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A non-local system modeling bi-directional traffic flows

We present a non-local model describing the dynamics of two groups of agents moving in opposite directions.

The model consists of a 2 × 2 system of conservation laws with non-local fluxes, coupled in the speed functions. We prove local in time existence of weak solutions and present some numerical tests illustrating their behaviour.

Introduction

Conservation laws with non-local flux are suitable to describe several phenomena arising in many fields of application.

In this paper, we are interested in describing two groups of agents moving in opposite directions using this class of equations.

, the authors consider a multi-class traffic model expressed by a system of conservation laws with non-local fluxes obtained generalizing the n-populations model for traffic flow introduced in [1], where each equation of the system describes the evolution of the density ρ i of the vehicles belonging to the i-th class. In particular, the non-local multi-class model takes into account the distribution of heterogeneous agents characterized by their maximal speeds and look-ahead visibility in a traffic stream.

, where the authors study a mixed type system of conservation laws describing two populations moving in opposite directions. The latter model is not hyperbolic for certain density values, because the Jacobian matrix of the flux exhibits complex eigenvalues in a subset of the phase space, and oscillations arise in the elliptic region. In particular, existence and uniqueness of solutions are still open problems. On the contrary, we will show that introducing a non-local dependence in the speed function allows to prove existence of solutions through the convergence of a suitable finite volume scheme, at least for sufficiently small times.

The paper is organized as follows. In Section 2 we present a non-local version of the mixed system studied in [START_REF] Goatin | A mixed system modeling two-directional pedestrian flows[END_REF] and we discretize it with an upwind scheme; in Section 3 we recover uniform L ∞ and BV bounds on the sequence of approximate solutions, which allow to prove the existence of weak solutions locally in time. Finally, in Section 4, we exhibit some numerical simulations showing the behaviour of weak solutions of our system considering different kernel and velocity functions. In particular, we compare non-local solutions to their local counterpart presented in [START_REF] Goatin | A mixed system modeling two-directional pedestrian flows[END_REF].

A non-local bi-directional traffic flow model

We consider the following system

       ∂ t ρ 1 + ∂ x (ρ 1 v 1 (r * ω 1 )) = 0, ∂ t ρ 2 -∂ x (ρ 2 v 2 (r * ω 2 )) = 0, (1) 
where

r = ρ 1 + ρ 2 , r * ω 1 (t, x) = ∫ x+η 1
x ω 1 (yx)r(t, y)dy, r * ω 2 (t, x) = ∫ x x-η 2 ω 2 (yx)r(t, y)dy.

In [START_REF] Benzoni-Gavage | An n-populations model for traffic flow[END_REF], ρ 1 = ρ 1 (t, x) is the density of the population moving in the direction of increasing space coordinate with speed v 1 = v 1 (r * ω 1 ) depending on the downstream weighed mean of the total density r, while ρ 2 = ρ 2 (t, x) is the density of the population moving in the opposite direction, with non-local speed v 2 .

In the following, we will assume (H1) ω 1 ∈ C 1 ([0, η 1 ]; R + ), ω 2 ∈ C 1 ([-η 2 , 0]; R + ), η i > 0 for i ∈ {1, 2}, ω 1 ≤ 0 and ω 2 ≥ 0, ∫ η 1 0 ω 1 (x)dx = ∫ 0 -η 2 ω 2 (x)dx = 1; we set ω max := max{ω 1 (0), ω 2 (0)};

(H2) v i : R + → R + , i ∈ {1, 2}, are smooth non-increasing functions such that v i (0) = V max i > 0 and v i (r) = 0 for r ≥ 1.

We couple [START_REF] Benzoni-Gavage | An n-populations model for traffic flow[END_REF] with an initial datum

ρ i (0, x) = ρ 0 i (x), i = 1, 2, (2) 
and we construct a sequence of finite volume approximate solutions as follows. We fix a space step ∆x and a time step ∆t subject to a CFL condition that will be specified later. Let x j+1/2 = j∆x for j ∈ Z and n ∈ N be the cells interfaces,

x j = ( j -1/2)∆x the cells centers and t n = n∆t the time mesh. We aim at constructing finite volume approximate solutions of (1) of the form

ρ ∆x = (ρ ∆x 1 , ρ ∆x 2 ) with ρ ∆x i (t, x) = ρ n i, j for i = 1, 2, (t, x) ∈ C n j = [t n , t n+1 [ ×[x j-1/2 , x j+1/2
[. To this end, we approximate the initial data with piece-wise constant functions

ρ 0 i, j = 1 ∆x ∫ x j+1/2 x j-1/2 ρ 0 i (x)dx, ∀j ∈ Z, i = 1, 2. (3) 
Similarly, for the kernels, we set

ω i,k := 1 ∆x ∫ (k+1)∆x k∆x ω i (x)dx, ∀k ∈ Z, i = 1, 2, (4) 
so that ∆x +∞ k=-∞ ω i,k = ∫ +∞ -∞ ω i (x)dx = 1 (extending ω i (x)
= 0 outside their domain). We use the following upwind scheme:

ρ n+1 1, j = ρ n 1, j - ∆t ∆x ρ n 1, j v 1 (R n 1, j+1 ) -ρ n 1, j-1 v 1 (R n 1, j ) , (5a) 
ρ n+1 2, j = ρ n 2, j + ∆t ∆x ρ n 2, j+1 v 2 (R n 2, j ) -ρ n 2, j v 2 (R n 2, j-1 ) , (5b) 
where

R n 1, j = ∆x +∞ k=0 ω 1,k r n j+k , R n 2, j = ∆x 0 k=-∞ ω 2,k r n j+k , (6) 
where the sums are indeed finite due to the compact supports of ω 1 and ω 2 .

Existence of weak solutions

In this section, we prove existence of weak solutions for sufficiently small times. The proof relies on the following estimates, which ensure the convergence of the numerical scheme [START_REF] Chiarello | Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models[END_REF].

Theorem 1 Let ρ 0 i (x) ∈ (BV ∩ L ∞ ) (R; R + ), for i = 1,

Lemma 1 (Positivity)

For any T > 0, under the CFL stability condition

∆t ∆x ≤ 1 max{ v 1 ∞ , v 2 ∞ } , (1) 
the scheme (5) is positivity preserving on [0,T] × R.

Proof Let us assume that ρ n i, j ≥ 0 for all j ∈ Z and i ∈ {1, 2}. Let us show that the same holds for ρ n+1 i, j . Let us compute

ρ n+1 1, j = 1 - ∆t ∆x v 1 (R n 1, j+1 ) ρ n 1, j + ρ n 1, j-1 ∆t ∆x v 1 (R n 1, j ), ρ n+1 2, j = 1 - ∆t ∆x v 2 (R n 2, j-1 ) ρ n 2, j + ρ n 2, j+1 ∆t ∆x v 2 (R n 2, j ).
By assumption (1), we ensure ρ n+1 i, j ≥ 0 for i ∈ {1, 2} and for all j ∈ Z.

Corollary 1 (L 1 -bound)

If ρ 0 i, j ≥ 0 for all j ∈ Z and i ∈ {1, 2} and the CFL condition (1) holds, the approximate solutions constructed via the scheme (5) satisfy

ρ n i 1 = ρ 0 i 1 , i = 1, . . . , M, (2) 
for any n ∈ N, where ρ n i 1 := ∆x j ρ n i, j denotes the L 1 norm of the i-th component of ρ ∆x .

Proof Thanks to Lemma 1, we have

ρ n+1 1 1 = ∆x j ρ n+1 1, j = ∆x j ρ n 1, j - ∆t ∆x ρ n 1, j v 1 (R n 1, j+1 ) -ρ n 1, j-1 v 1 (R n 1, j ) = ∆x j ρ n 1, j , ρ n+1 2 1 = ∆x j ρ n+1 2, j = ∆x j ρ n 2, j + ∆t ∆x ρ n 2, j+1 v 2 (R n 2, j ) -ρ n 2, j v 2 (R n 2, j-1 ) = ∆x j ρ n 2, j , proving (2) 
.

Lemma 2 (L ∞ -bound)

If ρ 0 i, j ≥ 0 for all j ∈ Z and i ∈ {1, 2} and (1) holds, then the approximate solution ρ ∆x constructed by the algorithm (5) is uniformly bounded on [0,T] × R for any T such that

T ≤ 1 4 max{ v 1 ∞ , v 2 ∞ }w max ρ 0 ∞ . Proof Let us define ρ = max{ρ n 1, j-1 , ρ n 1, j , ρ n 2, j , ρ n 2, j+1 }. Then we get ρ n+1 1, j = 1 - ∆t ∆x v 1 (R n 1, j+1 ) ρ n 1, j + ∆t ∆x v 1 (R n 1, j )ρ n 1, j-1 ≤ 1 - ∆t ∆x v 1 (R n 1, j+1 ) -v 1 (R n 1, j ) ρ ρ n+1 2, j = 1 - ∆t ∆x v 2 (R n 2, j-1 ) ρ n 2, j + ∆t ∆x v 2 (R n 2, j )ρ n 2, j+1 ≤ 1 - ∆t ∆x v 2 (R n 2, j-1 ) -v 2 (R n 2, j ) ρ,
and

v 1 (R n 1, j ) -v 1 (R n 1, j+1 ) = v 1 (ξ j+1/2 ) ∆x +∞ k=0 ω 1,k r n j+k+1 -∆x +∞ k=0 ω 1,k r n j+k = ∆x v 1 (ξ j+1/2 ) +∞ k=1 (ω 1,k-1 -ω 1,k )r n j+k -ω 1,0 r n j ≤ 4 ∆x ω 1 (0) v 1 ∞ ρ n ∞ , (3) 
v 2 (R n 2, j-1 ) -v 2 (R n 2, j ) = v 2 (ξ j-1/2 ) ∆x 0 k=-∞ ω 2,k r n j+k-1 -∆x 0 k=-∞ ω 2,k r n j+k = ∆x v 2 (ξ j-1/2 ) -1 k=-∞ (ω 2,k+1 -ω 2,k )r n j+k -ω 2,0 r n j ≤ 4 ∆x ω 2 (0) v 2 ∞ ρ n ∞ , (4) 
where

ξ j+1/2 ∈ i(R n 1, j , R n 1, j+1 ), with I(a, b) = [min{a, b}, max{a, b}], and ρ n ∞ = (ρ n 1 , ρ n 2 ) ∞ = max i, j ρ n i, j . So, until ρ n ∞ ≤ K for some K ≥ ρ 0 ∞ , we get ρ n+1 ∞ ≤ ρ n ∞ 1 + 4K max v 1 ∞ , v 2 ∞ ∆t w max with w max = max{ω 1 (0), ω 2 (0)}. This implies ρ n ∞ ≤ ρ 0 ∞ e Cn∆t ,
where

C = 4K max{ v 1 ∞ , v 2 ∞ }w max . Therefore we get that ρ(t, •) ∞ ≤ K for t ≤ 1 4K max{ v 1 ∞ , v 2 ∞ }w max ln K ρ 0 ∞ ≤ 1 4e max{ v 1 ∞ , v 2 ∞ }w max ρ 0 ∞ ,
where the maximum is attained for K = e ρ 0 ∞ . Let us iterate the procedure: at time t m , m ≥ 1, we set K = e m ρ 0 ∞ and we get that the solution is bounded by K until t m+1 such that

t m+1 ≤ t m + m 4e m max{ v 1 ∞ , v 2 ∞ }w max ρ 0 ∞ .
Therefore, the approximate solution remains bounded, uniformly in ∆x, at least for t ≤ T with

T ≤ 1 4 max{ v 1 ∞ , v 2 ∞ }w max ρ 0 ∞ +∞ m=1 m e m ≤ 1 4 max{ v 1 ∞ , v 2 ∞ }w max ρ 0 ∞ . Lemma 3 (Spatial BV-bound) Let ρ 0 i ∈ (BV ∩ L ∞ ) (R; R + ) for i ∈ {1, 2}. If (1)
holds, then the approximate solution ρ ∆x (t, •) constructed by the algorithm (5) has uniformly bounded total variation for t ∈ [0,T] for any T such that

T ≤ min i=1,2 1 H TV(ρ 0 i ) + 1 , ( 5 
)
where

H = 2 ρ n ∞ w max 12 ρ n ∞ max{ v 1 ∞ , v 2 ∞ } + max{ v 1 ∞ , v 2 ∞ } .
Proof Let us consider the component ρ 1 and subtract the identities

ρ n+1 1, j+1 = ρ n 1, j+1 - ∆t ∆x ρ n 1, j+1 v 1 (R n 1, j+2 ) -ρ n 1, j v 1 (R n 1, j+1 ) ρ n+1 1, j = ρ n 1, j - ∆t ∆x ρ n 1, j v 1 (R n 1, j+1 ) -ρ n 1, j-1 v 1 (R n 1, j ) ,
analogously for the second component ρ 2 ,

ρ n+1 2, j+1 = ρ n 2, j+1 + ∆t ∆x ρ n 2, j+2 v 2 (R n 2, j+1 ) -ρ n 2, j+1 v 2 (R n 2, j ) ρ n+1 2, j = ρ n 2, j + ∆t ∆x ρ n 2, j+1 v 2 (R n 2, j ) -ρ n 2, j v 2 (R n 2, j-1 )
.

Setting ∆ n i, j+1/2 = ρ n i, j+1 -ρ n i, j for i ∈ {1, 2}, we get ∆ n+1 1, j+1/2 = ∆ n 1, j+1/2 - ∆t ∆x ρ n 1, j+1 v 1 (R n 1, j+2 ) -2ρ n 1, j v 1 (R n 1, j+1 ) + ρ n 1, j-1 v 1 (R n 1, j ) , ∆ n+1 2, j+1/2 = ∆ n 2, j+1/2 + ∆t ∆x ρ n 2, j+2 v 2 (R n 2, j+1 ) -2ρ n 2, j+1 v 2 (R n 2, j ) + ρ n 2, j v 2 (R n 2, j-1 ) .
We can write

∆ n+1 1, j+1/2 = 1 - ∆t ∆x v 1 (R n 1, j+2 ) ∆ n 1, j+1/2 (6) 
- ∆t ∆x ρ n 1, j v 1 (R n 1, j+2 ) -2v 1 (R n 1, j+1 ) + v 1 (R n 1, j ) (7) 
+ ∆t ∆x ∆ n 1, j-1/2 v 1 (R n 1, j ), and 
∆ n+1 2, j+1/2 = 1 - ∆t ∆x v 2 (R n 2, j-1 ) ∆ n 2, j+1/2 (8) 
+ ∆t ∆x ρ n 2, j+1 v 2 (R n 2, j+1 ) -2v 2 (R n 2, j ) + v 2 (R n 2, j-1 ) (9) 
+ ∆t ∆x ∆ n 2, j+3/2 v 2 (R n 2, j+1 ).
Observe that assumption (1) guarantees the positivity of ( 6) and [START_REF] Goatin | Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity[END_REF]. The term (7) can be estimated as

v 1 (R n 1, j+2 ) -2v 1 (R n 1, j+1 ) + v 1 (R n 1, j ) = v 1 ∆x +∞ k=0 ω 1,k r n j+k+2 -2v 1 ∆x +∞ k=0 ω 1,k r n j+k+1 + v 1 ∆x +∞ k=0 ω 1,k r n j+k = v 1 (ξ n 1, j+3/2 )∆x +∞ k=0 ω 1,k r n j+k+2 - +∞ k=0 ω 1,k r n j+k+1 -v 1 (ξ n 1, j+1/2 )∆x +∞ k=0 ω 1,k r n j+k+1 - +∞ k=0 ω 1,k r n j+k = v 1 (ξ n 1, j+3/2 )∆x +∞ k=1 (ω 1,k-1 -ω 1,k )r n j+k+1 -ω 1,0 r n j+1 -v 1 (ξ n 1, j+1/2 )∆x +∞ k=1 (ω 1,k-1 -ω 1,k )r n j+k -ω 1,0 r n j = v 1 ( ξn 1, j+1 )(ξ n 1, j+3/2 -ξ n 1, j+1/2 )∆x +∞ k=0 ω 1,k 2 i=1 ∆ n i, j+k+3/2 + v 1 (ξ n 1, j+1/2 )∆x +∞ k=1 2 i=1 (ω 1,k-1 -ω 1,k )∆ n i, j+k+1/2 -ω 1,0 ∆ n i, j+1/2 , with ξ n 1, j+1/2 ∈ I(R n 1, j , R n 1, j+1 ) and ξn 1, j+1 ∈ I(ξ n 1, j+1/2 , ξ n 1, j+3/2
). For some θ, µ ∈ [0, 1], we compute

ξ n 1, j+3/2 -ξ n 1, j+1/2 = θ∆x +∞ k=0 ω 1,k 2 i=1 ρ n i, j+k+2 + (1 -θ)∆x +∞ k=0 ω 1,k 2 i=1 ρ n i, j+k+1 -µ∆x +∞ k=0 ω 1,k 2 i=1 ρ n i, j+k+1 -(1 -µ)∆x +∞ k=0 ω 1,k 2 i=1 ρ n i, j+k = θ∆x +∞ k=1 ω 1,k-1 2 i=1 ρ n i, j+k+1 + (1 -θ)∆x +∞ k=0 ω 1,k 2 i=1 ρ n i, j+k+1 -µ∆x +∞ k=0 ω 1,k 2 i=1 ρ n i, j+k+1 -(1 -µ)∆x +∞ k=-1 ω 1,k+1 2 
i=1 ρ n i, j+k+1 = ∆x +∞ k=1 θω 1,k-1 + (1 -θ)ω 1,k -µω 1,k -(1 -µ)ω 1,k+1 2 i=1 ρ n i, j+k+1 + ∆x(1 -θ)ω 1,0 2 i=1 ρ n i, j+1 -∆x µ ω 1,0 2 i=1 ρ n i, j+1 -∆x(1 -µ) ω 1,0 2 i=1 ρ n i, j + ω 1,1 2 i=1 ρ n i, j+1
.

By monotonicity we have

θω 1,k-1 + (1 -θ)ω 1,k -µω 1,k -(1 -µ)ω 1,k+1 ≥ 0.
Taking the absolute values, we get

ξ n 1, j+3/2 -ξ n 1, j+1/2 ≤ ∆x +∞ k=1 θω 1,k-1 + (1 -θ)ω 1,k -µω 1,k -(1 -µ)ω 1,k+1 + 4 ω 1,0 2 ρ n ∞ ≤ 12 ∆x ω 1 (0) ρ n ∞ .
Applying the same argument to the second component, we compute

v 2 (R n 2, j+1 ) -2v 2 (R n 2, j ) + v 2 (R n 2, j-1 ) = v 2 ( ξn 2, j )(ξ n 2, j+1/2 -ξ n 2, j-1/2 )∆x 0 k=-∞ ω 2,k 2 i=1 ∆ n i, j+k+1/2 + v 2 (ξ n 2, j-1/2 )∆x 0 k=-∞ 2 i=1 (ω 2,k-1 -ω 2,k )∆ n i, j+k-1/2 -ω 2,0 ∆ n i, j-1/2 , with ξ n 2, j+1/2 ∈ I(R n 2, j , R n 2, j+1
) and ξn 2, j ∈ I(ξ n 2, j-1/2 , ξ n 2, j+1/2 ), and

ξ n 2, j+1/2 -ξ n 2, j-1/2 ≤ 12 ∆x ω 2 (0) ρ n ∞ .
Let now K 1 > 0 be such that j ∆ i, j ≤ K 1 for i ∈ {1, 2}, = 0, . . . , n. Taking the absolute values and rearranging the indexes, we have

j ∆ n+1 1, j+1/2 ≤ j ∆ n 1, j+1/2 1 -λ v 1 (R n 1, j+2 ) -v 1 (R n 1, j+1 ) + ∆t H K 1 , j ∆ n+1 2, j+1/2 ≤ j ∆ n 2, j+1/2 1 -λ v 2 (R n 2, j-1 ) -v 2 (R n 2, j ) + ∆t H K 1 ,
where

H = 2 ρ n ∞ w max 12 ρ n ∞ max{ v 1 ∞ , v 2 ∞ } + max{ v 1 ∞ , v 2 ∞ } . Therefore, by (3)-(4) we get j ∆ n+1 i, j+1/2 ≤ j ∆ n i, j+1/2 (1 + ∆t G) + ∆t H K 1 , with G = 4 max{ v 1 ∞ , v 2 ∞ }w max ρ n ∞ . We thus obtain j ∆ n i, j+1/2 ≤ e Gn∆t j ∆ 0 i, j+1/2 + e HK 1 n∆t -1,
that we can rewrite as

TV(ρ ∆x i )(n∆t, •) ≤ e Gn∆t TV(ρ 0 i ) + e HK 1 n∆t -1 ≤ e HK 1 n∆t TV(ρ 0 i ) + 1 -1 ,
since H ≥ G and it is not restrictive to assume K 1 ≥ 1.

Therefore, we have that TV(

ρ ∆x i ) ≤ K 1 for t ≤ 1 H K 1 ln K 1 + 1 TV(ρ 0 i ) + 1
, where the maximum is attained for some

K 1 < e TV(ρ 0 i ) + 1 -1 such that ln K 1 + 1 TV(ρ 0 i ) + 1 = K 1 K 1 + 1 .
Therefore the total variation is uniformly bounded for

t ≤ 1 H e TV(ρ 0 i ) + 1 .
Iterating the procedure, at time t m , m ≥ 1 we set K 1 = e m TV(ρ 0 i ) + 1 -1 and we get that the solution is bounded by K 1 until t m+1 such that

t m+1 ≤ t m + m H e m TV(ρ 0 i ) + 1 . (10) 
Therefore, the approximate solution has bounded total variation for t ≤ T with

T ≤ 1 H TV(ρ 0 i ) + 1 . Corollary 2 Let ρ 0 i ∈ (BV ∩ L ∞ ) (R; R + ). If (1)
holds, then the approximate solution ρ ∆x constructed by the algorithm (5) has uniformly bounded total variation on [0,T] × R, for any T satisfying [START_REF] Chiarello | Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models[END_REF].

Proof If T ≤ ∆t, then TV(ρ ∆x i ; [0,T] × R) ≤ TTV(ρ 0 i ). Let us assume now that T > ∆t. Let n T ∈ N\{0} such that n T ∆t < T ≤ (n T + 1)∆t. Then, for i ∈ {1, 2}, TV(ρ ∆x i ; [0,T] × R) = n T -1 n=0 j ∈Z ∆t ρ n i, j+1 -ρ n i, j + (T -n T ∆t) j ∈Z ρ n T i, j+1 -ρ n T i, j ≤ T sup t ∈[0,T ] TV (ρ ∆x i )(t, •) + n T -1 n=0 j ∈Z ∆x ρ n+1 i, j -ρ n i, j .
We then need to bound the term

n T -1 n=0 j ∈Z ∆x ρ n+1 i, j -ρ n i, j .
From the definition of the numerical scheme (5a)-(5b), we obtain

ρ n+1 1, j -ρ n 1, j = - ∆t ∆x ρ n 1, j v 1 (R n 1, j+1 ) -ρ n 1, j-1 v 1 (R n 1, j ) , = ∆t ∆x ρ n 1, j-1 v 1 (R n 1, j ) -v 1 (R n 1, j+1 ) + v 1 (R n 1, j+1 ) ρ n 1, j-1 -ρ n 1, j , ρ n+1 2, j -ρ n 2, j = ∆t ∆x ρ n 2, j+1 v 2 (R n 2, j ) -ρ n 2, j v 2 (R n 2, j-1 ) = ∆t ∆x ρ n 2, j+1 v 2 (R n 2, j ) -v 2 (R n 2, j-1 ) + v 2 (R n 2, j-1 ) ρ n 2, j+1 -ρ n 2, j
.

Taking the absolute values and using ( 3)-( 4) we get

ρ n+1 1, j -ρ n 1, j ≤ ∆t ∆x 4 ∆x ω 1 (0) v 1 ∞ ρ n ∞ ρ n 1, j-1 + v 1 ∞ ρ n 1, j-1 -ρ n 1, j ρ n+1 2, j -ρ n 2, j ≤ ∆t ∆x 4 ∆x ω 2 (0) v 2 ∞ ρ n ∞ ρ n 2, j+1 + v 2 ∞ ρ n 2, j+1 -ρ n 2, j .
Summing on j, we get

j ∈Z ∆x ρ n+1 1, j -ρ n 1, j ≤ 4 ω 1 (0) v 1 ∞ ρ n ∞ ∆t j ∈Z ∆x ρ n 1, j-1 + v 1 ∞ ∆t j ∈Z ρ n 1, j-1 -ρ n 1, j j ∈Z ∆x ρ n+1 2, j -ρ n 2, j ≤ 4 ω 2 (0) v 2 ∞ ρ n ∞ ∆t j ∈Z ∆x ρ n 2, j+1 + v 2 ∞ ∆t j ∈Z ρ n 2, j+1 -ρ n 2, j .
which yields, for i ∈ {1, 2},

n T -1 n=0 j ∈Z ∆x ρ n+1 i, j -ρ n i, j ≤ max{ v 1 ∞ , v 2 ∞ }T sup t ∈[0,T ]
TV(ρ ∆x i )(t, •)

+ 4 max {ω 1 (0), ω 2 (0)} max { v 1 ∞ , v 2 ∞ } ρ n ∞ T sup t ∈[0,T ] ρ ∆x i (t, •) 1 ,
that is bounded by Corollary 1, Lemma 2 and Lemma 3.

Proof (of Theorem 1)

To complete the proof of the existence of solutions to the Cauchy problem ( 1)-( 2), we apply Helly's theorem and follow a Lax-Wendroff type argument as in [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in traffic flow modeling[END_REF][START_REF] Chiarello | Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel[END_REF][START_REF] Chiarello | Non-local multi-class traffic flow models[END_REF], see also [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF], to show that the approximate solutions constructed by scheme ( 5) converge to a weak solution of ( 1)-( 2).

Numerical tests 4.1 Kernel support tending to zero

In this subsection, we observe the solution behaviour as the length of kernel support diminishes. We consider the space domain given by the interval [-1, 1] and the space discretization mesh size is set to ∆x = 0.001. We impose absorbing conditions at the boundaries, adding N = η i /∆x ghost cells at the right boundary for the first population ρ 1 and at the left boundary for the second population ρ 2 , where we extend the solution constantly equal to the last value inside the domain.

We take the following linear decreasing kernel and velocity functions:

ω 1 (x) = 2 η 1 1 - x η 1 , ω 2 (x) = 2 η 2 1 + x η 2 ; (1a) v 1 (ρ) = 1 -ρ , v 2 (ρ) = 1 -ρ . (1b) 
In Figures 1 and2, we consider the same initial data of [7, Figures 5 and6], observing that the solutions have a similar behaviour, especially when the kernel supports η 1 = η 2 are taken sufficiently small. Moreover, comparing Figures 3 and4 with the numerical tests in [7, Figures 14 and15], we note that when we consider initial data in the elliptic region of the local system, oscillations increase as the kernel support diminish. 

Asymptotic behaviour in a periodic setting

We consider now periodic initial data with periodic boundary conditions, see Figure 5. In the following we set ∆x = 0.001, the CFL condition is as in in [START_REF] Benzoni-Gavage | An n-populations model for traffic flow[END_REF]. We are interested in the behaviour of solutions with different types of kernel functions and velocities.

For Test 5, let us consider the linear kernels and velocity functions 

ω 1 (x) = 2 η 1 1 - x η 1 , ω 2 (x) = 2 η 2 1 + x η 2 ; (2a) v 1 (ρ) = 1 -ρ , v 2 (ρ) = 1 -ρ , (2b) 
see Figure 6. From Figure 7 we can observe that the solutions tend to a steady-state as the time increases. 

1 (x) = 3 2η 3 1 η 2 1 -x 2 , ω 2 (x) = 3 2η 3 2 η 2 2 -x 2 ; (3a) v 1 (ρ) = V max 1 (1 -ρ) , v 2 (ρ) = V max 2 (1 -ρ) ; (3b) 
In Fig. 8 we can see the profile of the solutions where the agents of the second class are faster than the agents belonging to the first class. Also in this case, reducing the supports of the kernels, oscillations increase. Figure 9 is very similar to Figure 7; here we observe that solutions tend to a steady-state after time 2.

For Test 7, let us consider the concave kernel functions (3a) with different supports and same maximum velocities

V max 1 = V max 2 = 1 
in (3b). In Figure 10, we can observe the behaviour of the solutions when the agents of the two classes have different look-ahead distances, i.e. kernel supports. We can notice that, when one group of agents has a sufficiently large look-ahead distance, oscillations are not evident. From Figure 11, we see that the solutions reach the steady-state as the time increases. 

Maximum principle

The simplex S := {(ρ 1 , ρ 2 ) ∈ R 2 : ρ 1 + ρ 2 ≤ 1, ρ i ≥ 0 for i = 1, 2}, is not an invariant domain, as we can see in Figure 12, as we already noticed for the multi-class system presented in [START_REF] Chiarello | Non-local multi-class traffic flow models[END_REF].

In particular, we observe that the sum r(t, x) can exceed 1 even if the initial condition is such that ρ 1 (0, x) + ρ 2 (0, x) ≤ 1. 

2 ,

 2 and assumptions (H1) -(H2) hold. Then the Cauchy problem (1), (2) admits a weak solution on [0,T[ ×R, for some T > 0 sufficiently small.

Fig. 1 :

 1 Fig. 1: Test 1. Solution to (1) with (1) and ρ 0 1 = 0.2 * (x < 0) + 0.1 * (x >= 0) and ρ 0 2 = 0.1 * (x < 0) + 0.2 * (x >= 0) with η 1 = η 2 = 0.1 on the left and η 1 = η 2 = 0.01 on the right.

Fig. 2 :

 2 Fig. 2: Test 2. Solution to (1) with (1) and ρ 1 = 0.2 * (x < 0) + 0.1 * (x >= 0) and ρ 2 = 0.1 * (x < 0) + 0.3 * (x >= 0) with η 1 = η 2 = 0.1 on the left and η 1 = η 2 = 0.01 on the right.

Fig. 3 :

 3 Fig. 3: Test 3. Solution to (1) with (1) and ρ 0 1 = 0.1 * (x < 0) + 0.4 * (x >= 0) and ρ 0 2 = 0.2 * (x < 0) + 0.5 * (x >= 0). With η 1 = η 2 = 0.1 at left, η 1 = η 2 = 0.01 at right.

Fig. 4 :

 4 Fig. 4: Test 4. Solution to (1) with (1) and ρ 0 1 = 0.4 * (x < 0) + 0.1 * (x >= 0) and ρ 0 2 = 0.5 * (x < 0) + 0.2 * (x >= 0). With η 1 = η 2 = 0.1 at left, η 1 = η 2 = 0.01 at right.

Fig. 5 :

 5 Fig. 5: Initial condition for tests 5, 6 and 7 with periodic boundary conditions. ρ 0 1 = 0.3 + 0.2 sin(2πx) and ρ 0 2 = 0.1 + 0.1 sin(2π x).

For Test 6 ,max 1 = 0.8 and V max 2 =

 612 let us consider concave kernel functions and linear decreasing function velocities with different maximum velocities V 1.3:

Fig. 6 :

 6 Fig. 6: Test 5. Solution to (1) with (2) and ρ 0 1 = 0.3 + 0.2 sin(2π x) and ρ 0 2 = 0.1 + 0.1 sin(2πx) with η 1 = η 2 = 0.1 at left, η 1 = η 2 = 0.01 at right.

Fig. 7 :

 7 Fig. 7: (t, x)-plot solutions of (1) with (2) and initial conditions ρ 0 1 = 0.3 + 0.2 sin(2πx) and 0 2 = 0.1 + 0.1 sin(2π x), see Figure 5; from top to bottom: η 1 = η 2 = 0.1, 0.01; from left to right: ρ 1 , ρ 2 and ρ 1 + ρ 2 .

  ω

Fig. 8 : 1 = 0.8 and V max 2 = 1 . 3 ,

 81213 Fig. 8: Test 6. Solution to (1) with (3), V max 1 = 0.8 and V max 2 = 1.3, and ρ 0 1 = 0.3 + 0.2 sin(2πx) and ρ 0 2 = 0.1 + 0.1 sin(2πx); η 1 = η 2 = 0.1 on the left, η 1 = η 2 = 0.01 on right.

Fig. 9 :

 9 Fig. 9: (t, x)-plot solutions of (1) with (3) and initial conditions ρ 0 1 = 0.3 + 0.2 sin(2π x) and ρ 0 2 = 0.1 + 0.1 sin(2π x), see Figure 5; from top to bottom: η 1 = η 2 = 0.1, 0.01; from left to right: ρ 1 , ρ 2 and ρ 1 + ρ 2 .

Fig. 10 : 1 = V max 2 = 1 ,

 10121 Fig. 10: Test 7. Solution to (1) with (3), V max 1 = V max 2 = 1, and ρ 0 1 = 0.3 + 0.2 sin(2π x) and ρ 0 2 = 0.1 + 0.1 sin(2π x); η 1 = 0.1, η 2 = 0.01 on the left, η 1 = 0.01, η 2 = 0.1 on the right.

Fig. 11 :

 11 Fig. 11: (t, x)-plot solutions of (1) with (2) and initial conditions ρ 0 1 = 0.3 + 0.2 sin(2π x) and ρ 0 2 = 0.1 + 0.1 sin(2πx), see Figure 5; from top to bottom: η 1 = 0.1 η 2 = 0.01 and η 1 = 0.01 η 2 = 0.1; from left to right: ρ 1 , ρ 2 and ρ 1 + ρ 2 .

Fig. 12 : 1 = 1 .5 and V max 2 =

 12112 Fig. 12: Solution to (1) obtained with initial data ρ 0 1 = 0.9 * (x < 0) + 0.1 * (x >= 0) and ρ 0 2 = 0.1 * (x < 0) + 0.75 * (x >= 0), linear kernels, η 1 = 0.01 and η 2 = 0.1 , V max 1 = 1.5 and V max 2 = 0.8 and absorbing boundary conditions.