
HAL Id: hal-03722203
https://hal.science/hal-03722203v1

Submitted on 13 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formally verified 32- and 64-bit integer division using
double-precision floating-point arithmetic

David Monniaux, Alice Pain

To cite this version:
David Monniaux, Alice Pain. Formally verified 32- and 64-bit integer division using double-precision
floating-point arithmetic. 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH), Sep 2022,
Lyon, France. pp.128-132, �10.1109/ARITH54963.2022.00032�. �hal-03722203�

https://hal.science/hal-03722203v1
https://hal.archives-ouvertes.fr

Formally verified 32- and 64-bit integer division

using double-precision floating-point arithmetic

David Monniaux1 and Alice Pain1,2

1Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
2École normale supérieure, Paris

July 13, 2022

Abstract

Some recent processors are not equipped with an integer division unit.

Compilers then implement division by a call to a special function supplied

by the processor designers, which implements division by a loop producing

one bit of quotient per iteration. This hinders compiler optimizations and

results in non-constant time computation, which is a problem in some

applications.

We advocate instead using the processor’s floating-point unit, and pro-

pose code that the compiler can easily interleave with other computations.

We fully proved the correctness of our algorithm, which mixes floating-

point and fixed-bitwidth integer computations, using the Coq proof as-

sistant and successfully integrated it into the CompCert formally verified

compiler.

1 Introduction

Some instruction sets (x86, AArch64, RISC-V M extension. . .) feature integer
division instructions. Even if all other operations (integer, floating-point, mem-
ory. . .) are fully pipelined, division is typically handled differently: only one
division can be handled at a given time (no pipelining), and the execution time
of the division operation depends on the operands. This makes the processor
design more complex, and also precludes constant-time execution, which is de-
sirable in some contexts, for instance for safety-critical control systems1 and in
systems where timing attacks are a concern.

In contrast, some architectures eschew divisor units and emulate division
in software, totally or partially. Kalray’s KV3 processor, the latest in a series
of VLIW (very large instruction word) processors, does not have a full divi-
sion unit. Instead, it has a fully pipelined, correctly rounded IEEE-754 single-
precision (binary32) floating-point reciprocal operation. Using this operation as
a starting point, we compute a higher-precision approximation of the reciprocal,

1Such systems favor predictable architectures. Constant-time execution simplifies worst-
case execution time (WCET) analysis. Static analysis of WCET typically relies on explicit
enumeration of reachable pipeline states, and instructions with operand-dependent execution
time increase the number of such states and may lead to combinatorial explosion.

1

then correct 32-bit and 64-bit integer quotients, using the processor’s IEEE-754
double-precision (binary64) floating-point unit and integer operations.

CompCert2 is a formally verified compiler for the C language.3 Here, “for-
mally verified” means that there is a proof, in the Coq proof assistant, that the
execution of the assembly code generated by the compiler matches that of the
source code [12].

The backend for the Kalray KV3 processor [17], when compiling integer di-
vision, by default generates calls to special library functions. These functions
are based on code, provided by Kalray, that computes divisions by looping over
a special arithmetic instruction that performs one step of division and computes
one bit of the quotient.4 These calls are axiomatized inside CompCert to re-
turn the correct quotient and remainder: CompCert trusts that they perform
correctly as intended. This, arguably, breaks CompCert’s design; but anyway
CompCert has to trust that the processor actually implements its own instruc-
tions correctly; trusting that a simple and understandable integer arithmetic
procedure published by the processor designers is correct is not a far stretch
from trusting that the processor hardware behaves correctly.5

The situation was however different for our new algorithm. During its design,
especially for the 64-bit version, we came across a number of corner cases that
could have been unnoticed by less careful testing. Caution dictated to be wary
that there could be more corner cases. It would not have been right to add
an axiom that this new algorithm was correct. Instead we resolved to fully
prove it correct inside Coq, based on the definitions of the integer and IEEE-
754 instructions that we use. We prove that, when the divisor is nonzero, our
sequence of operations returns the correct quotient (respectively, remainder),
without introducing any new axiom.

2 Division Algorithms

We provide division algorithms for unsigned 32-bit and 64-bit integers. We as-
sume the processor supports IEEE-754 double-precision (binary64) operations
and some single-precision (binary32) operations: an IEEE-754 single-precision
reciprocal (x 7→ 1/x) instruction,6 conversions between 64-bit signed and un-
signed integers and IEEE-754 double-precision, conversions between single- and
double-precision floating-point numbers, double-precision fused multiply-add
(fma). All operations should be rounded to the nearest target value; the rule
used to break ties between equally near numbers is unimportant.7 To deal
with special cases, we use conditional moves (if-then-else functional statements),

2See https://compcert.org/
3Another frontend, known as Velus, exists for this compiler for a subset of the Lustre /

Scade synchronous data-flow language, used to implement control systems in industries such
as avionics.

4The comments in the library mention that this approach is adapted from [5]. Also, when
CompCert for KV3 determines that the divisor of a 32-bit division is constant, it does not
generate this function call and instead produces a sequence of integer operations involving
multiplications [9] which is proved to be equivalent to division by this divisor.

5One workaround would be to prove formally correct this snippet of code, whether directly
using CompCert’s semantics or using an external tool for reasoning on C source code.

6It seems possible to adapt proofs to less precise approximate reciprocal operations, since
we don’t use the full precision that we prove.

7Because we had to completely specify the rounding mode for our formal proofs, we picked

2

https://compcert.org/

maintaining constant-time execution; these may be replaced by normal if-then-
else control-flow, if needed.

Signed division following C semantics (quotients truncated towards zero) is
implemented by calling unsigned division on the absolute values of the dividend
and divisor and adjusting signs afterwards.

2.1 32-bit Division

To compute the quotient of a by b, we first compute a single-precision recip-
rocal of the divisor b, thus with 23 bits of precision. Then we follow a well-
known approach [10] to obtain approximately 46 bits of precision, using one
step of a fixed-point iteration leading to the reciprocal, implemented using two
double-precision fused multiply-add operations. 46 bits of precision is more
than enough to compute a very precise approximation of the quotient a/b by
multiplying with the dividend a. Because we do not know if that quotient was
approximated by above or below, we compute the remainder associated with
it using an integer multiply-add, and adjust the quotient if that remainder is
negative (Algorithm 1).

In the following, fma is fused multiply-add (fma(x, y, z) ≃ xy + z). We also
use special built-in operators for converting double precision numbers to signed
and unsigned 64-bit numbers with round to nearest (the method of breaking
ties is unimportant).

Algorithm 1 32-bit unsigned division

uint32_t div32(uint32_t a, uint32_t b) {

float bs = (float) b;

double bd = (double) b;

float invbs0 = 1.0f / bs;

double invbd0 = (double) invbs0;

double alpha = fma(-bd , invbd0 , 1.0);

double invbd = fma(alpha ,invbd0,invbd0);

double ad = (double) a;

double qd = ad * invbd;

// round to nearest , unsigned

uint64_t q0 = __builtin_luround_ne(qd);

int64_t r0 = a - b * q0;

uint64_t ql = r0 <0 ? q0 -1 : q0;

return (uint32_t) ql;

}

If necessary, the remainder can be computed as

uint32_t r2 = (uint32_t) r0;

uint32_t r = r0 <0 ? r2+b : r2;

Remark that most of the expensive computation depends only on b: we post-
pone multiplication by a until the last moment. It would be possible to start by

breaking ties to even numbers, as this is the most common rounding mode. We however do
not use this anywhere in the proofs.

3

computing an approximation of a/b instead of 1/b, and refine that approxima-
tion, but this would not save any operation (we still would need a multiplication
by a), and this would preclude the compiler from hoisting computations sharing
the same divisor.

2.2 64-bit Division

The natural generalization of the 32-bit algorithm would be to increase the
number of fixed-point iterations to compute a more precise approximation of
the reciprocal of the divisor, but, since IEEE-754 double-precision only has 53
bits of significand, this would be insufficient to compute correct quotients of
64-bit numbers. Instead, Algorithm 2 proceeds in three steps:

1. compute an approximation q1 of a/b, and associated remainder r1 = a−bq1
using the single-precision reciprocal;

2. compute an approximation q2 of r1/b, and associated remainder r2 = r1−
bq2, using the more precise reciprocal approximation from the preceding
subsection;

3. adjust the quotient if r2 is negative.

Then q0 = q1 + q2 is the quotient q = ⌊a/b⌋ in most cases (if 2 ≤ b < 263). Note
that the precise reciprocal approximation can be computed in parallel to r1.

The cases b = 1 (return q = a) and b ≥ 263 (return q = 1 if a ≥ b, q = 0
otherwise) are treated separately;

• b = 1 means that r1 ≃ a (not necessarily equal, since large values of a
would incur rounding when converted to floating-point), and r1 would not
fit within a signed 64-bit integer; in this case we directly output q = a;

• if b ≥ 263 and q1 = 1, r1 may not fit within a 64-bit signed integer; e.g.,
a = 263 and b = 264 − 1; since in this case a < 2b, the quotient is 0 or 1
depending on whether a < b.

These special cases are treated in parallel to the main computation, and the
special result is substituted, if applicable, using a 1-cycle conditional move at
the end.

Note that b ≥ 263 if and only if it is negative if considered as a 64-bit signed
number, and that q = 1 if a ≥ b, q = 0 otherwise amounts to taking a ≥ b as a
truth value. This may help simplify the assembly code.

Here, we assume that conversion from floating-point numbers to integers
do not trap (do not produce an exception stopping the program) if the number
does not fall within the target range, and instead returns an “undefined” value.8

If this operation may trap, it is necessary to rewrite the functional if-then-else
(conditional move) into a control-flow test (Algorithm 3), which breaks constant-
time execution.

8Here, we just assume the “undefined” value results in further “undefined” values through
further computations. If the “undefined” value can be assumed to be a valid 64-bit integer,
then we may simplify our code a tiny bit.

4

Algorithm 2 64-bit unsigned division

uint64_t div64(uint64_t a, uint64_t b) {

double bd = (double) b;

float bs = (float) bd;

float invbs0 = 1.0f / bs;

double invbd0 = (double) invbs0;

double alpha = fma(-bd , invbd0 , 1.0);

double invbd = fma(alpha ,invbd0,invbd0);

double ad = (double) a;

double q1d = ad * invbd0;

// round to nearest , unsigned

uint64_t q1 = __builtin_luround_ne(q1d);

int64_t r1 = a - b*q1;

double r1d = (double) r1;

double q3d = r1d * invbd;

// round to nearest , signed

int64_t q3 = __builtin_lround_ne(q3d);

int64_t r3 = r1 - b * q3;

int64_t q2 = r3 <0 ? q3 -1 : q3;

uint64_t q0 = q1 + q2;

bool is_big = (int64_t) b < 0; //b>=2^63

uint64_t if_big = a >= b;

bool is_one = b <= 1;

uint64_t special = is_big ? if_big : a;

return (is_one ||is_big) ? special : q0;

}

5

Algorithm 3 64-bit unsigned division avoiding trapping conversions by branch-
ing out

uint64_t div64(uint64_t a, uint64_t b) {

if (b <= 1) return a;

if ((int64_t) b < 0) // b >= 2^63

return a >= b;

double bd = (double) b;

float bs = (float) bd;

float invbs0 = 1.0f / bs;

double invbd0 = (double) invbs0;

double alpha = fma(-bd , invbd0 , 1.0);

double invbd = fma(alpha ,invbd0,invbd0);

double ad = (double) a;

double q1d = ad * invbd0;

// round to nearest , unsigned

uint64_t q1 = __builtin_luround_ne(q1d);

int64_t r1 = a - b*q1;

double r1d = (double) r1;

double q3d = r1d * invbd;

// round to nearest , signed

int64_t q3 = __builtin_lround_ne(q3d);

int64_t r3 = r1 - b * q3;

int64_t q2 = r3 <0 ? q3 -1 : q3;

return q1 + q2;

}

6

3 Proof of Correctness

Our proofs rely on the formalization of IEEE-754 in the Flocq library9 [2, 3, 1, 4].
In particular, Flocq has

• executable definitions of individual IEEE-754 operations, which are used
to specify CompCert’s C and assembler floating-point semantics (these
definitions compute the bit pattern in the output as a function of the
inputs)

• proofs that these definitions match the non-executable10 specification that
an IEEE-754 operation amounts to computing the operation in the reals
then rounding into the appropriate type.

For most architectures, CompCert does very little proofs about floating-
point: an operation having a certain semantics in the source language (say,
single-precision floating-point addition) is translated into an operation with the
same semantics in the assembly language. There are proofs about how to im-
plement certain conversion operations using simpler operations for architectures
that do not support these directly as individual instructions. There are how-
ever no proofs about replacing operations by combinations of other operations
involving fine points about roundoff error, as we need here.

To reduce the proof effort on bounding roundoff error, we heavily rely on
the Coq gappa tactic, which calls the Gappa tool11 [8, 16, 13, 14, 4]. We also
heavily use Coq’s ring and field arithmetic equality tactics and the lia linear
integer arithmetic tactic for inequalities.

3.1 Approximate Double-Precision Reciprocal

The computation of the approximate reciprocal that we use in our algorithms is
often presented as a case of Newton-Raphson iteration. Let us give a different
intuition here. In order to iteratively refine a numerical solution, we express
the result we want, 1/b, as a fixed-point of a contracting function f chosen such
that f(1/b) = 1/b. The simplest kind of contracting function (approximated by
fma) is f(x) = αx + β with small α. What α to pick? Assume b̃0 ≃ 1/b, then
α = 1 − bb̃0 ≃ 0 (also approximable by fma) is small. Solve f(1/b) = 1/b for
β: β = b̃0. We then have |f(x) − 1/b| ≤ α|x − 1/b|. b̃ = f(b̃0) is thus an ever
better approximation of 1/b than b̃0. Let us now see how to turn this reasoning
over real numbers into a result on floating-point computations.

We prove in theorem approx_inv_longu_correct_rel that invbd is a very

precise approximation of the reciprocal of b, with relative error invbd−1/b
1/b less

than 1049× 2−56 ≃ 2−46.
Let us comment the proof approach: when we encounter an expression rd(e)

(respectively, rs(e)), meaning “the double-precision rounding of e”, we replace
it by e(1 + ǫe) and we use the gappa Coq tactic to bound the relative error ǫe;

9https://flocq.gitlabpages.inria.fr/
10This specification is not executable in the sense that it involves Coq’s real numbers. Since

in this article we are only concerned about addition, subtraction, multiplication and division,
it could be possible to write this specification using only rational numbers, which would make
it executable.

11https://gappa.gitlabpages.inria.fr/

7

https://flocq.gitlabpages.inria.fr/
https://gappa.gitlabpages.inria.fr/

we simplify expressions in the real field using Coq’s field tactic. In the end,
the final relative error is expressed as a polynomial in the relative errors of the
individual operations, and easily bounded.

From this relative error, we prove that qd in the 32-bit algorithm is such
that |qd − a/b| < 1/2, whence the correct quotient after adjusting for negative
remainder r0.

3.2 64-bit Division Algorithm

The proof of the 64-bit division algorithm is more involved, and distinguishes
four cases: b = 1, 2 ≤ b ≤ 242, 242 < b < 263, and b ≥ 263. The first and last
cases are dealt with by explicit tests in the algorithm, respectively by answering
q = a and q = (if a ≥ b then 1 else 0).

The proof of the remaining cases is more complex than for the 32-bit al-
gorithm. One reason is that, contrary to what happens with 32-bit operands,
large values of a and b cannot be in general represented exactly within double-
precision arithmetic, so we have to deal with the roundoff error induced by the
conversions of a and b in addition to the roundoff error induced by the later
operations.

Small b: 2 ≤ b ≤ 242 We prove that |r1| ≤ 44× 1011. We then prove that, if
|r1| ≤ 342×1011, then q2 truly is the quotient of the division of r1 by b: because
the numerator r1 has small magnitude, the resulting quotient q3d also has small
magnitude and the relative error on q3d translates into an absolute error less
than 1/2. The result follows.

Big b: 242 < b < 263 We prove that q2 truly is the quotient of the division
of r1 by b: because the denominator b is large, the resulting quotient q3d has
small magnitude and the relative error on q3d translates into an absolute error
less than 1/2. The result follows. Note that we do not prove anything about r1
in this context.

3.3 Correspondence with IEEE-754 Numbers

So far, we have expressed floating-point computations as compositions of opera-
tions of real numbers and rounding operators. This ignores the fact that IEEE-
754 floating-point values may be infinite, or “not a number” (NaN), which is
the case of the IEEE-754 datatypes as used in CompCert’s semantics. For each
operation on IEEE-754 numbers in CompCert, we invoke a correctness theorem
in Flocq (e.g., Bfma_correct for fma) that says that if the operands are finite
(meaning, neither infinities nor NaN) and the result of the operation over the
reals fits the maximal magnitude accepted by the target type, then the result
of the operation is finite and has a real value, which is the correctly rounded
value of the result of the operation applied to the operands. In order to apply
these theorems, one thus has to prove lemmas on the magnitudes of the com-
puted numbers. Most of the size of our proofs results from auxiliary lemmas on
magnitudes of numbers.

8

4 Performance Evaluation

To compare performance with the previous method proposed by Kalray, we
computed 64-bit quotients with a = 240 + 222823k and b = 212 + 19k, for
0 ≤ k < 10000 and timed the time to compute these 10000 quotients. In the
following, numbers are clock cycles (less is faster), Loop is an implementation of
division using a hardware loop over Kalray’s special instruction producing one
bit of quotient, Floating-point is our floating-point algorithm, and we consider
loop structures that both compute the same 10000 quotients, one with one
quotient per iteration, the other with two quotients per iteration (thus 5000
iterations).

Method Loop Floating-point
One quotient per iteration 620180 522316
Two quotients per iteration 589696 292314

When two quotients are computed for each loop iteration, CompCert can
schedule [17] together the instructions that compute the two quotients, thus the
nearly halved computation time. Recall that the processor is fully pipelined,
meaning that if a floating-point instruction enters the pipeline, another floating-
point instruction may enter the pipeline at the next clock cycle even though
the previous instruction has not yet produced a result, as long as the second
instruction does not depend (from its operands) on the first instruction. Several
independent computations can thus be weaved together by the compiler, as long
as they do not use control-flow (loops and if-then-else). In contrast, two calls to
the function implementing division using a loop cannot be scheduled together.12

For 32-bit quotients, we used a = 224 +871k and b = 212 +19k, for 0 ≤ k <
10000.

Method Loop Floating-point
One quotient per iteration 469969 442101
Two quotients per iteration 434501 232124

If the same divisor is used for all iterations, the loop-invariant code motion
optimization presented in [15] can move all computations involving the divisor
only out of the loop. Here are cycles counts when b = 74567, for 64-bit operands:

Method Loop Floating-point
One quotient per iteration 608158 342951
Two quotients per iteration 582948 237857

And for 32-bit operands:13

Method Loop Floating-point
One quotient per iteration 458100 213014
Two quotients per iteration 433000 112906

12What would be needed is to inline the called function, then fuse together the two loops
in one single loop, which is difficult given that they have different interaction counts.

13If the divisor is constant and known at compile-time, CompCert replaces 32-bit integer
division by a specialized sequence of purely integer operations [9]. We arranged for these
benchmarks that it should not be the case.

9

5 Related Work

The possibility of iterative refinement of reciprocals, quotients and square roots
by Newton-Raphson iterations implemented by fused multiply-add has long been
recognized [7][16, ch. 5].

The IA-64 architecture did not have division instructions, and much work
was done on efficient floating-point and integer division algorithms for this archi-
tecture and associated formal proofs [11, 10, 6]. These algorithms are generally
not applicable to the KV3 and other current architectures, since they assume
the availability of 82-bit extended precision floating-point operations with 64-bit
significands.

6 Conclusion and Perspectives

We have successfully formally verified 32-bit and 64-bit integer division algo-
rithms for the Kalray KV3 processor. The algorithms are applicable to any pro-
cessor with double-precision floating-point arithmetic featuring a fused multiply-
add, using round-to-nearest. The algorithms were implemented in a version of
the CompCert verified compiler for the KV3 available online.14 The implemen-
tation and proofs take up 883 lines for the 32-bit division, 2670 for the 64-bit
division. This size could probably be reduced through refactoring and custom
proof automation. For each bit width, we cover signed and unsigned division
and modulo. In each case, the final theorem states that, for all inputs, our se-
quence of operations (at the level of the compiler’s intermediate representation;
these operations map one-to-one to assembly instructions) computes exactly
the same value as the corresponding C division or modulo operation when the
divisor is nonzero.

Experiments show that our 32-bit and 64-bit constant-time divisions are on
average faster than the special functions previously provided by Kalray. In ad-
dition, since our computation is straight-line, as opposed to the loop inside that
special function, it can be interleaved with other computations (including other
divisions) by the compiler’s instruction scheduler. Since most of the compu-
tation depends only on the divisor, common subexpression elimination by the
compiler will simplify computations if several divisions use the same divisor;
similarly, the code depending only on the divisor may be hoisted out of a loop
if the divisor remains constant across iterations.

Currently, Kalray’s compilers implement floating-point division through calls
to libgcc’s software floating-point routines, which are themselves implementing
by integer arithmetic. A natural extension of our work would be to design,
implement and prove correct algorithms using the hardware floating-point unit
and especially its fused multiply-add instruction, as it was done for the IA-64.

Acknowledgments

We wish to thank Cyril Six for help in running experiments on actual KV3
processors.

14https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx.git, commit
d5f60d87. The proofs are in files kvx/FPDivision32.v and kvx/FPDivision64.v. The
new division operators are accessible from C using the builtins __builtin_fp_udiv32,

10

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx.git

References

[1] Sylvie Boldo. Deductive Formal Verification: How To Make Your Floating-
Point Programs Behave. Habilitation, Université Paris-Sud, October 2014.

[2] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for prov-
ing floating-point algorithms in coq. In Elisardo Antelo, David Hough,
and Paolo Ienne, editors, 20th IEEE Symposium on Computer Arithmetic,
ARITH 2011, Tübingen, Germany, 25-27 July 2011, pages 243–252. IEEE
Computer Society, 2011.

[3] Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal
Proofs - Verifying Floating-point Algorithms with the Coq System. ISTE
Press, 2017.

[4] Sylvie Boldo and Guillaume Melquiond. Some formal tools for computer
arithmetic: Flocq and Gappa. In International Symposium on Computer
Arithmetic (ARITH), June 2021.

[5] Yao-Ting Cheng. TMS320C60000 integer division. Application Report
SPRA707, Texas Instruments, October 2000.

[6] Marius Cornea, Cristina Iordache, John Harrison, and Peter Markstein. In-
teger divide and remainder operations in the IA-64 architecture. In Fourth
conference on Real numbers and Computers, Schloß Dagstuhl, April 2000.

[7] Marius A. Cornea-Hasegan, Roger A. Golliver, and Peter W. Markstein.
Correctness proofs outline for newton-raphson based floating-point divide
and square root algorithms. In 14th IEEE Symposium on Computer Arith-
metic (Arith-14 ’99), 14-16 April 1999, Adelaide, Australia, pages 96–105.
IEEE Computer Society, 1999.

[8] Marc Daumas and Guillaume Melquiond. Certification of bounds on expres-
sions involving rounded operators. ACM Trans. Math. Softw., 37(1):2:1–
2:20, 2010.

[9] Torbjörn Granlund and Peter L. Montgomery. Division by invariant in-
tegers using multiplication. In Vivek Sarkar, Barbara G. Ryder, and
Mary Lou Soffa, editors, Programming Language Design and Implemen-
tation (PLDI), pages 61–72. ACM, 1994.

[10] John Harrison. Formal verification of IA-64 division algorithms. In Mark
Aagaard and John Harrison, editors, Theorem Proving in Higher Order
Logics (TPHOLs), volume 1869 of Lecture Notes in Computer Science,
pages 233–251. Springer, 2000.

[11] Intel. Divide, Square Root and Remainder Algorithms for the IA-64 archi-
tecture, July 2000.

__builtin_fp_udiv64, __builtin_fp_umod32 __builtin_fp_umod64, __builtin_fp_sdiv32,
__builtin_fp_sdiv64, __builtin_fp_smod32, __builtin_fp_smod64. Since the performance
of these new operators is very satisfying, we will use them by default in future releases. Ex-
ternal calls to the loop function may be reinstated by the options -fdiv-i32= stsud and
-fdiv-i64= stsud.

11

[12] Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7), 2009.

[13] Guillaume Melquiond. De l’arithmétique d’intervalles à la certification de
programmes. PhD thesis, École normale supérieure de Lyon, November
2006.

[14] Guillaume Melquiond. Formal Verification for Numerical Computations,
and the Other Way Around. Habilitation, Université Paris-Sud, April 2019.

[15] David Monniaux and Cyril Six. Formally verified loop-invariant code mo-
tion and assorted optimizations. ACM Trans. Embed. Comput. Syst., March
2022.

[16] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser, 2010.

[17] Cyril Six, Sylvain Boulmé, and David Monniaux. Certified and efficient
instruction scheduling: application to interlocked VLIW processors. Proc.
ACM Program. Lang., 4(OOPSLA):129:1–129:29, 2020.

12

	Introduction
	Division Algorithms
	32-bit Division
	64-bit Division

	Proof of Correctness
	Approximate Double-Precision Reciprocal
	64-bit Division Algorithm
	Correspondence with IEEE-754 Numbers

	Performance Evaluation
	Related Work
	Conclusion and Perspectives

