
Formally verified 32- and 64-bit integer
division using double-precision floating-point

arithmetic

David Monniaux Alice Pain

2022-09-14

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 1 / 12



Kalray KVX core

▶ VLIW
▶ fast 64-bit multiply-adder
▶ fast IEEE-754 single and double precision fused multiply-add
▶ no divider unit except for single-precision reciprocal (1/x)

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 2 / 12



Extant division on KVX

Division function = a loop around a special instruction producing
one bit of quotient per iteration

Issues:
▶ not constant-time
▶ loop cannot be easily interleaved with other computations
▶ slow?
▶ cost of function call (could be inlined)

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 3 / 12



32-bit integer division ⌊a/b⌋ idea

1. compute single-precision 1/b

2. refine into a better approximation y by iteration using fused
multiply-add

3. ay ≃ a/b; round to nearest integer, get q

4. ⌊a/b⌋ is q or q+ 1 depending on the sign of a− qb

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 4 / 12



64-bit integer division ⌊a/b⌋ idea
53-bit precision insufficient for inverses for 64-bit numbers

“Compute a rough quotient, divide the rough remainder, return sum
of two quotients”

1. compute single-precision x for 1/b

2. compute q0 integer rounding of ax (“rough approximate of the
quotient”)

3. refine x into a better approximation y by iteration using fused
multiply-add

4. divide the “rough remainder”: (a− q0b)y ≃ (a− q0b)/b; round
to nearest integer, get q1

5. q′1 = ⌊(a− q0b)/b⌋ is q1 or q1+ 1 depending on the sign of a− qb

6. answer q0 + q′1
7. special cases b = 1 and b ≥ 263 dealt with separately.

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 5 / 12



Efficiency remarks

▶ Straight-line code, no jumps, can be easily interleaved with
other computations.

▶ Most of the computation depends only on b and can be merged
or hoisted out by the compiler if common b.

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 6 / 12



CompCert

https://compcert.org
https://github.com/AbsInt/CompCert

Compiler for C (also Lustre, possibly Rust) to ARM, AArch64, x86,
x86-64, RISC-V, PowerPC 32/64…and also KVX

Proof executed assembly code “does the same” as source code.
(Same sequence of observable events: calls to external functions,
accesses to volatile variables)

For safety-critical embedded code

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 7 / 12

https://compcert.org
https://github.com/AbsInt/CompCert


Preservation

CompCert C RTL LTL Linear

MachRTLpath

MachblockAsmblock

Asm

Register

allocation
Linearization

of CFG
Stackframes

layout

Assembly code
expansions Basic-blocks

construction

Prepass
scheduling

Postpass
scheduling

Optimizations
& code duplications

Branch
tunneling

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 8 / 12



Proof goal

Proof in Coq proof assistant that we really compute the integer
division.

Using the definition of IEEE-754 operations.

Lemmas from the Flocq library and some proofs produced by the
Gappa tool.

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 9 / 12



Proof insights

▶ A lot of care due to integer overflows.
▶ a and b do not necessarily fit exactly into double precision

numbers, which may add roundoff error.
▶ Separate proofs for small b and big b
▶ A lot of auxiliary lemmas for showing things do not overflow

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 10 / 12



Performance

64-bit division
Method Loop Floating-point
One quotient per iteration 620180 522316
Two quotients per iteration 589696 292314

32-bit division
Method Loop Floating-point
One quotient per iteration 469969 442101
Two quotients per iteration 434501 232124

64-bit, common divisor
Method Loop Floating-point
One quotient per iteration 608158 342951
Two quotients per iteration 582948 237857

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 11 / 12



Source code

FPDivision32.v and FPDivision64.v in
https://gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/compcert-kvx

D. Monniaux Formally verified 32- and 64-bit integer division 2022-09-14 12 / 12

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx

