END_REF] Theorem 3.4]). Let M ⊂ R D be a compact C 2 submanifold without boundary. Then,rch(M ) = wfs(M ) ∧ R (M ),where denoting byII p : T p M × T p M → T p M ⊥ the second fundamental form of M at p ∈ M , R (M ) := min p∈M II p -1 opstands for the minimal curvature radius of M .

Theorem 3 . 8 .

 38 Let k 3 and P ∈ P k rch min ,L (f min , f max ). Write h = C d,

Proposition 4 . 2 .

 42 For all closed K ⊂ R D and all metric d on K, the map δ → sdr δ (K, d) is non-decreasing. Furthermore, for d = d K , rch(K) sdr δ (K, d K ) wfs(K) for all 0 δ 2(D + 1) D wfs(K). A proof of Proposition 4.2 is given in Appendix B.1.

Definition 4 . 4 .

 44 Let (K, d) and (K , d ) be two metric subspaces of R D . The metric distortion of d relative to d at scale δ > 0 is

Remark 4 . 5 .

 45 When K = K , the mutual distortion can be seen as the bi-Lipschitz coefficient of Id : (K, d) → (K, d ) at scale δ, meaning that for all x, y ∈ K x -y δ ⇒ 1 L d (x, y) d(x, y) Ld (x, y),

Proposition 4 . 6 .δ 4 0

 464 Let δ 0 > 0 and ε, ν > 0. Assume that both d H (K , K) ε and D δ 0 (d |d) 1 + ν. Define ξ(r) := 384(1 + π) r 4for all r 0.

Theorem 5 . 2 .

 52 Assume that f min c d,k / rch d min and f max C d,k / rch d min , and L j C d,k / rch j-1 min for all j ∈ {2, . . . , k}. Then for n large enough, inf d sup P ∈P k rch min ,L (f min ,fmax)

Theorem 5 . 5 .

 55 Let d be the estimator described in Theorem 5.4 built on top of M described in Lemma A.4. Then for n large enough, sup P ∈P k rch min ,L (f min ,fmax)

Theorem 6 . 3 .

 63 2 and 3.2, and to Lemma C.2, 0 < rch min rch(M ) sdr δ (M, d M ) wfs(M ) D 2(D + 1) diam(M ) s max < ∞, where s max := D/(2(D + 1))d max , with d max being the constant introduced in (11). Given k 2, let M be an estimator satisfying sup P ∈P k rch min ,L (f min ,fmax)

Figure 4 :

 4 Figure 4: Construction for Lemma A.1: curves associated to C α , A α , and G α .

Figure 6 :

 6 Figure 6: Local bump of M α for Proposition A.2, in the boxed area of Figure 5.

Proof of Theorem 3 . 3 .

 33 From Proposition A.2, for ε > 0 small enough, take M, M ∈ C k rch min ,L such that | rch µ (M ) -rch µ (M )| c d,k rch min , c d,k rch d min vol d (M ), vol d (M ) C d,k rch d min , and vol d (M M ) C d,k rch d min ε . Let us denote by P and P the uniform distributions over M and M respectively. Elementary calculations directly yield that TV(P, P ) vol d (M M ) vol d (M ) ∨ vol d (M ) C d,k ε. Furthermore, since c d,k rch d min vol d (M ) ∧ vol d (M ) vol d (M ) ∨ vol d (M ) C d,k rch d min , we obtain that P, P ∈ P k rch min ,L (f min , f max ) as soon as f min 1/(C d,k rch d min ) and f max 1/(c d,k rch d min ). As a result, for all n 1, Le Cam's Lemma [47] yields inf rµ sup P ∈P k rch min ,L (f min ,fmax)

B Proofs of Section 4 B. 1 2 .

 412 Comparing Reach, Weak Feature Size and Spherical Distortion Radius Let us prove Proposition 4.Proof of Proposition 4.2. The monotonicity follows trivially from the definition, and since by [13, Theorem 1], sdr 0 (K, d K ) = rch(K, d K ), there holds immediately that sdr δ (K, d K ) rch(K) for any δ 0. Now take δ 2(D + 1)/D wfs(K), and take z a critical point of K, so that z ∈ conv Γ where Γ := {x ∈ K | x -z = d(z, K)}. Using Jung's theorem [27, Theorem 2.10.41], there holds diam

Lemma B. 1 . 8 .

 18 Let r, ε > 0 and take x, y, a, b ∈ K such that x -y < 2r and a -b 1 + Aε r x -y for some A > 0. For all λ > 0, defineζ λ = max 192r 3 a -b 3 (λ + Aπ), 4A .Then, for all ζ ζ λ such that ζε r, there holdsd S(r+ζε) (a, b) d S(r) (x, y) -λε. Proof of Lemma B.1. Notice that, denoting by ρ = x -y , d S(r) (x, y) = 2r arcsin ρ 2r = ρ × ϕ(2r/ρ) with ϕ(u) := u arcsin(1/u).The map ϕ is decreasing on [1, ∞) and, using the development ofarcsin(u) = ∞ n=0 (2n)!u 2n+1 /(2 2n n! 2 (2n + 1)),we find thatϕ (u) = -∞ n=1 (2n)! × 2n 2 2n n! 2 (2n + 1where we used that A ζ/4, ζε r, and that (1 + u)/(1 + u/4) 1 + u/2 for |u| 2. Now, as ϕ π/2 and that |ϕ | is decreasing, we can writed S(r+ζε) (a, b) Aε r x -y ϕ (2(r + ζε)/ a -b ) + x -y ϕ (2(r + ζε)/ a -b ) Aπε + d S(r) (x, y) -x -y × |ϕ | 2(r + ζε) a -b × 2(r + ζε) a -b -2r x -y d S(r) (x, y) + Aπε -a -b 3 3(2(r + ζε)) 3 ζε d S(r) (x, y) + Aπ -a -b 3 192r 3 ζ ε,and using ζ ζ λ ends the proof.We are now in position to prove Proposition 4.6 and Theorem 4.Proof of Proposition 4.6. If r 1 = ∞ there is nothing to show. Otherwise, notice that because r 1 δ 0 /2 by definition, there holds that all R > r 1 . Now, since ξ(r 1 )Υ < r 1 , one can find R > r 1 such that ξ(R)Υ < R. By definition of r 1 , there exist x, y ∈ K such that δ+2ε x-y < 2R and d S(R) (x, y) < d (x, y). Now, let a, b ∈ K be two closest points (in Euclidean distance) from x and y such that d(a, b) = d (π K ({x}), π K ({y}). Then δ a -b x -y + 2ε < 2R + 2Υ 2(R + ξ(R)Υ)

Figure 7 :

 7 Figure 7: (a) The cylindrical section of M 0 used in the proof of Theorem 5.2, and (b) the perturbed submanifold M ε .

Figure 8 :

 8 Figure 8: (a) Top view of M ε and of one of the shortest path between x and y, in blue. In light grey is represented the bump of size ε. (b) Same view of M ε as (a), illustrating the fact that any shortest path must go from left to right (otherwise one can construct a shorter path, through s 1 in the figure) and cannot go outside the shaded area (otherwise one can construct a shorter path, through s 2 in the figure).

  Ψε (w ε )[w ε ] = d Ψ0 (w ε )[w ε ] + cε k-1 ∇K(w ε /ε), w ε e d+1 = w ε + ∇Ψ 0 (w ε ), w ε e d+1 + cε k-1 ∇K(w ε /ε), w ε e d+1 = a ε e 1 + b ε + ∇Ψ 0 (a ε ), a ε :=∇ 0 + cε k-1 ∇K(w ε /ε), w ε :=∇ 1 e d+1 ,

1 - 1 τ 32 )C. 1 . 4

 113214 (Q ε )Q ε c R ε k+1 . Now integrating[START_REF] Genovese | Manifold estimation and singular deconvolution under Hausdorff loss[END_REF] givesd Mε (x, y) d M 0 (x, y) + c R ε k+1 > d M 0 (x, y).Finally, (23) yields d Mε (x, y) 2A 2 and letting := (1 ∨ D -13 )ε, which we can from[START_REF] Fefferman | Fitting a manifold of large reach to noisy data[END_REF], finally gives1 -d M 0 (x, y) d Mε (x, y) c R ε k .(Concluding with Le Cam's lemmaWe apply Lemma C.1 with M 0 and M 1 := M ε for ε properly chosen. Their volumes are bounded from above and below by something depending on R and d only, so that the uniform distribution on M 0 and M ε are in P k rch min ,L (f min , f max ) provided that f min and f max are respectively small enough and large enough compared to 1/R d . Finally, we set R = 2 rch min and ε = (C rch min ,d n) -1/d . For n large enough so that all previous controls are verified, Lemma C.1 finally yields infd sup P ∈P k E P ⊗n [ ∞ ( d|d M )] 1 2 c rch min ε k (1 -C rch min ,d nε d ) c rch min ,d,k n -k/d ,where the total variation was bounded using [10,Lemma 7]. Proof of Theorem 5.4. We let A n := d H ( M , M ) ε n denote the event where M is ε n -precise in Hausdorff distance, and we take x, y ∈ M . On the event A n , for n large enough such that ε n rch min /2, Proposition 5.3 applies to K = M ∪ {x, y} and, together with Lemma C.2, yields 1 -d(x, y) d M (x, y)

  Proposition 4.6 is given in Appendix B.2. Note that the condition d H (K , K) ε may be relaxed via d H (K |K) ε, where d H (K |K) := sup x∈K d(x, K). Also, under the assumptions of Proposition 4.6, let us remark that if sdr δ+2ε (K , d ) is finite, then so is sdr δ (K, d) with sdr δ (K, d) 2 sdr δ+2ε (K , d ). Proposition 4.6 can be symmetrized to get the following two-sided control. Corollary 4.7. Let 0 < δ 0 < δ 1 and ε, ν > 0. Assume that both d H (K , K) ε and D δ 0 (d , d) 1 + ν. Then, for any δ ∈ (δ 0 + 2ε, δ 1 -2ε), it holds

  1/d for C large enough yields η n ε 2

	n so that
	sup
	P ∈P 2 rch min ,L (f min ,fmax)

  3, since t k h C k,d,rch min ,L . Using the development (16) and the inclusion B Ty 0 M (0, h/16) ⊂ π * y 0 ( B(y 0 , h/8) ∩ M -y 0 ) from [2, Lemma 2] then entails (w) ⊗j ) C k,d,rch min ,L ε 1 , for all w ∈ B Ty 0 M (0, h/16). Proceeding as in [2, Proof of Theorem 2], we get

	k
	T (j), i,v (π * y 0
	j=1

  4 t 2 -C 2 6 t 4

		1 32	A 4 1	4 t 2 ,	(30)
	and	|a ε a		

ε |(t) a ε (0) 2 |t| + C 3 t 2 5A 2

1 2 |t| for all t ∈ [-1, 1].

  For ε small before R, t * ε is of the form t * ε = Gε/ with G depending on R only. Furthermore, notice that for |t| t * ε , there holds w ε (t) 2 = |a ε (t)| 2 + b ε (t)2 13ε 2 /16. In particular, T ε is lower-bounded on [-t * ε , t * ε ] by a constant H depending on R only. Noticing that t * ε t ε , we can use the inequality in (30) to obtain

							, we find that
	b ε (t) |a ε (t)|	3ε/4, ε/2,	for all |t| t * ε with t * ε := min	ε 4C	,	ε 8A 2	,	2A 2 C	.
		1 -1	(a ε a ε ) 2 T ε	1 32	A 4 1	4 H	t * ε -t * ε	t 2 dt =	1 48	A 4 1 HG 3 ε 3 .

  for n large enough such that ε n d max . Patching these two bounds together yieldsE P ⊗n [ ∞ ( d|d M )]

	1 -	d(x, y) d M (x, y)	1 +	d(x, y) d M (x, y)	1 +	d max ε n	,
		2ε n rch min	P ⊗n (A n ) + 1 +	d max ε n	P ⊗n (A c n ),
	ending the proof.						
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y ∈ M and y ∈ B y, L 2 ∧rch min 4 ∩ M , we may write y -y = π * y (y -y) + T (2), * y (π * y (y -y) ⊗2 ) + . . . + T (k-1), * y (π * y (y -y) ⊗k-1 ) + R (k) y (y -y), [START_REF] Bourgain | On lipschitz embedding of finite metric spaces in hilbert space[END_REF] where π * y := π TyM , T (j), * y are j-multilinear maps from T y M to R D , and R (k)

where t * = max 2 j k,y∈M T (j), * y 1 j-1 op C k,d,rch min ,L . As assessed by [2, Lemma 2], the polynomial decomposition expressed in [START_REF] Bourgain | On lipschitz embedding of finite metric spaces in hilbert space[END_REF] allows to recover the curvature tensor via II y M = T

(2), * y . Following [START_REF] Aamari | Estimating the reach of a manifold[END_REF], we estimate this curvature tensor via the second term of the polynomial decomposition provided by local fit to data points [START_REF] Arias-Castro | Unconstrained and curvature-constrained shortestpath distances and their approximation[END_REF]. To this aim, a slight adaptation of [2, Lemma 3] is needed, that allows to translate quality of approximation in terms of Hausdorff distance to guarantees on the monomial terms.

2 )/8 and h h 0 . Let M ∈ C k τ min ,L , x 0 = y 0 + z 0 , with y 0 ∈ M and z 0 σ h/4. Denote by π * y 0 the orthogonal projection onto T y 0 M , and by T

(2), * y 0 , . . . , T (k-1), * y 0 the multilinear maps given by [START_REF] Bourgain | On lipschitz embedding of finite metric spaces in hilbert space[END_REF]. Let x = y + z be such that y ∈ M , z σ h/4 and x ∈ B(x 0 , h). We also let π be an orthogonal projection, and T (2) , . . . , T (k-1) be multilinear maps that satisfy max

for some t 0. Then it holds

where T (j), y 0 are j-linear maps, and R (k)

, where C depends on d, k, rch min , L 2 ,. . ., L k . Moreover, we have

and, if π = π * y 0 and T (j) = T (j), * y 0 for all j ∈ {2, . . . , k -1}, then T (j), y 0 = 0 for all j ∈ {1, . . . , k}.

The proof of Lemma A.3 is deferred to Section A.4. To ensure that our local curvature estimators allow to approximate the maximal curvature of M , we have to ensure that the sample covers M well enough. That is the aim of the following Lemma. 

A.4 Proof of Lemma A.3

Proof of Lemma A.3. We follow the proof of [2, Lemma 3]. Without loss of generality we take y 0 = 0, so that y 3h/2. Let z = z -z 0 , so that z h/2. We write

Since, for any j 2 and r ∈ {0, . . . , j -1},

we may write

where

we deduce that

y 0 (π * y 0 (y)) + R (k), y 0 (y) -π P * ,(1:k-1)

Next, since y 3h/2, it holds

so that, for all j ∈ {2, . . . , k}, T (j) π P * ,(1:k-1)

Thus, we may write

T (j) π P * ,(1:k-1)

where

At last, for j ∈ {2, . . . , k}, and r 1 , . . . , r j ∈ {1, . . . , k -1} such that j s=1 r s k + 1, we have

where T

(1), * y 0 = π * y 0 , with a slight abuse of notation. Hence, it holds

where

Plugging the above equation into [START_REF] Chennuru Vankadara | Measures of distortion for machine learning[END_REF] gives the result.

C.2 Plug-in Estimation for Metric Learning

We start by giving the proof of Proposition 5.3.

Proof of Proposition 5.3. Let x, y ∈ K. Notice that, since K ⊂ (K ) ε , there holds trivially that d (K ) ε (x, y) d K (x, y). For the converse inequality, let γ : [0, 1] → R D be a continuous path in (K ) ε between x and y. Since ε < rch(K)/2 the closest-point projection on K is well-defined on (K ) ε ⊂ K 2ε and we can consider γ 0 = π K •γ, which is a continuous path in K. For any subdivision 0

where we used the fact that π K is rch(K)/(rch(K) -2ε)-Lipschitz on K 2ε [26, Theorem 4.8 [START_REF] Attali | Vietorisrips complexes also provide topologically correct reconstructions of sampled shapes[END_REF]]. Taking the supremum over all subdivision yields

and then taking the infimum on all continuous path γ finally gives

ending the proof.

To prove Theorem 5.4, an intermediate result that bounds the intrinsic diameters of the supports in our statistical model is needed.

Lemma C.2. For any P ∈ P k rch min ,L (f min , f max ), if M = Support(P ), then

where d max is defined in Theorem 5.4.

Proof of Lemma C.2. We let x 1 , . . . , x N be a rch min /4-packing of M . We let x, y ∈ M , and G be the neighborhood graph built on top of x, y, x 1 , . . . , x N with connectivity radius rch min /2. Using [38, Theorem 6.3], denoting z 0 = x, z 1 , . . . , z k = y the shortest path between x and y in G, there holds

But now k N -1 and

, where we used [START_REF] Niyogi | Finding the homology of submanifolds with high confidence from random samples[END_REF]Lemma 5.3]. Noticing that vol d (M ) 1/f min , we easily conclude.

We are now in position to prove Theorem 5.4.

To prove Theorem 6.3, a bound on the metric distortion between our distance estimator and d M is needed, that easily follows from Proposition 5.3. Proposition D.1. In the context of Proposition 5.3, we have that for all δ > 4ε,

.

Proof of Proposition D.1. Proposition 5.3 already gives that D δ (d K |d (K ) ε ) 1 + 2ε/ rch(K). For the other control, notice that for any two x, y ∈ (K ) ε that are δ-apart for the Euclidean distance, there holds denoting x 0 = π K (x) and y 0 = π K (y),

because the piecewise-defined path consisting of the segment [x, x 0 ] of the (or a near-minimizing) shortest-path between x 0 and y 0 in K, and of the segment [y 0 , y], is a continuous path in (K ) ε between x and y of length the RHS of the display above. Now notice that d K (x 0 , y 0 ) x 0 -y 0 δ -4ε, which immediately yields D δ (d (K )

The rate of the plug-in SDR estimator follows straightforwardly.

Proof of Theorem 6.