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A non-local system modeling bi-directional traffic flows

Felisia Angela Chiarello and Paola Goatin

Abstract We present a non-local model describing the dynamics of two groups of agents moving in opposite directions.
The model consists of a 2 × 2 system of conservation laws with non-local fluxes, coupled in the speed functions. We
prove local in time existence of weak solutions and present some numerical tests illustrating their behaviour.

1 Introduction

Conservation laws with non-local flux are suitable to describe several phenomena arising in many fields of application.
In this paper, we are interested in describing two groups of agents moving in opposite directions using this class of
equations.

The first macroscopic traffic flow model based on fluid-dynamics equations was introduced in the transportation
literature in the mid-fifties of last century, with the Lighthill, Whitham and Richards (LWR) model [10, 11]. In recent
years, “non-local” versions of the LWR model have been proposed in [2, 3, 6, 8]. In most of these models, the speed
depends on a weighted mean of the downstream traffic density, describing the behaviour of agents that adapt their
velocity with respect to what happens in front of them. Therefore, the flux function depends on a “downstream”
convolution term of the density of agents with a kernel function. In [4, 5], the authors consider a multi-class traffic
model expressed by a system of conservation laws with non-local fluxes obtained generalizing the n−populations model
for traffic flow introduced in [1], where each equation of the system describes the evolution of the density ρi of the
vehicles belonging to the i−th class. In particular, the non-local multi-class model takes into account the distribution
of heterogeneous agents characterized by their maximal speeds and look-ahead visibility in a traffic stream.

In this paper, we consider two non-local conservation laws describing two classes of agents moving in opposite
directions. The resulting system is a non-local version of the model presented in [7], where the authors study a mixed
type system of conservation laws describing two populations moving in opposite directions. The latter model is not
hyperbolic for certain density values, because the Jacobian matrix of the flux exhibits complex eigenvalues in a subset
of the phase space, and oscillations arise in the elliptic region. In particular, existence and uniqueness of solutions are
still open problems. On the contrary, we will show that introducing a non-local dependence in the speed function allows
to prove existence of solutions through the convergence of a suitable finite volume scheme, at least for sufficiently small
times.
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The paper is organized as follows. In Section 2 we present a non-local version of the mixed system studied in [7]
and we discretize it with an upwind scheme; in Section 3 we recover uniform L∞ and BV bounds on the sequence
of approximate solutions, which allow to prove the existence of weak solutions locally in time. Finally, in Section 4,
we exhibit some numerical simulations showing the behaviour of weak solutions of our system considering different
kernel and velocity functions. In particular, we compare non-local solutions to their local counterpart presented in [7].

2 A non-local bi-directional traffic flow model

We consider the following system 
∂t ρ1 + ∂x (ρ1v1(r ∗ ω1)) = 0,

∂t ρ2 − ∂x (ρ2v2(r ∗ ω2)) = 0,
(1)

where
r = ρ1 + ρ2,

r ∗ ω1(t, x) =
∫ x+η1

x

ω1(y − x)r(t, y)dy,

r ∗ ω2(t, x) =
∫ x

x−η2

ω2(y − x)r(t, y)dy.

In (1), ρ1 = ρ1(t, x) is the density of the population moving in the direction of increasing space coordinate with speed
v1 = v1(r ∗ω1) depending on the downstream weighed mean of the total density r , while ρ2 = ρ2(t, x) is the density of
the population moving in the opposite direction, with non-local speed v2.

In the following, we will assume

(H1)ω1 ∈ C1([0, η1];R+), ω2 ∈ C1([−η2,0];R+), ηi > 0 for i ∈ {1,2}, ω′1 ≤ 0 and ω′2 ≥ 0,
∫ η1

0 ω1(x)dx =∫ 0
−η2

ω2(x)dx = 1; we set ωmax := max{ω1(0),ω2(0)};
(H2)vi : R+ → R+, i ∈ {1,2}, are smooth non-increasing functions such that vi(0) = Vmax

i > 0 and vi(r) = 0 for r ≥ 1.

We couple (1) with an initial datum
ρi(0, x) = ρ0

i (x), i = 1,2, (2)

and we construct a sequence of finite volume approximate solutions as follows. We fix a space step ∆x and a time step
∆t subject to a CFL condition that will be specified later. Let xj+1/2 = j∆x for j ∈ Z and n ∈ N be the cells interfaces,
xj = ( j − 1/2)∆x the cells centers and tn = n∆t the time mesh. We aim at constructing finite volume approximate
solutions of (1) of the form ρ∆x = (ρ∆x1 , ρ∆x2 ) with ρ

∆x
i (t, x) = ρ

n
i, j for i = 1,2, (t, x) ∈ Cn

j = [t
n, tn+1[ ×[xj−1/2, xj+1/2[.

To this end, we approximate the initial data with piece-wise constant functions

ρ0
i, j =

1
∆x

∫ x j+1/2

x j−1/2

ρ0
i (x)dx, ∀ j ∈ Z, i = 1,2. (3)

Similarly, for the kernels, we set

ωi,k :=
1
∆x

∫ (k+1)∆x

k∆x

ωi(x)dx, ∀k ∈ Z, i = 1,2, (4)

so that ∆x
∑+∞

k=−∞ ωi,k =
∫ +∞
−∞

ωi(x)dx = 1 (extending ωi(x) = 0 outside their domain).
We use the following upwind scheme:

ρn+1
1, j = ρ

n
1, j −

∆t
∆x

[
ρn1, jv1(Rn

1, j+1) − ρ
n
1, j−1v1(Rn

1, j)
]
, (5a)

ρn+1
2, j = ρ

n
2, j +

∆t
∆x

[
ρn2, j+1v2(Rn

2, j) − ρ
n
2, jv2(Rn

2, j−1)
]
, (5b)
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where

Rn
1, j = ∆x

+∞∑
k=0

ω1,krnj+k, Rn
2, j = ∆x

0∑
k=−∞

ω2,krnj+k, (6)

where the sums are indeed finite due to the compact supports of ω1 and ω2.

3 Existence of weak solutions

In this section, we prove existence of weak solutions for sufficiently small times.

Theorem 1 Let ρ0
i (x) ∈ (BV ∩ L∞) (R;R+), for i = 1,2, and assumptions (H1) - (H2) hold. Then the Cauchy problem

(1), (2) admits a weak solution on [0,T[ ×R, for some T > 0 sufficiently small.

The proof relies on the following estimates, which ensure the convergence of the numerical scheme (5).

Lemma 1 (Positivity)

For any T > 0, under the CFL stability condition

∆t
∆x
≤

1
max{‖v1‖∞ , ‖v2‖∞}

, (1)

the scheme (5) is positivity preserving on [0,T] × R.

Proof Let us assume that ρni, j ≥ 0 for all j ∈ Z and i ∈ {1,2}. Let us show that the same holds for ρn+1
i, j . Let us compute

ρn+1
1, j =

(
1 −
∆t
∆x

v1(Rn
1, j+1)

)
ρn1, j + ρ

n
1, j−1

∆t
∆x

v1(Rn
1, j),

ρn+1
2, j =

(
1 −
∆t
∆x

v2(Rn
2, j−1)

)
ρn2, j + ρ

n
2, j+1

∆t
∆x

v2(Rn
2, j).

By assumption (1), we ensure ρn+1
i, j ≥ 0 for i ∈ {1,2} and for all j ∈ Z . �

Corollary 1 (L1-bound)

If ρ0
i, j ≥ 0 for all j ∈ Z and i ∈ {1,2} and the CFL condition (1) holds, the approximate solutions constructed via

the scheme (5) satisfy 

ρni 

1 =


ρ0

i




1, i = 1, . . . ,M, (2)

for any n ∈ N, where


ρni 

1 := ∆x

∑
j

���ρni, j ��� denotes the L1 norm of the i-th component of ρ∆x .

Proof Thanks to Lemma 1, we have

ρn+1
1




1 = ∆x

∑
j

ρn+1
1, j = ∆x

∑
j

ρn1, j −
∆t
∆x

[
ρn1, jv1(Rn

1, j+1) − ρ
n
1, j−1v1(Rn

1, j)
]
= ∆x

∑
j

ρn1, j,

ρn+1
2




1 = ∆x

∑
j

ρn+1
2, j = ∆x

∑
j

ρn2, j +
∆t
∆x

[
ρn2, j+1v2(Rn

2, j) − ρ
n
2, jv2(Rn

2, j−1)
]
= ∆x

∑
j

ρn2, j,

proving (2). �

Lemma 2 (L∞-bound)

If ρ0
i, j ≥ 0 for all j ∈ Z and i ∈ {1,2} and (1) holds, then the approximate solution ρ∆x constructed by the algorithm

(5) is uniformly bounded on [0,T] × R for any T such that

T ≤
1

4 max{


v ′1

∞ ,

v ′2

∞}wmax



ρ0



∞

.
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Proof Let us define ρ̄ = max{ρn1, j−1, ρ
n
1, j, ρ

n
2, j, ρ

n
2, j+1}. Then we get

ρn+1
1, j =

(
1 −
∆t
∆x

v1(Rn
1, j+1)

)
ρn1, j +

∆t
∆x

v1(Rn
1, j)ρ

n
1, j−1

≤

(
1 −
∆t
∆x

(
v1(Rn

1, j+1) − v1(Rn
1, j)

))
ρ̄

ρn+1
2, j =

(
1 −
∆t
∆x

v2(Rn
2, j−1)

)
ρn2, j +

∆t
∆x

v2(Rn
2, j)ρ

n
2, j+1

≤

(
1 −
∆t
∆x

(
v2(Rn

2, j−1) − v2(Rn
2, j)

))
ρ̄,

and ���v1(Rn
1, j) − v1(Rn

1, j+1)
��� = �����v ′1(ξj+1/2)

(
∆x

+∞∑
k=0

ω1,krnj+k+1 − ∆x
+∞∑
k=0

ω1,krnj+k

)�����
= ∆x

��v ′1(ξj+1/2)
�� �����+∞∑
k=1
(ω1,k−1 − ω1,k)rnj+k − ω1,0 rnj

�����
≤ 4∆x ω1(0)



v ′1

∞ ‖ρn‖∞ , (3)���v2(Rn
2, j−1) − v2(Rn

2, j)
��� = �����v ′2(ξj−1/2)

(
∆x

0∑
k=−∞

ω2,krnj+k−1 − ∆x
0∑

k=−∞

ω2,krnj+k

)�����
= ∆x

��v ′2(ξj−1/2)
�� ����� −1∑
k=−∞

(ω2,k+1 − ω2,k)rnj+k − ω2,0 rnj

�����
≤ 4∆x ω2(0)



v ′2

∞ ‖ρn‖∞ , (4)

where ξj+1/2 ∈ i(Rn
1, j,R

n
1, j+1), with I(a, b) = [min{a, b},max{a, b}], and ‖ρn‖∞ =



(ρn1 , ρn2 )

∞ = max
i, j

���ρni, j ���. So, until
‖ρn‖∞ ≤ K for some K ≥



ρ0



∞
, we get

ρn+1


∞
≤ ‖ρn‖∞

(
1 + 4K max

{

v ′1

∞ ,

v ′2

∞}
∆t wmax

)
with wmax = max{ω1(0),ω2(0)}. This implies

‖ρn‖∞ ≤


ρ0



∞
eCn∆t,

where C = 4K max{


v ′1

∞ ,

v ′2

∞}wmax. Therefore we get that ‖ρ(t, ·)‖∞ ≤ K for

t ≤
1

4K max{


v ′1

∞ ,

v ′2

∞}wmax

ln

(
K

ρ0



∞

)
≤

1
4e max{



v ′1

∞ ,

v ′2

∞}wmax


ρ0




∞

,

where the maximum is attained for K = e


ρ0




∞
. Let us iterate the procedure: at time tm, m ≥ 1, we set K = em



ρ0



∞

and we get that the solution is bounded by K until tm+1 such that

tm+1 ≤ tm +
m

4em max{


v ′1

∞ ,

v ′2

∞}wmax



ρ0



∞

.

Therefore, the approximate solution remains bounded, uniformly in ∆x, at least for t ≤ T with

T ≤
1

4 max{


v ′1

∞ ,

v ′2

∞}wmax



ρ0



∞

+∞∑
m=1

m
em
≤

1
4 max{



v ′1

∞ ,

v ′2

∞}wmax


ρ0




∞

.

Lemma 3 (Spatial BV-bound)

Let ρ0
i ∈ (BV ∩ L∞) (R;R+) for i ∈ {1,2}. If (1) holds, then the approximate solution ρ∆x(t, ·) constructed by the

algorithm (5) has uniformly bounded total variation for t ∈ [0,T] for any T such that
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T ≤ min
i=1,2

1
H

(
TV(ρ0

i ) + 1
) , (5)

whereH = 2‖ρn‖∞ wmax

(
12‖ρn‖∞max{



v ′′1 


∞
,


v ′′2 



∞
} +max{



v ′1

∞,

v ′2

∞}) .
Proof Let us consider the component ρ1 and subtract the identities

ρn+1
1, j+1 = ρ

n
1, j+1 −

∆t
∆x

[
ρn1, j+1v1(Rn

1, j+2) − ρ
n
1, jv1(Rn

1, j+1)
]

ρn+1
1, j = ρ

n
1, j −

∆t
∆x

[
ρn1, jv1(Rn

1, j+1) − ρ
n
1, j−1v1(Rn

1, j)
]
,

analogously for the second component ρ2,

ρn+1
2, j+1 = ρ

n
2, j+1 +

∆t
∆x

[
ρn2, j+2v2(Rn

2, j+1) − ρ
n
2, j+1v2(Rn

2, j)
]

ρn+1
2, j = ρ

n
2, j +

∆t
∆x

[
ρn2, j+1v2(Rn

2, j) − ρ
n
2, jv2(Rn

2, j−1)
]
.

Setting ∆n
i, j+1/2 = ρ

n
i, j+1 − ρ

n
i, j for i ∈ {1,2},we get

∆
n+1
1, j+1/2 = ∆

n
1, j+1/2 −

∆t
∆x

(
ρn1, j+1v1(Rn

1, j+2) − 2ρn1, jv1(Rn
1, j+1) + ρ

n
1, j−1v1(Rn

1, j)
)
,

∆
n+1
2, j+1/2 = ∆

n
2, j+1/2 +

∆t
∆x

(
ρn2, j+2v2(Rn

2, j+1) − 2ρn2, j+1v2(Rn
2, j) + ρ

n
2, jv2(Rn

2, j−1)
)
.

We can write

∆
n+1
1, j+1/2 =

(
1 −
∆t
∆x

v1(Rn
1, j+2)

)
∆
n
1, j+1/2 (6)

−
∆t
∆x

ρn1, j

(
v1(Rn

1, j+2) − 2v1(Rn
1, j+1) + v1(Rn

1, j)
)

(7)

+
∆t
∆x
∆
n
1, j−1/2v1(Rn

1, j),

and

∆
n+1
2, j+1/2 =

(
1 −
∆t
∆x

v2(Rn
2, j−1)

)
∆
n
2, j+1/2 (8)

+
∆t
∆x

ρn2, j+1

(
v2(Rn

2, j+1) − 2v2(Rn
2, j) + v2(Rn

2, j−1)
)

(9)

+
∆t
∆x
∆
n
2, j+3/2v2(Rn

2, j+1).

Observe that assumption (1) guarantees the positivity of (6) and (8). The term (7) can be estimated as

v1(Rn
1, j+2) − 2v1(Rn

1, j+1) + v1(Rn
1, j)

= v1

(
∆x

+∞∑
k=0

ω1,krnj+k+2

)
− 2v1

(
∆x

+∞∑
k=0

ω1,krnj+k+1

)
+ v1

(
∆x

+∞∑
k=0

ω1,krnj+k

)
= v ′1(ξ

n
1, j+3/2)∆x

(
+∞∑
k=0

ω1,krnj+k+2 −

+∞∑
k=0

ω1,krnj+k+1

)
− v ′1(ξ

n
1, j+1/2)∆x

(
+∞∑
k=0

ω1,krnj+k+1 −

+∞∑
k=0

ω1,krnj+k

)
= v ′1(ξ

n
1, j+3/2)∆x

(
+∞∑
k=1
(ω1,k−1 − ω1,k)rnj+k+1 − ω1,0rnj+1

)
− v ′1(ξ

n
1, j+1/2)∆x

(
+∞∑
k=1
(ω1,k−1 − ω1,k)rnj+k − ω1,0rnj

)
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= v ′′1 (ξ̃
n
1, j+1)(ξ

n
1, j+3/2 − ξ

n
1, j+1/2)∆x

(
+∞∑
k=0

ω1,k

2∑
i=1
∆
n
i, j+k+3/2

)
+ v ′1(ξ

n
1, j+1/2)∆x

(
+∞∑
k=1

2∑
i=1
(ω1,k−1 − ω1,k)∆

n
i, j+k+1/2 − ω1,0∆

n
i, j+1/2

)
,

with ξn1, j+1/2 ∈ I(R
n
1, j,R

n
1, j+1) and ξ̃

n
1, j+1 ∈ I(ξ

n
1, j+1/2, ξ

n
1, j+3/2). For some θ, µ ∈ [0,1],we compute

ξn1, j+3/2 − ξ
n
1, j+1/2 = θ∆x

+∞∑
k=0

ω1,k

2∑
i=1

ρni, j+k+2 + (1 − θ)∆x
+∞∑
k=0

ω1,k

2∑
i=1

ρni, j+k+1

− µ∆x
+∞∑
k=0

ω1,k

2∑
i=1

ρni, j+k+1 − (1 − µ)∆x
+∞∑
k=0

ω1,k

2∑
i=1

ρni, j+k

= θ∆x
+∞∑
k=1

ω1,k−1

2∑
i=1

ρni, j+k+1 + (1 − θ)∆x
+∞∑
k=0

ω1,k

2∑
i=1

ρni, j+k+1

− µ∆x
+∞∑
k=0

ω1,k

2∑
i=1

ρni, j+k+1 − (1 − µ)∆x
+∞∑
k=−1

ω1,k+1

2∑
i=1

ρni, j+k+1

= ∆x
+∞∑
k=1

[
θω1,k−1 + (1 − θ)ω1,k − µω1,k − (1 − µ)ω1,k+1

] 2∑
i=1

ρni, j+k+1

+ ∆x(1 − θ)ω1,0

2∑
i=1

ρni, j+1 − ∆xµω1,0

2∑
i=1

ρni, j+1

− ∆x(1 − µ)

(
ω1,0

2∑
i=1

ρni, j + ω1,1

2∑
i=1

ρni, j+1

)
.

By monotonicity we have
θω1,k−1 + (1 − θ)ω1,k − µω1,k − (1 − µ)ω1,k+1 ≥ 0.

Taking the absolute values, we get���ξn1, j+3/2 − ξ
n
1, j+1/2

��� ≤ ∆x

{
+∞∑
k=1

[
θω1,k−1 + (1 − θ)ω1,k − µω1,k − (1 − µ)ω1,k+1

]
+ 4ω1,0

}
2 ‖ρn‖∞

≤ 12∆x ω1(0) ‖ρn‖∞ .

Applying the same argument to the second component, we compute

v2(Rn
2, j+1) − 2v2(Rn

2, j) + v2(Rn
2, j−1)

= v ′′2 (ξ̃
n
2, j)(ξ

n
2, j+1/2 − ξ

n
2, j−1/2)∆x

( 0∑
k=−∞

ω2,k

2∑
i=1
∆
n
i, j+k+1/2

)
+ v ′2(ξ

n
2, j−1/2)∆x

( 0∑
k=−∞

2∑
i=1
(ω2,k−1 − ω2,k)∆

n
i, j+k−1/2 − ω2,0∆

n
i, j−1/2

)
,

with ξn2, j+1/2 ∈ I(R
n
2, j,R

n
2, j+1) and ξ̃

n
2, j ∈ I(ξ

n
2, j−1/2, ξ

n
2, j+1/2), and���ξn2, j+1/2 − ξ

n
2, j−1/2

��� ≤ 12∆x ω2(0) ‖ρn‖∞ .

Let now K1 > 0 be such that
∑

j

���∆`i, j ��� ≤ K1 for i ∈ {1,2}, ` = 0, . . . ,n. Taking the absolute values and rearranging
the indexes, we have ∑

j

���∆n+1
1, j+1/2

��� ≤∑
j

���∆n1, j+1/2

��� (1 − λ (
v1(Rn

1, j+2) − v1(Rn
1, j+1)

))
+ ∆tHK1,
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j

���∆n+1
2, j+1/2

��� ≤∑
j

���∆n2, j+1/2

��� (1 − λ (
v2(Rn

2, j−1) − v2(Rn
2, j)

))
+ ∆tHK1,

whereH = 2‖ρn‖∞ wmax

(
12‖ρn‖∞max{



v ′′1 


∞
,


v ′′2 



∞
} +max{



v ′1

∞,

v ′2

∞}) . Therefore, by (3)-(4) we get∑
j

���∆n+1
i, j+1/2

��� ≤∑
j

���∆ni, j+1/2

��� (1 + ∆t G) + ∆tHK1,

with G = 4 max{


v ′1

∞,

v ′2

∞}wmax‖ρ

n‖∞.We thus obtain∑
j

���∆ni, j+1/2

��� ≤ eGn∆t
∑
j

���∆0
i, j+1/2

��� + eHK1n∆t − 1,

that we can rewrite as

TV(ρ∆xi )(n∆t, ·) ≤ eGn∆tTV(ρ0
i ) + eHK1n∆t − 1

≤ eHK1n∆t
(
TV(ρ0

i ) + 1
)
− 1 ,

sinceH ≥ G and it is not restrictive to assume K1 ≥ 1.
Therefore, we have that TV(ρ∆xi ) ≤ K1 for

t ≤
1
HK1

ln

(
K1 + 1

TV(ρ0
i ) + 1

)
,

where the maximum is attained for some K1 < e
(
TV(ρ0

i ) + 1
)
− 1 such that

ln

(
K1 + 1

TV(ρ0
i ) + 1

)
=

K1
K1 + 1

.

Therefore the total variation is uniformly bounded for

t ≤
1

He
(
TV(ρ0

i ) + 1
) .

Iterating the procedure, at time tm, m ≥ 1 we set K1 = em
(
TV(ρ0

i ) + 1
)
− 1 and we get that the solution is bounded by

K1 until tm+1 such that
tm+1 ≤ tm +

m
Hem

(
TV(ρ0

i ) + 1
) . (10)

Therefore, the approximate solution has bounded total variation for t ≤ T with

T ≤
1

H
(
TV(ρ0

i ) + 1
) .

Corollary 2 Let ρ0
i ∈ (BV ∩ L∞) (R;R+). If (1) holds, then the approximate solution ρ∆x constructed by the algo-

rithm (5) has uniformly bounded total variation on [0,T] × R, for any T satisfying (5).

Proof If T ≤ ∆t, then TV(ρ∆xi ; [0,T] × R) ≤ TTV(ρ0
i ). Let us assume now that T > ∆t . Let nT ∈ N\{0} such that

nT∆t < T ≤ (nT + 1)∆t. Then, for i ∈ {1,2},

TV(ρ∆xi ; [0,T] × R)

=

nT−1∑
n=0

∑
j∈Z

∆t
���ρni, j+1 − ρ

n
i, j

��� + (T − nT∆t)
∑
j∈Z

���ρnTi, j+1 − ρ
nT
i, j

���︸                                                                     ︷︷                                                                     ︸
≤T supt∈[0,T ] TV (ρ∆xi )(t , ·)

+

nT−1∑
n=0

∑
j∈Z

∆x
���ρn+1

i, j − ρ
n
i, j

��� .
We then need to bound the term
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nT−1∑
n=0

∑
j∈Z

∆x
���ρn+1

i, j − ρ
n
i, j

��� .
From the definition of the numerical scheme (5a)-(5b), we obtain

ρn+1
1, j − ρ

n
1, j = −

∆t
∆x

[
ρn1, jv1(Rn

1, j+1) − ρ
n
1, j−1v1(Rn

1, j)
]
,

=
∆t
∆x

[
ρn1, j−1

(
v1(Rn

1, j) − v1(Rn
1, j+1)

)
+ v1(Rn

1, j+1)
(
ρn1, j−1 − ρ

n
1, j

)]
,

ρn+1
2, j − ρ

n
2, j =

∆t
∆x

[
ρn2, j+1v2(Rn

2, j) − ρ
n
2, jv2(Rn

2, j−1)
]

=
∆t
∆x

[
ρn2, j+1

(
v2(Rn

2, j) − v2(Rn
2, j−1)

)
+ v2(Rn

2, j−1)
(
ρn2, j+1 − ρ

n
2, j

)]
.

Taking the absolute values and using (3)- (4) we get���ρn+1
1, j − ρ

n
1, j

��� ≤ ∆t
∆x

(
4∆x ω1(0)



v ′1

∞ ‖ρn‖∞

���ρn1, j−1

��� + ‖v1‖∞

���ρn1, j−1 − ρ
n
1, j

���)���ρn+1
2, j − ρ

n
2, j

��� ≤ ∆t
∆x

(
4∆x ω2(0)



v ′2

∞ ‖ρn‖∞

���ρn2, j+1

��� + ‖v2‖∞

���ρn2, j+1 − ρ
n
2, j

���) .
Summing on j, we get∑

j∈Z

∆x
���ρn+1

1, j − ρ
n
1, j

��� ≤ 4ω1(0)


v ′1

∞ ‖ρn‖∞ ∆t

∑
j∈Z

∆x
���ρn1, j−1

��� + ‖v1‖∞ ∆t
∑
j∈Z

���ρn1, j−1 − ρ
n
1, j

���∑
j∈Z

∆x
���ρn+1

2, j − ρ
n
2, j

��� ≤ 4ω2(0)


v ′2

∞ ‖ρn‖∞ ∆t

∑
j∈Z

∆x
���ρn2, j+1

��� + ‖v2‖∞ ∆t
∑
j∈Z

���ρn2, j+1 − ρ
n
2, j

��� .
which yields, for i ∈ {1,2},

nT−1∑
n=0

∑
j∈Z

∆x
���ρn+1

i, j − ρ
n
i, j

���
≤max{‖v1‖∞ , ‖v2‖∞}T sup

t∈[0,T ]
TV(ρ∆xi )(t, ·)

+ 4 max {ω1(0),ω2(0)}max {


v ′1

∞ ,

v ′2

∞} ‖ρn‖∞ T sup

t∈[0,T ]



ρ∆xi (t, ·)

1,

that is bounded by Corollary 1, Lemma 2 and Lemma 3. �

Proof (of Theorem 1) To complete the proof of the existence of solutions to the Cauchy problem (1)-(2), we apply
Helly’s theorem and follow a Lax-Wendroff type argument as in [2, 3, 4], see also [9], to show that the approximate
solutions constructed by scheme (5) converge to a weak solution of (1)-(2). �

4 Numerical tests

4.1 Kernel support tending to zero

In this subsection, we observe the solution behaviour as the length of kernel support diminishes. We consider the space
domain given by the interval [−1,1] and the space discretization mesh size is set to ∆x = 0.001. We impose absorbing
conditions at the boundaries, adding N = ηi/∆x ghost cells at the right boundary for the first population ρ1 and at the
left boundary for the second population ρ2, where we extend the solution constantly equal to the last value inside the
domain.
We take the following linear decreasing kernel and velocity functions:
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ω1(x) =
2
η1

(
1 −

x
η1

)
, ω2(x) =

2
η2

(
1 +

x
η2

)
; (1a)

v1(ρ) = 1 − ρ , v2(ρ) = 1 − ρ . (1b)

In Figures 1 and 2, we consider the same initial data of [7, Figures 5 and 6], observing that the solutions have a similar
behaviour, especially when the kernel supports η1 = η2 are taken sufficiently small. Moreover, comparing Figures 3
and 4 with the numerical tests in [7, Figures 14 and 15], we note that when we consider initial data in the elliptic region
of the local system, oscillations increase as the kernel support diminish.
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Fig. 1: Test 1. Solution to (1) with (1) and ρ0
1 = 0.2 ∗ (x < 0) + 0.1 ∗ (x >= 0) and ρ0

2 = 0.1 ∗ (x < 0) + 0.2 ∗ (x >= 0) with
η1 = η2 = 0.1 on the left and η1 = η2 = 0.01 on the right.
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Fig. 2: Test 2. Solution to (1) with (1) and ρ1 = 0.2 ∗ (x < 0)+ 0.1 ∗ (x >= 0) and ρ2 = 0.1 ∗ (x < 0)+ 0.3 ∗ (x >= 0) with η1 = η2 = 0.1
on the left and η1 = η2 = 0.01 on the right.

4.2 Asymptotic behaviour in a periodic setting

We consider now periodic initial data with periodic boundary conditions, see Figure 5. In the following we set
∆x = 0.001, the CFL condition is as in in (1). We are interested in the behaviour of solutions with different types of
kernel functions and velocities.

For Test 5, let us consider the linear kernels and velocity functions
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Fig. 3: Test 3. Solution to (1) with (1) and ρ0
1 = 0.1 ∗ (x < 0) + 0.4 ∗ (x >= 0) and ρ0

2 = 0.2 ∗ (x < 0) + 0.5 ∗ (x >= 0).With
η1 = η2 = 0.1 at left, η1 = η2 = 0.01 at right.
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Fig. 4: Test 4. Solution to (1) with (1) and ρ0
1 = 0.4 ∗ (x < 0) + 0.1 ∗ (x >= 0) and ρ0

2 = 0.5 ∗ (x < 0) + 0.2 ∗ (x >= 0).With
η1 = η2 = 0.1 at left, η1 = η2 = 0.01 at right.
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Fig. 5: Initial condition for tests 5, 6 and 7 with periodic boundary conditions. ρ0
1 = 0.3 + 0.2 sin(2πx) and ρ0

2 = 0.1 + 0.1 sin(2πx).

ω1(x) =
2
η1

(
1 −

x
η1

)
, ω2(x) =

2
η2

(
1 +

x
η2

)
; (2a)

v1(ρ) = 1 − ρ , v2(ρ) = 1 − ρ , (2b)

see Figure 6. From Figure 7 we can observe that the solutions tend to a steady-state as the time increases.
For Test 6, let us consider concave kernel functions and linear decreasing function velocities with different maximum

velocities Vmax
1 = 0.8 and Vmax

2 = 1.3:
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Fig. 6: Test 5. Solution to (1) with (2) and ρ0
1 = 0.3+ 0.2 sin(2πx) and ρ0

2 = 0.1+ 0.1 sin(2πx) with η1 = η2 = 0.1 at left, η1 = η2 = 0.01
at right.

Fig. 7: (t , x)−plot solutions of (1) with (2) and initial conditions ρ0
1 = 0.3 + 0.2 sin(2πx) and ρ0

2 = 0.1 + 0.1 sin(2πx), see Figure 5; from
top to bottom: η1 = η2 = 0.1, 0.01; from left to right: ρ1, ρ2 and ρ1 + ρ2.

ω1(x) =
3

2η3
1

(
η2

1 − x2
)
, ω2(x) =

3
2η3

2

(
η2

2 − x2
)

; (3a)

v1(ρ) = Vmax
1 (1 − ρ) , v2(ρ) = Vmax

2 (1 − ρ) ; (3b)

In Fig. 8 we can see the profile of the solutions where the agents of the second class are faster than the agents belonging
to the first class. Also in this case, reducing the supports of the kernels, oscillations increase. Figure 9 is very similar
to Figure 7; here we observe that solutions tend to a steady-state after time 2.

For Test 7, let us consider the concave kernel functions (3a) with different supports and same maximum velocities
Vmax

1 = Vmax
2 = 1 in (3b). In Figure 10, we can observe the behaviour of the solutions when the agents of the two

classes have different look-ahead distances, i.e. kernel supports. We can notice that, when one group of agents has a
sufficiently large look-ahead distance, oscillations are not evident. From Figure 11, we see that the solutions reach the
steady-state as the time increases.
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Fig. 8: Test 6. Solution to (1) with (3),Vmax
1 = 0.8 andVmax

2 = 1.3, and ρ0
1 = 0.3 + 0.2 sin(2πx) and ρ0

2 = 0.1 + 0.1 sin(2πx);
η1 = η2 = 0.1 on the left, η1 = η2 = 0.01 on right.

Fig. 9: (t , x)−plot solutions of (1) with (3) and initial conditions ρ0
1 = 0.3 + 0.2 sin(2πx) and ρ0

2 = 0.1 + 0.1 sin(2πx), see Figure 5; from
top to bottom: η1 = η2 = 0.1, 0.01; from left to right: ρ1, ρ2 and ρ1 + ρ2.
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Fig. 10: Test 7. Solution to (1) with (3),Vmax
1 = Vmax

2 = 1, and ρ0
1 = 0.3 + 0.2 sin(2πx) and ρ0

2 = 0.1 + 0.1 sin(2πx); η1 = 0.1, η2 = 0.01
on the left, η1 = 0.01, η2 = 0.1 on the right.
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Fig. 11: (t , x)−plot solutions of (1) with (2) and initial conditions ρ0
1 = 0.3 + 0.2 sin(2πx) and ρ0

2 = 0.1 + 0.1 sin(2πx), see Figure 5;
from top to bottom: η1 = 0.1η2 = 0.01 and η1 = 0.01η2 = 0.1; from left to right: ρ1, ρ2 and ρ1 + ρ2.

4.3 Maximum principle

The simplex
S := {(ρ1, ρ2) ∈ R

2 : ρ1 + ρ2 ≤ 1, ρi ≥ 0 for i = 1,2},

is not an invariant domain, as we can see in Figure 12, as we already noticed for the multi-class system presented in [4].
In particular, we observe that the sum r(t, x) can exceed 1 even if the initial condition is such that ρ1(0, x)+ ρ2(0, x) ≤ 1.
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Fig. 12: Solution to (1) obtained with initial data ρ0
1 = 0.9 ∗ (x < 0) + 0.1 ∗ (x >= 0) and ρ0

2 = 0.1 ∗ (x < 0) + 0.75 ∗ (x >= 0), linear
kernels, η1 = 0.01 and η2 = 0.1 ,Vmax

1 = 1.5 andVmax
2 = 0.8 and absorbing boundary conditions.
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