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We experimentaly investigate higher-order seeded
modulation instability in an optical fiber experiment.
The recirculating loop configuration with round-trip
losses compensation enables the observation in single-
shot of the spatio-temporal evolution of an initially
modulated continuous field revealing intricate yet de-
terministic dynamics. By tuning the modulation period,
a continuous transition between perfectly coherent and
purely noise-driven dynamics is observed that we char-
acterise by means of a statistical study. © 2022 Optical

Society of America

Modulation Instability (MI) is one of the most ubiquitous phe-
nomena of nonlinear dynamics owing to its appearance in very
diverse fields including hydrodynamics, Bose-Einstein conden-
sate physics or optics to name a few [1]. It occurs when a pump
field interacts with a weaker seed field and manifests itself, at
early stage, by the exponential growth of the seed provided that
its frequency falls below a certain cutoff which defines the so-
called MI gain band. In optical fiber systems, one of the most
common scenario encountered is the noise-induced or sponta-
neous MI in which a single continuous wave (cw) pump field
perturbed by spectral noise breaks up into a partially stochas-
tic train of short pulses before experiencing a complex spatio-
temporal dynamics [2, 3]. Another common configuration is
the coherently seeded MI which is triggered by a weak modula-
tion of a cw pump laser and that leads to the formation of well
defined pulse trains [4]. At longer propagation distance, the dy-
namics triggered by seeded MI can feature quasi-periodic spatio-
temporal evolutions of the wavefield that have been linked to
the Fermi-Pasta-Ulam-Tsingou (FPUT) recurrences [5, 6]. More
specifically, such a parallel is drawn only for ‘1st-order MI’ which
is a subset of the seeded MI in which the modulation frequency
of the cw field lies in the outer half of the MI gain band (See
Fig. 1(c)). Conversely, so-called higher-order MI can arise from a
single modulation whose frequency falls below half of the cutoff
frequency and results in considerably different spatio-temporal
dynamics of the wavefield [7–10]. Indeed, in that case one or
several harmonics of the modulation frequency also fall in the
MI gain band generated by the pump which leads to intricate
multiple wave mixing. The early stage of the dynamics features
a generic splitting cascade that has been succesfully described
analytically as resulting from the nonlinear superposition of
elementary breathers [8]. Yet, the long term dynamics of higher-

order MI remains largely unexplored.
Until relatively recently, MI has been the subject of numerous

experimental observations in fiber based systems mainly limited
to measurements of averaged quantities such as conventional
optical spectra or autocorrelation traces for instance due to the
intrinsic rapid timescale associated to the process [2, 6, 11]. In
the last 10 years though, the development of single-shot detec-
tion systems and distributed measurement methods based in
particular on dispersive Fourier transformation (DFT), time-lens
systems and time-domain reflectometry has attracted particular
interest and enabled, among other things, the precise characteri-
sation of MI-driven ultrafast dynamics [12–18]. In the past few
years, recirculating optical fiber loops have also proven to be
a powerful experimental platform to observe and investigate
complex spatio-temporal dynamics induced by MI [19–21].

In this work, we report original observations of higher-order
MI realised in a recirculating optical fiber loop. We recorded
the spatio-temporal evolution of long square pulses sinusoidally
modulated that propagate over hundreds of kilometers, exhibit-
ing a variety of remarkable scenarios. It generally consists in a
pulse splitting sequence followed by a complex coherent pulse
recombination dynamics. When changing the frequency of the
initial modulation, we were able to reveal a controlled inter-
play between higher-order seeded MI and the noise-induced MI
thanks to our single-shot recording technique.

The evolution of optical wavefields propagating in our recir-
culating fiber loop is well described by the following 1D non-
linear Schrödinger (NLS) equation including effective linear
dissipation:
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Ψ(z, t) is the envelop of the field, β2 and γ are the group
velocity dispersion (GVD) and nonlinear coefficients at 1550 nm
respectively, αeff is the effective power loss coefficient, z is the
dimensional propagation distance and t the time in the frame
travelling at the group velocity of the pump field. The fiber used
in our work exhibits anomalous GVD at the pump wavelength
(β2 < 0) which is refered to as the focusing regime [22]. For
the parameters of our experiments, the MI gain curve given by

g(∆ f ) = |β2∆ f |
√

f 2
c − ∆ f 2, where fc =

√
(4γPp)/|β2|/(2π) is

the MI cutoff frequency, is plotted in Fig. 1(c) [3]. ∆ f is the pump-
seed frequency detuning which is varied in our experiments by
changing the frequency of a seed laser around that of a pump
laser of power Pp. The power decay during propagation (lon-
gitudinal decrease of |Ψ|2) influences the MI gain curve which



varies along propagation. Note that the expression of g(∆ f ) is
derived analytically in the case of an initially infinitely small
modulation, i.e. for very small seed power. In the presented
results, the power of the seed field is 9 dB lower than that of the
pump field.
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Fig. 1. (a) Schematic of the experimental setup. (b) Evolu-
tion of the power decay measured in an experimental run. (c)
Small signal MI gain computed from experimental parameters.
Pp ∼ 24 mW, γ = 1.23 /W/km, β2(1550 nm) = −22 ps2/km,
αeff = 3.36× 10−6 m−1. EDFA: Erbium doped fiber amplifier,
AOM: Acousto-optic modulator, PD: Photodetector, WDM:
Wavelength division multiplexer.

Our experimental setup is schematically depicted in Fig. 1(a).
Two cw lasers respectively called pump and seed are mixed via a
50/50 coupler before being amplified by an Erbium doped fiber
amplifier (EDFA). This gives a modulated signal at a beating
frequency given by the detuning between the two lasers. This
field is then modulated by an acousto-optic modulator (AOM) to
generate long pulses (250 ns) which mitigate Brillouin scattering.
The pulses are then launched into an 8 km-long recirculating
loop made of standard single mode fiber. Importantly, each
pulse entering the loop propagates independently of the others
and corresponds to a separate experimental realisation (i.e. the
system is not coherently driven as opposed to optical resonators).
At each round-trip, 10% of the circulating power is extracted and
directed towards a photodetector (PD) coupled to a sampling
oscilloscope leading to an overall 32 GHz detection bandwidth.
The losses accumulated over one circulation in the fiber loop are
partially compensated thanks to a counter-propagating Raman
pump coupled in and out of the loop via wavelength division
multiplexers (WDMs). This reduces the effective power de-
cay rate of the circulating field to 0.015 dB/km or equivalently
αeff ∼ 3.36× 10−6 m−1 (see Fig. 1(b)). Data recorded with the
oscilloscope consist in a succession of sequences (one per round-
trip) that are numerically-processed to construct single-shot real-
time spatio-temporal diagrams of the wavefield dynamics. By
tuning the frequency of the seed around that of the pump, the
system is set in an initial state where different orders of MI can

be observed.
We have recorded several hundreds of spatio-temporal dia-

grams covering the full MI bandwidth by tuning the seed fre-
quency with a step of ∼ 125 MHz. Figure 2 shows excerpts of
our experimental results obtained for five values of frequency
detuning ranging from -7.48 to −0.7 GHz. The corresponding
real-time spatio-temporal dynamics of light intensity are pre-
sented as 2D color plots in Fig. 2(a-e). In each case, the temporal
window showed in the plots (horizontal axis) is restricted to a
fraction (∼ 1 ns) of the actual recorded length (> 250 ns) for clar-
ity. For ∆ f = −7.48 GHz (Fig.2(a)), the ratio fc/∆ f calculated
from the initial condition is ∼ 1.6 which means that only 1st

order MI can arise. The observed spatio-temporal dynamics is
reminiscent of the FPUT recurrences that are usually observed
within this parameter range [21, 23]. Self-compression of the
modulated field leads to the generation of a high contrast train
of pulses (see Fig. 2(f)) followed by a return close to the ini-
tial state. This dynamics is repeated quasi-periodically along
propagation. Note that in our case, the spectrum of the initial
condition is asymetric, thus the quasi recurrences are neither
in-phase, nor out-of-phase but rather drift towards long times
(See Supplement 1 for additional details) [5, 24].

For ∆ f = −4.10 GHz and −2.73 GHz (Fig. 2(b, c) respec-
tively), the initial harmonic modulation self-compresses towards
a coherent pulse train but each of the pulses later experiences
a coherent splitting dynamics which is the signature of higher
order MI [8, 9]. When ∆ f = −4.10 GHz, a clear split in two is
observed after 120 km of propagation (Fig. 2(g)) which precedes
a complex yet still remarkably coherent dynamical evolution of
the pulse train. For ∆ f = −2.73 GHz, the splitting cascade con-
tinues further as the initial modulation turns into regular triplets
of pulses after 224 km (Fig. 2(h)). Importantly, we note that the
initial ratios fc/∆ f for these 2 recordings are 2.8 and 4.3 which
means that at least 2nd and 4th order MI should occur respec-
tively in the conservative case. In practice, we indeed observe
a dynamics compatible with 2nd order MI for ∆ f = −4.10 GHz
but only 3rd order MI for ∆ f = −2.73 GHz as a consequence
of dissipation. Indeed, the exponential decay of the power re-
duces the cutoff frequency of the MI gain which decreases the
ratio fc/∆ f during propagation such that the initial value of this
ratio necessarily overestimates the actual order of MI that can
be observed when there is dissipation. It is important to point
out that evolutions very similar to the regular splitting sequence
observed in our experiments appear during the propagation of
higher-order solitons and more generally in the evolution of any
arbitrary shaped pulse of sufficiently large peak power [3, 9, 25–
27]. This suggests that the spatio-temporal dynamics induced by
higher-order MI at early stage is almost exclusively dictated by
the local gradient (hump) of the initial optical power, i.e. there
is no coupling between adjacent modulation periods. When the
frequency detuning is further decreased, the coherence of the
spatio-temporal dynamics is partially lost as shown in Fig. 2(d)
due to an emergent competion with noise-induced MI. Indeed,
we observed that each hump of the initial condition exhibits a dif-
ferent spatio-temporal dynamics and often does not experience
compression to a single pulse followed by a regular splitting
cascade. As an example, the hump on the left part of Fig. 2(d)
shows a complex dynamics that features a degree of stochasticity
higher than its neighbours. Noticeably though, the field after
328 km of propagation forms almost perfectly regular quartets
of pulses (Fig. 2(i)). Numerical simulations allows to impute
this to the effective dissipation of the system. For a frequency
detuning as low as −0.70 GHz, the spatio-temporal dynamics is
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Fig. 2. (a-e) Experimental recordings of the spatio-temporal evolution of initially modulated wavefields for different frequency
detunings. (f-j) Temporal traces extracted from (a-e) at the propagation distances indicated by the arrows. The traces in light
gray on the background are taken after one circulation (8 km). Experiments reported in (a-e) are associated to ratios fc/∆ f =
1.6, 2.8, 4.3, 6.3 and 16.7 respectively, fc being estimated at the initial condition (for Pp ∼ 24 mW).

completely driven by spontaneous MI as depicted in Fig. 2(e).
Indeed, the frequency of the initial modulation is nearly 10 times
lower than the frequency of maximum MI gain which means
that spectral noise close to the maximum gain experiences a
growth rate significantly larger than that of the seed field. Each
hump of the initial modulation evolves as a slowly modulated
wavefield that breaks up into a train of almost regular pulses
(see Fig. 2(j)) that later evolves stochasticaly. Interestingly, the
maximum contrast of the pulse train is obtained earlier at the
times where the initial modulation is maximum. A related be-
haviour has been described numerically and analytically in Ref.
[28] using the Akhmediev breather formalism but the present
observation shows that it is a more general phenomenon because
it is also relevant to the case of spontaneous MI. The evolution
of the spatio-temporal diagram when varying ∆ f is presented
as animations in Visualisation 1 and 2 which compile all our ex-
perimental recordings. Note that for ∆ f > 0, we get symetrical
observations to those reported in Fig. 2. Also, we have per-
formed similar experiments with greater pump-to-seed power
ratio which resulted in qualitatively identical observations.

The gradual loss of coherence that is observed in our experi-
ments originates from the competition between seeded and spon-
taneous MI that is mediated, for a fixed level of spectral noise,
by the frequency detuning ∆ f . Note that it has been shown
numerically and experimentally that a similar interplay could
disrupt the FPUT recurrences induced by 1st order MI [29, 30]. In
order to get a quantitative insight into this transition we focus on
the evolution of a statistical indicator which is the second-order
moment of the power κ4(z) =

〈
P(z, t)2〉 / 〈P(z, t)〉2, where 〈·〉

denotes average over time t. Larger values of κ4(z) traduce the
presence, at given distance z, of an increased number of localised
structures having high peak power. In the case of cw sponta-
neous MI, the value of κ4(z) varies from 1 at initial state to 2
at long propagation distance and features damped oscillations
with a first overshoot that pinpoints the statistical position of
the first maximum compression of the pulse train generated by
MI [20]. Figure 3 shows the longitudinal evolution of κ4(z) cal-
culated for the 5 values of ∆ f presented in Fig. 2 as blue shaded
areas. For comparison, the evolution of κ4(z) computed from
numerical simulations of the NLS equation without inclusion of
spectral noise is superimposed as dashed gray lines. The initial
field for the simulation is Ψ(0, t) = [

√
Pp +

√
Ps exp(i2π∆ f × t)]

where Pp and Ps are the initial pump and seed powers respec-

tively. Figure 3 shows that our statistical treatment provides
clear identification of the influence of spontaneous MI over the
dynamics of seeded MI. In the case of 1st order MI (Fig. 3(a)),
the evolution of κ4 presents 4 periods traducing the 4 quasi-
recurrences observed in Fig. 2(a). In Figs. 3(b-c) relative to
∆ f = −4.10 GHz and −2.73 GHz, the evolution of κ4 features a
first strong peak (first maximum of compression) followed by
a second one (first coherent splitting) and even a weak third
one (second coherent splitting) in Fig. 3(c). This is consistent
with our identification of 2nd and 3rd order MI dynamics in the
spatio-temporal diagrams of Fig. 2(b-c). Note that the apparent
“fluctuations” of κ4 observed in Fig. 3(b) after 250 km actually
still traduce a coherent dynamics (see Fig. 2(b)) but altered by
linear dissipation. The very good agreement between experi-
ments and numerical simuations without noise in these first 3
cases indicates that the dynamics is almost uniquely governed
by seeded MI. Consistently with the results presented previ-
ously, spontaneous MI dramaticaly alters the coherent dynamics
of the wavefield when |∆ f | < 2 GHz. This translates in the lon-
gitudinal evolution of κ4 shown in Fig. 3(d) by the fact that the
large oscillations in the first 300 km of propagation observed in
the numerical simulation without noise are almost completely
smoothen out in experiments. For even smaller frequency detun-
ing (Fig. 3(e)), coherent oscillations of κ4 vanish and we observe
a weak overshoot at 160 km that is reminiscent of spontaneous
MI. A complete picture of the evolution of κ4(z) when scanning
∆ f is presented as a 2D-color plot in Supplement 1 along with
corresponding numerical simulations to further illustrate the
progressive competition between seeded and spontaneous MI.
Finally, we analyse through numerical simulations the influence
of realistic dissipation and noise on the spatio-temporal evolu-
tion of the wavefield when higher-order MI is involved. To do
so, we focus on the case ∆ f = −1.85 GHz illustrated in Figs.
2(d) and 3(d) as it particularly highlights the interplay between
seeded and spontaneous MI. Figure 4(a) shows the result of a
simulation of the integrable NLS equation (i.e. with αeff = 0) and
no added noise. The longitudinal evolution up to 300 km shows
a regular splitting cascade up to 5th-order before the spatio-
temporal dynamics becomes more complex while preserving its
temporal coherence. Note that the observed temporal asymme-
try is solely due to the single-sideband excitation. The addition
of linear dissipation to the simulation changes quantitatively the
observed result (see Fig. 4(b)) since the coherent splitting cascade
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is stopped at 4th-order. Additional inclusion of realistic noise
to the initial condition results in the spatio-temporal dynamics
illustrated in Fig. 4(c) which agrees very well with our experi-
mental observation of Fig. 2(d). The spectral noise added to the
initial state triggers spontaneous MI which partially disrupt the
coherence of the higher-order MI. In conclusion, we have used
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Fig. 4. Numerical simulations of Eq. (1) of the experiment pre-
sented in Fig. 2(d). (a) Without dissipation nor initial noise, (b)
with linear dissipation, (c) with linear dissipation and inclu-
sion of initial noise (realistic simulation).

a recirculating optical fiber loop system to observe in real-time
the spatio-temporal evolution of quasi-continuous wavefields
experiencing seeded higher-order modulation instability in a
recirculating optical fiber loop system. Fine scanning of the
frequency detuning between a pump and seed laser enabled
clear observation of the occurence of different orders of modu-
lation instability which result in a characteristic coherent pulse
splitting cascade. At low frequency detuning, our experiments
reveal the coexistence of seeded and spontaneous MI, of which
we analyse the interplay using statistical tools.
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Spatio-temporal observation of
higher-order modulation instability in
a recirculating fiber loop:
supplemental document

1. CONTINUOUS TRANSITION FROM SEEDED TO SPONTANEOUS MI: EVIDENCES
IN THE EVOLUTION OF THE SECOND ORDER MOMENT

In the letter, we report the observation of a gradual loss of coherence in the spatio-temporal
evolution of higher-order MI when the frequency detuning between pump and seed lasers
decreases down to 0. This is associated to the emergence of spontaneous MI which progressively
dominates the dynamics at the expense of higher-order seeded MI. Qualitative signatures of
this interplay appear clearly in the single-shot spatio-temporal diagrams of Fig. 2 of the letter.
An interesting quantitative insight into this complex interplay is obtained by looking at some
statistical indicator and also, by making use of comparisons with numerical simulations. In
particular, we focus on the longitudinal evolution of the second-order moment of the optical
power κ4(z):

κ4(z) =
〈P(z, t)2〉
〈P(z, t)〉2 (S1)

where P(z, t) = |Ψ(z, t)|2 is the optical power and 〈·〉 denotes average over time t. In Fig. 3
of the letter, we compare the experimental measurements of κ4(z) to numerical simulations of
the NLS equation (Equation (1)) for 5 different values of the frequency detuning. Numerical
simulations do not include random noise on the initial condition such that the difference between
experiments and numerics quantitatively illustrates the influence of spontaneous MI in our
experiments.

We have recorded more than 200 single-shot spatio-temporal diagrams by sweeping the fre-
quency detuning ∆ f in the range ±13 GHz with a regular step of ∼ 125 MHz. The corresponding
evolution of the spatio-temporal diagram is available as an animation in Visualisation 1 and 2.

We have performed the computation of κ4(z) for every recording and the result is presented in
Fig. S1(a) as a 2D color plot. Each vertical line of this figure represents the longitudinal evolution
of κ4 over 600 km of propagation calculated from one spatio-temporal recording at a given ∆ f .
Bright areas (large κ4) traduce the existence of a larger number of high power localised structures.
Figure S1 clearly reveals a continuous evolution of κ4(z) as a function of ∆ f which illustrates the
interplay between higher-order seeded MI and spontaneous MI as discussed in the letter. Below
is a list of noteworthy remarks that can be made:

• The results are almost perfectly symetrical for positive and negative frequency detunings.
Discrepancies come from small fluctuations of experimental parameters in the course of the
run of acquisitions (∼ 2 h);

• For |∆ f | > 5 GHz, well defined bands are observed that translate the quasi-periodic
longitudinal dynamics of 1st-order seeded MI;

• For ∼ 2 GHz < |∆ f | < 5 GHz, a more complex band structure appears. In particular, 3
bands exist within the first 300 km of propagation associated in the spatio-temporal dynam-
ics to the first maximum compression, coherent splitting in two and three respectively;

• For |∆ f | <∼ 2 GHz, the bands vanish into a unique region where κ4 is almost uniform when
propagation distance is longer than ∼ 150 km. It is in this range of ∆ f that higher-order
seeded MI and spontaneous MI exhibit a competition in the spatio-temporal dynamics. In
particular, the longitudinal evolution of κ4(z) for ∆ f ∼ 0 is reminiscent of the one observed
in the case of spontaneous MI [5];



For comparison, the same 2D color plot has been constructed from corresponding numerical
simulations of the NLS equation without inclusion of noise in the initial condition, and is pre-
sented using the same figure layout in Fig. S2. The agreement is remarkable as can be seen from
the details within each bands for ∆ f > 2 GHz which are also captured in our experiments. Careful
comparison eventually reveals that around ∆ f = 0, κ4(z) remains equal to 1 in the simulations
because no spectral noise in the initial state triggers spontaneous MI. This confirms that the broad
uniform region in Fig. S1 around ∆ f = 0 find its origin in the emergence of spontaneous MI in
the spatio-temporal dynamics of the system.
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Fig. S1. (a) Longitudinal evolution of the second-order moment κ4(z) as a function of the fre-
quency detuning ∆ f computed from the experimental recordings. (b-i) κ4(z) curves extracted
from (a) for values of ∆ f indicated by the dashed gray lines.
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Fig. S2. Same as Fig. S1 with numerical simulations of the NLS equation including realistic
losses but no spectral noise in the initial conditions.
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2. IMPACT OF THE SINGLE-SIDEBAND EXCITATION AND DISSIPATION ON QUASI-
RECURRENCES

In the experiments presented in the letter, MI is seeded by a single spectral sideband located on
one side of the pump (i.e. the spectrum of the initial condition is asymetric) which is known
as single-sideband excitation. It has been demonstrated that under such condition, FPUT quasi
recurrences emerge but are neither in-phase, nor out-of-phase contrary to the symmetric pumping
case [1–3]. Indeed, the successive recurrences appear to drift in the spatio-temporal evolution
with a given shift that depends on the unstable mode that is excited. If the system additionally
features weak dissipation, then after some transient regime the successive recurrences form
a regular pattern of π-shifted pulse trains [4]. Traces of this phenomenon are observed in our
experiments in the regime of 1st-order seeded MI (|∆ f | > 6 GHz) and are visible in the animations
Visualisation 1 and 2. Taking in particular the case ∆ f ∼ −10 GHz, the first three recurrences are
almost in-phase except for a small drift towards longer time that is due to the single-sideband
excitation, while the next ones exhibit a larger phase shift that is closer to π.

An in depth experimental investigation of the phenomenon is beyond the scope of the present
letter and will be the subject of future work.
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